JPS591620A - Refining agent having high desulfurizing power causing slight melt fracture on refractory - Google Patents

Refining agent having high desulfurizing power causing slight melt fracture on refractory

Info

Publication number
JPS591620A
JPS591620A JP11226282A JP11226282A JPS591620A JP S591620 A JPS591620 A JP S591620A JP 11226282 A JP11226282 A JP 11226282A JP 11226282 A JP11226282 A JP 11226282A JP S591620 A JPS591620 A JP S591620A
Authority
JP
Japan
Prior art keywords
flux
refining agent
refractory
weight
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11226282A
Other languages
Japanese (ja)
Inventor
Hideo Ito
秀雄 伊藤
Yuji Kawachi
河内 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11226282A priority Critical patent/JPS591620A/en
Publication of JPS591620A publication Critical patent/JPS591620A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To increase the desulfurizing power of the resulting refining agent, to reduce the melt fracture on refractories, and to make the agent inexpensive by providng a specified composition contg. CaO, Al2O3, CaF2, an alkali metallic oxide or carbonate, and MgO. CONSTITUTION:This refining agent is obtd. by combinedly adding 5-20wt% alkali metallic oxide or carbonate and 3-10wt% MgO to a mixture consisting of, by weight, 30-70% CaO, 10-40% Al2O3 and 5-30% CaF2. The refining agent is suitable for use in the desulfurization of molten steel, especially molten stainless steel which is difficult to desulfurize.

Description

【発明の詳細な説明】 本発明は溶鋼とくに脱Sが困難とされているステンレス
溶鋼の脱S用精錬剤に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refining agent for removing sulfur from molten steel, particularly stainless molten steel, which is difficult to remove sulfur from.

近年、鋼材に要求される品質は次第にきびしくかつ多様
化しておシ、より純度の高い鋼を安価に製造するための
製鋼技術が望まれている。このためいわゆる取鍋精錬技
術および各種の精錬剤が種々開発され、従来の製鋼法の
補助手段として活用され新たな冶金分野を形成するに至
っている。
In recent years, the quality required for steel materials has become increasingly strict and diversified, and there is a desire for steel manufacturing technology that can produce steel with higher purity at a lower cost. For this reason, a variety of so-called ladle refining techniques and various refining agents have been developed and utilized as auxiliary means for conventional steel manufacturing methods, leading to the creation of a new field of metallurgy.

含Or鋼であるステンレス鋼においても品質11’求ニ
ーズは例外ではなく、最近では自動車用モール材である
190r鋼の耐誘性向上のため、当該鋼種の成品Sを極
力低減させるべく種々検討されている。
The need for quality 11' is no exception for stainless steel, which is an Or-containing steel.Recently, in order to improve the induction resistance of 190R steel, which is a molding material for automobiles, various studies have been conducted to reduce the product S of this steel type as much as possible. ing.

本発明者らけこの問題に対処するため6種々の脱S用精
錬剤について総合的な検討を加えた結果。
This is the result of a comprehensive study on six different S-removal refining agents to address this problem.

Ca O+ A A203 + Oa F 2 +アル
カリ金属酸化物または炭酸塩、M10’ii適正組成に
混合せしめた精錬剤が脱S能に優れ、しかも安価であシ
、さらVctlj耐火物溶損作用も僅少であり、極めて
有効であることを確認した。
Ca O+ A A203 + Oa F 2 + alkali metal oxide or carbonate, a refining agent mixed with M10'ii appropriate composition has excellent S removal ability, is inexpensive, and has little effect on Vctlj refractory erosion. It was confirmed that it is extremely effective.

すなわち1本発明の要旨とするところ・1jOa030
〜70重量% 、 AtzOa10〜40重最多。
That is, 1 gist of the present invention 1jOa030
~70% by weight, AtzOa 10-40 times maximum.

0aF25〜30重量係からなる混合物に対してアルカ
リ金属酸化物またに炭酸塩を5〜20重量%。
5-20% by weight of alkali metal oxide or carbonate based on a mixture consisting of 0aF25-30% by weight.

MiOk  3〜10%複合せしめた安価な耐火物に対
する溶損作用の少ない高脱S能精錬剤を提供するもので
ある。
The object of the present invention is to provide a refining agent with a high ability to remove S, which has a low erosion effect on inexpensive refractories containing 3 to 10% MiOk composite.

従来、ステンレス溶鋼の脱S技術として[AOD 。Conventionally, [AOD] was used as a S removal technology for molten stainless steel.

1、 F等の二次精錬炉を用い、精錬剤として0a00
aF2系あるいはOaO−S i02 0aF2系。
1. Using a secondary refining furnace such as F, 0a00 as a refining agent.
aF2 series or OaO-S i02 0aF2 series.

Ca OA A203 0 a F2系フラックスを添
加し還元精錬をおこなう方法が一般的・であった。しか
しながらOa O−Ca ”’2系およびOaO−S 
i 02−CaP2系フラックスは脱S能が弱くしかも
耐火物に対する溶損作用も太きい等の欠点があった。ま
たCa O−A j203  CE a F2系フラッ
クスでは脱S能にかなり向上しているものの耐火物に対
する溶損作用が大きい点に難があった。
A common method was to add Ca OA A203 0 a F2-based flux and perform reduction refining. However, Oa O-Ca ``'2 system and OaO-S
The i02-CaP2-based flux had drawbacks such as weak S removal ability and strong erosion effect on refractories. Further, although CaO-A j203 CE a F2-based flux has considerably improved S removal ability, it has a drawback in that it has a large erosion effect on refractories.

以」二のような状況に鑑み本発明者らfiOao−A 
A203 0 a F2系フラックスをペースとして。
In view of the situation described above, the inventors have developed fiOao-A.
A203 0 a F2 series flux as pace.

脱S能に優れ、しかも耐火物溶損作用の小さい精錬剤V
Cついて種々検討した。その結果重量パーセントで0a
030〜.70%、 A4203 10〜40%、Ca
P25〜30%の混合に対してアルカリ金属酸化物また
は炭酸塩全5〜20%、MpOを3〜10係複合せしめ
たフラックスが最適であること全明らかK t、た。
Refining agent V with excellent S removal ability and low refractory erosion effect
Various studies were conducted regarding C. As a result, the weight percentage is 0a
030~. 70%, A4203 10-40%, Ca
It is clear that a flux containing 5-20% total alkali metal oxide or carbonate and 3-10% MpO is optimal for a mixture of 25-30% P.

ここKCaOn脱Sのための主成分であり30係以下で
は十分な脱S効果が得られず、また70%以上ではフラ
ックスの融点の上昇をきたし脱S能力が激減する。また
At203にcaoとカルシウムアルミネートを形成し
Ca0Kよる脱sを促進するための補助的役割をはたす
ものであり、10係以下でにカルシウム、アルミネート
の形成が不十分なため脱S能が悪化し、40qb以上に
なると脱Sのために必要々OaOまでカルシウム、アル
ミネートとするため好ましくない。なおりルシウム、ア
ルミネー)UOaO粒をとりっつむように形成され、S
のOaO表面への移動を促進するための役割があるとい
われている。
KCaOn is the main component for S removal, and if it is less than 30%, a sufficient S removal effect cannot be obtained, and if it is more than 70%, the melting point of the flux increases and the S removal ability is drastically reduced. In addition, it forms CaO and calcium aluminate on At203, which plays an auxiliary role in promoting desulfurization by Ca0K, and when the concentration is below 10, the formation of calcium and aluminate is insufficient, so the desulfurization ability deteriorates. However, if it exceeds 40 qb, calcium and aluminate must be converted to OaO to remove S, which is not preferable. S
It is said that it plays a role in promoting the movement of OaO to the OaO surface.

一方*  Oa F2 i11フラックスの融点を低・
下させ脱Sを促進させる成分であって、5%以下では融
点低下効果が不十分であり好ましく々い。また30%以
上になると耐火物を著るしく溶損させ且つコスト的に不
利となる。
On the other hand, *lowering the melting point of Oa F2 i11 flux
It is a component that promotes deS removal, and if it is less than 5%, the effect of lowering the melting point is insufficient, so it is preferable. Moreover, if it exceeds 30%, the refractory material will be significantly damaged and it will be disadvantageous in terms of cost.

以上の基本組成に対して、アルカリ金属酸化物または炭
酸塩を5〜20重量係複最多る理由は。
The reason why the alkali metal oxide or carbonate is the largest by weight is 5 to 20 in the above basic composition.

脱S能の向上のためである。アルカリ金属の酸化物また
は炭酸塩としてU N a 20 T N a 2 C
O3+ K 20 +に2Co、等が代表的であり、 
これ・1らはそれ自身高説S能を有するものであり5係
以上複合することにより脱S能の向上が顕著とh・る。
This is to improve the ability to remove S. U N a 20 T N a 2 C as an oxide or carbonate of an alkali metal
Typical examples include O3+ K20+, 2Co, etc.
These 1 have high S ability by themselves, and when combined with 5 or more elements, the improvement in S ability is remarkable.

しかしながら20%以上では耐火物溶損作用が大きくな
シ好ましくかい。それゆえアルカリ金属酸化物または炭
酸塩に5〜20重量係複最多るのが好ましい。
However, if it is 20% or more, it is preferable because the effect of erosion of the refractory becomes large. Therefore, it is preferred that the alkali metal oxide or carbonate has a maximum weight ratio of 5 to 20%.

また、MiO′?f 3〜10重景%重量する理由は耐
火物保護のためである。MJloが3係以下では耐火物
保護効果が不十分であり、10%以上ではフラックスの
融点が上昇し好ましく々い。従ってMν0の適正添加割
合は上記基本組成のフラックスに対して3〜10重量係
で最多。
Also, MiO'? f The reason why the weight is 3 to 10% is to protect the refractory. When MJlo is less than 3%, the effect of protecting the refractory is insufficient, and when it is more than 10%, the melting point of the flux increases, which is preferable. Therefore, the appropriate addition ratio of Mv0 is at most 3 to 10% by weight relative to the flux having the above basic composition.

次にフラックスの粒度について述べる。フラックスの粒
度についてに、特に限定するものではないが1反応効率
を高める意味から本来微細なものほどよいはずである。
Next, we will discuss the particle size of flux. The particle size of the flux is not particularly limited, but from the viewpoint of increasing the efficiency of one reaction, the finer the particle size, the better.

しかしなか、らいわゆる反応容器上部からフラックス全
添加するフラックス上置法においては粒度が微細になる
と集じん様に吸引される等のロスが生じ好ましくない。
However, in the so-called flux top-up method in which all the flux is added from the top of the reaction vessel, if the particle size becomes fine, losses such as suction like dust collection occur, which is undesirable.

本発明者らの経験によればフラックス上置法の場合の適
正フラックス粒度は0.5〜10maである。ここに0
.51以下では飛散等によるロスが生じ、10朋以上で
け溶融j〜難く反応効率が低下する。またフラックス全
浸漬ランスによりA「等の不活性ガスと共にステンCス
溶鋼中へ直接吹込む方式も可能である。この場合、フラ
ックス粒度は0.1〜0.5關が最適である。粒度0.
5ma以上ではスラックスによるノズルづまりを生じ、
また帆1關以下では極めて微粉と々るため運搬等のハン
ドリングが困難となる。
According to the experience of the present inventors, the appropriate flux particle size for the flux overlay method is 0.5 to 10 ma. 0 here
.. If it is less than 51, losses due to scattering etc. will occur, and if it is more than 10, it will be difficult to melt and the reaction efficiency will decrease. It is also possible to use a fully immersed flux lance to directly inject the flux into the molten stainless steel along with an inert gas such as A. In this case, the optimal flux particle size is 0.1 to 0.5. ..
If it is over 5ma, nozzle clogging will occur due to slacks.
In addition, if it is less than one sail, it becomes extremely fine powder, making handling such as transportation difficult.

フ′う°ツクス成分中、OaOと0aFz源については
それぞれ生石灰、ホタル石を用いればよいが。
Among the flux components, quicklime and fluorite may be used as the OaO and OaFz sources, respectively.

At203源  とり、てはいわゆるA4精錬の際副生
ずる鉱滓であるアルミナドロスの有効活用が可能であり
、またMIO源についてはOaOとMIOの混合物であ
るドロマイトラ使用すればよい。
As an At203 source, it is possible to effectively utilize alumina dross, which is a by-product of so-called A4 smelting, and as an MIO source, dolomite, which is a mixture of OaO and MIO, may be used.

なお本発明のフラックスをあらかじめ焼結せしめて使用
することも可能であり、この場合フラックスの溶融が十
分促進せられ反応効率は向上する。
Note that it is also possible to use the flux of the present invention by sintering it in advance, and in this case, the melting of the flux is sufficiently promoted and the reaction efficiency is improved.

なお本発明によるフラックスげ低S化ニーズの強い一般
炭素鋼等についてももちろん有効である。
Of course, the present invention is also effective for general carbon steels, etc., which have a strong need for flux reduction and low S.

次に本発明による高脱S能精錬剤の効果について具体的
に述べる。
Next, the effects of the high S removal refining agent according to the present invention will be specifically described.

120 ton転炉内の 溶銑に対して、あらかじめ脱
P精錬を施し出鋼排滓後、Fe−C!rf添加しC「溶
解、脱C処理をおこないさらにRH精錬により仕上げ脱
C1成分調整をおこなって得られたステンレス粗溶鋼(
組成、温度を第1表に示す)に対シて各種ステンレス全
添加し脱S精錬を実施した。処理条件は次の通りであり (1)  処理量ニステンレス粗溶鋼100〜115(
2)  脱S方式:R,IIを用いステンレス耐溶鋼全
環流させ真空槽内にスラックス を添加する方法 (3) 処理時間=30〜40分間 (4)  ステンレス粒度:1〜5朋 (5)  フラックス添加量:13〜16 Kg/ 1
.sフラックスとしては B : 0aO−OaF2系フラシフラックス00aO
−8i02−0aFz系フラツクスD : 0aO−A
t203−Oa P2系フラックスの4種類について各
々3チヤージづつ脱S精錬をおこなった。
The hot metal in the 120 ton converter is subjected to dephosphorization refining in advance, and after the slag is discharged, Fe-C! Crude molten stainless steel obtained by adding RF, melting and removing C, and then finishing and adjusting the C1 component by RH refining.
The composition and temperature are shown in Table 1), and all types of stainless steel were added to perform S-free refining. The processing conditions are as follows: (1) Processing amount Ni stainless steel crude molten steel 100-115
2) De-S method: Using R and II, the entire melt-resistant stainless steel is refluxed and slack is added into the vacuum chamber (3) Processing time = 30 to 40 minutes (4) Stainless steel particle size: 1 to 5 (5) Flux Addition amount: 13-16 Kg/1
.. s flux is B: 0aO-OaF2 type plush flux 00aO
-8i02-0aFz system flux D: 0aO-A
Four types of t203-Oa P2-based fluxes were subjected to S-removal refining using three charges each.

ff1表’  ステンレス粗溶鋼の成分、温度その結果
第1図に示す脱S効果および第2図に示す耐火物溶損状
況が明らかとなった。すなわち第1図は各フラックスの
3チヤージの脱S処理の平均脱S率を比較して示したも
のであり平均膜S率ハ、スラックスA75%、フラック
スD60%、フラノ2フ835 アリ、本発明によるフラックスは7ラツクスDと同様最
も高い脱S率が得られた。
Table ff1 Composition and temperature of crude molten stainless steel As a result, the S removal effect shown in FIG. 1 and the state of refractory erosion shown in FIG. 2 were clarified. That is, FIG. 1 shows a comparison of the average S removal rates of three charges of S removal treatment for each flux. As with 7lux D, the highest S removal rate was obtained with the flux.

また第2図は各フラックスの3チヤージの脱S処理にお
ける耐火物溶損状況についてスラグ中への溶出MVO 
( MrO [ R. H槽内耐火物の主成分)を尺度
として,比較した結果である。MtO溶出量はフラック
スA 0.0 7 Kg/ t.s h ステンレスC
0−1 5 K9/ t.s 1 フラックスB O.
1 8 Kダ/+.s。
In addition, Figure 2 shows the state of refractory erosion in the 3-charge S removal process for each flux, and the MVO eluted into the slag.
These are the results of a comparison using MrO (the main component of the refractory in the R.H tank) as a measure. The amount of MtO elution is Flux A 0.07 Kg/t. s h stainless steel C
0-1 5 K9/t. s 1 flux B O.
1 8 Kda/+. s.

フラックス0 0.3 0 Kg/ t.sの順に増大
しておシ。
Flux 0 0.3 0 Kg/t. It increases in the order of s.

本発明によるフラックスは耐火物保護の観点から極めて
有利であることがわかる。
It can be seen that the flux according to the invention is extremely advantageous from the point of view of protecting refractories.

なお溶出MIJOについては,供給したフラックス中の
CaO量と生成スラグのCaO分析値(%)から生成ス
ラグ量を計算し、この生成量スラグ量と生成スラグのM
IO分析値からMjlO溶出量を算出した。
Regarding eluted MIJO, calculate the amount of slag produced from the amount of CaO in the supplied flux and the CaO analysis value (%) of the produced slag, and calculate the amount of slag produced and the M of the produced slag.
The amount of MjlO eluted was calculated from the IO analysis value.

以上の説明からも明らかなように本発明によるフラック
スは脱S能に優れ,しかも耐火物保護効果も大きく、極
めて実用的な精錬剤であると言える。従って本発明の高
脱S能精錬剤を活・用することにより,ステンレス鋼の
ように脱Sが比較的離しい鋼種においても処理前Sが0
.0 0 5%程度であれば安定して処理後S ’e 
O.0 0 2%以下に低下せしめることが可能となシ
、材料ニーズにも十分対応できるだけでなく,極めて低
コストで脱S精錬會おこなうことができ鉄鋼業にとって
有益かものである。
As is clear from the above explanation, the flux according to the present invention has excellent S removal ability and also has a large effect of protecting refractories, and can be said to be an extremely practical refining agent. Therefore, by utilizing and using the high S-removal ability refining agent of the present invention, S can be reduced to 0 before treatment even in steel types where S removal is relatively slow, such as stainless steel.
.. 0 0 If it is about 5%, it will be stable after treatment.
O. It is possible to reduce the S content to 0.02% or less, which not only satisfies material needs, but also allows a S-free refining process to be carried out at an extremely low cost, which is beneficial to the steel industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図にフラックスの種類による平均脱S率の説明図、
第2図はフラックスの種類によるMIO溶出景の比較説
明図である。 代理人 弁理士  秋 沢 政 光 信2名 fr1図 9匂脱5牽(’/、) ’iZ図 HりO傳士量(k@A−5)
Figure 1 is an explanatory diagram of the average desulfurization rate depending on the type of flux.
FIG. 2 is a comparative diagram of the MIO elution pattern depending on the type of flux. Agent Patent attorney Masaaki Aki Sawa Mitsunobu 2 people fr1 Figure 9 5-fold ('/,) 'iZ diagram Hri O denshi quantity (k@A-5)

Claims (1)

【特許請求の範囲】[Claims] (It  0a030〜70重量% 、 AtzOa 
10〜40重量%、0aF25〜30重量係からなる混
合物に対して、アルカリ金属酸化物または炭酸塩を5〜
20重量もおよびMloを3〜10重量係複最多しめた
ことを特徴とする耐火物に対する溶損作用の少ない高脱
S能精錬剤。
(It 0a030-70% by weight, AtzOa
5 to 40% by weight of alkali metal oxide or carbonate to a mixture consisting of 25 to 30% by weight of 0aF.
1. A refining agent with high S-removal ability that has little erosion effect on refractories, characterized in that it has a maximum Mlo content of 20% by weight and 3 to 10% by weight.
JP11226282A 1982-06-29 1982-06-29 Refining agent having high desulfurizing power causing slight melt fracture on refractory Pending JPS591620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11226282A JPS591620A (en) 1982-06-29 1982-06-29 Refining agent having high desulfurizing power causing slight melt fracture on refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11226282A JPS591620A (en) 1982-06-29 1982-06-29 Refining agent having high desulfurizing power causing slight melt fracture on refractory

Publications (1)

Publication Number Publication Date
JPS591620A true JPS591620A (en) 1984-01-07

Family

ID=14582296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11226282A Pending JPS591620A (en) 1982-06-29 1982-06-29 Refining agent having high desulfurizing power causing slight melt fracture on refractory

Country Status (1)

Country Link
JP (1) JPS591620A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201716A (en) * 1985-03-04 1986-09-06 Nippon Steel Corp Molten steel treating agent
EP0194098A1 (en) * 1985-03-04 1986-09-10 Nippon Steel Corporation Treating agent for desulfurizing molten steels and method for treating molten steels
US5228902A (en) * 1992-09-03 1993-07-20 Usx Corporation Method of desulfurization in vacuum processing of steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201716A (en) * 1985-03-04 1986-09-06 Nippon Steel Corp Molten steel treating agent
EP0194098A1 (en) * 1985-03-04 1986-09-10 Nippon Steel Corporation Treating agent for desulfurizing molten steels and method for treating molten steels
JPH0149772B2 (en) * 1985-03-04 1989-10-26 Nippon Steel Corp
US5228902A (en) * 1992-09-03 1993-07-20 Usx Corporation Method of desulfurization in vacuum processing of steel

Similar Documents

Publication Publication Date Title
US4417924A (en) Steelmaking additive composition
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
US4490173A (en) Steelmaking additive composition
US4695318A (en) Method of making steel
JP4499969B2 (en) Desulfurization method by ladle refining of molten steel
US3537842A (en) Treatment of molten metal
CA1074125A (en) Reducing material for steel making
JPS591620A (en) Refining agent having high desulfurizing power causing slight melt fracture on refractory
US4604138A (en) Process for refining hot metal
WO2007100109A1 (en) Method of dephosphorization of molten iron
EP0325862A2 (en) Additive for promoting slag formation in steel refining ladle
RU2201968C2 (en) Method of conversion of vanadium iron
JP3158912B2 (en) Stainless steel refining method
US4790872A (en) Additive for promoting slag formation in steel refining ladle
JP2000109924A (en) Method for melting extra-low sulfur steel
SU1698307A1 (en) Charge for producing ferrovanadium
JP2002275521A (en) Method for dephosphorizing molten high carbon steel
RU2096491C1 (en) Steel foundry process
SU1062274A1 (en) Refining slag
GB2050431A (en) Desulphurisation of deep-drawing steels
RU2186124C2 (en) Method of pig iron conversion
SU850679A1 (en) Slag-metal mixture
RU2136764C1 (en) Method of conversion of vanadium iron in converter
SU1067059A1 (en) Pulverulent mix for dephosphorizing steel
SU1544812A1 (en) Method of melting steel