JPH01319614A - Method of operating blast furnace - Google Patents

Method of operating blast furnace

Info

Publication number
JPH01319614A
JPH01319614A JP14980788A JP14980788A JPH01319614A JP H01319614 A JPH01319614 A JP H01319614A JP 14980788 A JP14980788 A JP 14980788A JP 14980788 A JP14980788 A JP 14980788A JP H01319614 A JPH01319614 A JP H01319614A
Authority
JP
Japan
Prior art keywords
slip
furnace
level difference
blast furnace
blow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14980788A
Other languages
Japanese (ja)
Other versions
JP2678767B2 (en
Inventor
Mitsuru Kiguchi
木口 満
Masaaki Sato
政明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14980788A priority Critical patent/JP2678767B2/en
Publication of JPH01319614A publication Critical patent/JPH01319614A/en
Application granted granted Critical
Publication of JP2678767B2 publication Critical patent/JP2678767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To execute the operation of the blast furnace more efficiently than heretofore by recognizing a slip and blow by a change in the descending amt. of the charge level in the furnace and the temp. of a furnace top gas and taking an adequate action. CONSTITUTION:The furnace body of the blast furnace is circumferentially segmented to plural pieces and the level difference ( l) at the time of embedment between at least the two consecutive batch charges is detected for each of the blocks. Decision is made that the slip arises when the level difference ( l) exceeds the prescribed value (about >=0.3m) which is previously determined. The size of the slip is evaluated by the size of the level difference ( l). The blow by is decided if the temp. of the furnace top gas rises sharply or the N2 concn. in the furnace top gas changes drastically, even if the level difference ( l) is below the prescribed value. The slip and blow by in the blast furnace are detected in this way and the efficient operation is executed by the adequate action.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高炉の操業方法に係り、詳しくは、スリップと
吹抜けを炉内装入物面の降下量、炉頂ガス組成中のN2
濃度及び炉頂ガス温度の変化で認知し、がっ、これら両
者が操業に与える影響を評価し、適切なアクションを実
施する口とが可能な高炉の操業方法に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of operating a blast furnace, and more specifically, slip and blow-through are calculated based on the amount of fall on the surface of the contents in the furnace and the N2 in the top gas composition.
This relates to a method of operating a blast furnace that allows for the recognition of changes in concentration and top gas temperature, the evaluation of the impact of both on operations, and the ability to take appropriate action.

従  来  の  技  術 一般に、高炉操業において、装入原料の降下状態を管理
することが重要C゛、炉上部がら一定量の熱風を送り、
炉上部から一定スピー1・で装入原料を降下させ、熱バ
ランスを保つことが必要であると云われている。換言す
ると、高炉内部では炉上部から装入された例えば鉄鉱石
等の装入原料力(下降する間に、段階的に昇温、還元、
溶融等の各過程を紅で、全体の熱的バランスが保たれる
Conventional technology In general, in blast furnace operation, it is important to control the descending state of the charged material.
It is said that it is necessary to lower the charging material from the top of the furnace at a constant speed of 1.0 mm to maintain heat balance. In other words, inside the blast furnace, the power of charging raw materials such as iron ore charged from the top of the furnace (while descending, the temperature is gradually raised, reduced,
Each process, such as melting, is colored red to maintain the overall thermal balance.

しかしながら、炉内にスリップや吹抜+1等が生じると
、装入原料を上記過程を経ずに落トし、また、熱バラン
スがくずれ、操業上に大ぎな障害になる。
However, if a slip or a blowout +1 occurs in the furnace, the charged raw material will fall without going through the above process, and the heat balance will be disrupted, causing a serious problem in operation.

すなわら、第4図はスリップの発生態様の説明図であっ
て、第4図に示すように、高炉1の内部で特定の部位−
ご装入原料の降下が一時的に停ン吊したときには、その
停滞部分2によって昇;帰、還元が遮断されるため、こ
れらの不連続部が生じる。また、停滞部分2が形成され
ても、その下方の装入原料4はそのまま降下する結果、
停滞部分2の上部には装入原料4の到来がなく空洞3が
生じる。
In other words, FIG. 4 is an explanatory diagram of how slip occurs, and as shown in FIG.
When the descent of the charged material is temporarily stopped and suspended, the stagnation portion 2 blocks the rising, return and reduction, resulting in these discontinuous portions. In addition, even if the stagnation part 2 is formed, the charged raw material 4 below it continues to descend, resulting in
In the upper part of the stagnation part 2, the charge material 4 does not arrive and a cavity 3 is created.

その後、停)m部分2は自重により第5図て矢印に示す
如く下方に落下し、空洞3が消失しく消失した空洞は第
5図で示づ。)、スリップが発生ずる。
Thereafter, the part 2 falls downward as shown by the arrow in FIG. 5 due to its own weight, and the cavity in which the cavity 3 completely disappears is shown in FIG. ), slipping will occur.

しかし、スリップが発生すると、−時的に降下が遮断さ
れて滞留している停滞部分2やその上の装入原料が未昇
;晶、未還元ののままで炉下部に急激に降下することに
なって、熱的バランスがくずれ、高炉操業に重大な影響
をおよぼす。
However, when a slip occurs, - the descent is temporarily interrupted and the stagnant part 2 and the charging material above it suddenly fall to the lower part of the furnace in unascented, unreduced form. This causes the thermal balance to collapse and has a serious impact on blast furnace operation.

また、このスリップは炉内現象としては炉上部の装入原
料表面の急降下という形で現われるため、装入原料上面
に設置した差指にJ、って第6図に示すように差指の深
度差とし−C検出される。
In addition, this slip appears as an in-furnace phenomenon in the form of a sudden drop in the surface of the charging material at the top of the furnace. The difference is detected by -C.

これに対し、停滞部分が形成されても上方の装入原料の
6下を遮断して下方に大ぎな空洞を形成するほど、停滞
部が強固でないときには、停滞部分が破壊される。この
ときには、上位の装入原料層では著しく空隙が大きくな
り、その部分にカスが集中して流れ、吹抜けと呼ばれる
炉内現象が発生し、この現象が発生ずると、スリップの
ときと同様に熱的バランスをぐずづことになる。
On the other hand, even if a stagnation part is formed, if the stagnation part is not strong enough to block the upper part of the charging material and form a large cavity below, the stagnation part will be destroyed. At this time, the voids in the upper charging material layer become significantly large, and the waste concentrates in these areas and flows, causing an in-furnace phenomenon called blow-through. This will disrupt the balance.

このスリップの影響は炉下部で発生時に人きく、この理
由は、炉下部ではスリップ時にFeO+C→Fe+CO
+Q、の反応が起こるのに対し、炉上部ではFe、03
+C0−rFe−1−Co21−02の反応が起こり、
反応熱01が反応熱02より太きいがらである。このた
め、スリップの発生時には、その発生場所で区別し、そ
れに応じた対処をとる必要がある。
The effect of this slip is noticeable when it occurs in the lower part of the furnace.The reason for this is that in the lower part of the furnace, FeO+C→Fe+CO
+Q, reaction occurs, whereas in the upper part of the furnace Fe, 03
+C0-rFe-1-Co21-02 reaction occurs,
The reaction heat 01 is larger than the reaction heat 02. Therefore, when a slip occurs, it is necessary to distinguish based on the location where it occurs and take appropriate measures.

また、吹抜けが発生したときには、炉頂〕Jスの温度が
上背し、これに併せて、炉内カスの反応効率が低下する
。しかし、一般に行なわれているアクションは、炉頂ガ
ス温度の上昇によって設備が損傷(劣化)Vるのを防ぐ
ために、送風量を下げて、炉頂ガス温度を低下させてい
るのみである。従って、スリップ、吹抜Cプともに炉内
ガスの反応効率が低下し、装入原料の降下が少ないのに
も拘らず、これに対して何んらアクションをとらないた
め、炉内で異常な吸熱反応が起こり、炉の熱1/ベルが
大巾に低下する。
Further, when blow-by occurs, the temperature at the top of the furnace rises, and the reaction efficiency of the waste in the furnace decreases. However, in order to prevent equipment from being damaged (deteriorated) due to an increase in the furnace top gas temperature, the only action that is generally taken is to lower the air flow rate to lower the furnace top gas temperature. Therefore, the reaction efficiency of the gas in the furnace decreases in both the slip and the blowout C, and even though there is little fall of the charged material, no action is taken against this, resulting in abnormal heat absorption in the furnace. A reaction takes place and the furnace heat 1/Bel drops significantly.

そこで、従来がら高炉操業法として、これらスリップや
吹抜けを検知かつ防止する種々の方法が提案されている
。しかし、これら従来法では、実際にその目的を達成す
るには到っていない。
Therefore, various methods for detecting and preventing these slips and blow-throughs have been proposed as conventional blast furnace operating methods. However, these conventional methods have not actually achieved the objective.

まず、特開昭55−125207号公報には、高炉の送
用条件、炉頂ガス組成、装入原料組成、溶銑組成等を計
測し、これら各s1測値を用いて、シ11々の炭素収支
よって炉内で消費されているコークス消費速度を算出し
、このコークス消費速度と酸素収支よって銑鉄生産速度
を算出し、この算出速度をもとに炉内での固体体積減少
に基づく荷下り速度を算出すると共に、炉頂においても
差指の検尺若しくは原料の装入量を基に実績荷下り速度
を求め、これらの荷下速度の所定ヂi7−ジ数における
平均荷下り速度を比較することにより、所定の式により
荷下り状況を判定し、その結果によって、装入原ネ」の
荷下りを調整する方法が記載されている。
First, in Japanese Patent Application Laid-Open No. 55-125207, the blast furnace feeding conditions, furnace top gas composition, charging raw material composition, hot metal composition, etc. are measured, and using these s1 measured values, the carbon Calculate the consumption rate of coke consumed in the furnace from the income and expenditure, calculate the pig iron production rate from this coke consumption rate and oxygen balance, and calculate the unloading rate based on the solid volume reduction in the furnace based on this calculated rate. At the same time, calculate the actual unloading speed at the top of the furnace based on the measurement of the index finger or the amount of raw material charged, and compare these unloading speeds with the average unloading speed at a predetermined number of stages. Accordingly, a method is described in which the unloading status is determined using a predetermined formula, and the unloading of the charged raw material is adjusted based on the result.

また、特開昭59−83707号公報(こは、ザウジン
グロツドからの荷下り深さと荷下り速度から荷下り異常
を統計的に判定し、荷下り異常の回数と荷下り異常時の
荷下り深さとから、マ[・リックス組合せにより荷下り
状況を指数化し、この指数からスリップ等の炉況を管理
する1ノ法が記載されている。
In addition, Japanese Patent Application Laid-open No. 59-83707 (in this article, unloading abnormality is statistically determined from the unloading depth and unloading speed from the loading rod, and the number of unloading abnormalities and the unloading depth at the time of unloading abnormality) , a method is described in which the unloading status is indexed by a matrix combination and the furnace conditions such as slip are managed from this index.

また、特開昭57−76108号公報には、高炉の半径
方向形状モデルにより、半径方向各位置にお(J8鉱石
量、コークス量、ガス流量、装入原料粒度空隙率J5よ
び吹抜(〕指標を詐出し、半径方向各位置の吹抜け指標
が所定の指標となるよう、鉱石量/コークス量、コーク
スベース、送11重油吹込み量等の断面平均操作量等を
制御して吹抜けを防止する方法が記載されている。
In addition, JP-A No. 57-76108 describes a radial shape model of a blast furnace that shows the following parameters at each radial position (J8 ore amount, coke amount, gas flow rate, charge material particle size porosity J5, and atrium ()). A method of preventing blow-through by controlling cross-sectional average operating quantities such as ore amount/coke amount, coke base, feed 11 heavy oil injection amount, etc. so that the blow-through index at each position in the radial direction becomes a predetermined index. is listed.

また、特開昭58−71340号公報には、炉頂圧力と
高炉高さ方向のシャフト圧とから圧力損失を求めると共
に、炉頂がらシャツ1〜圧測定位置までの間の装入原料
の荷重を求め、そこで、各シャツ1〜圧測定位置におい
てこの圧力損失と装入原料の荷重との比を求めで、この
比が、棚吊り、スリップ若しくは吹抜は等を発生させな
い条件を渦たJ−よう、送風する方法が記載されている
In addition, JP-A-58-71340 discloses that the pressure loss is determined from the furnace top pressure and the shaft pressure in the blast furnace height direction, and the load of the charging material between the furnace top shell 1 and the pressure measurement position is described. Then, the ratio between this pressure loss and the load of the charged material at each pressure measurement position is determined. It describes how to blow air.

また、特開昭62−270712号公報には、高炉の各
種廿ンザーからのデータに基づいて荷下り速度、圧力損
失、シャフト圧ツノ、シャフト温度、固定ゾンデの温度
、ガス利用率、炉口ゾンデの温度等高炉状況を示す各種
データを作成してから、この各種データをその基準デー
タと比較して真偽データを作成し、この真偽データのほ
か、高炉についての経験、実績等に基づいて、吹抜+:
l、スリップ等を予測する方法が記載され−Cいる。
In addition, Japanese Patent Application Laid-Open No. 62-270712 describes the unloading speed, pressure loss, shaft pressure peak, shaft temperature, fixed sonde temperature, gas utilization rate, furnace mouth sonde temperature, etc. based on data from various sensors of the blast furnace. After creating various data showing the status of the blast furnace, such as the temperature of , Atrium +:
A method for predicting l, slip, etc. is described.

しかしながら、これら方法は基準になる測定データの精
度に問題があり、スリップと装入原料の炉内中心部への
流込みを示す流込みとの区別に支障があり、炉況異常を
検知しても異常が定量的評価できず、その異常゛稈度に
応じて適切なアクションをとることができない。
However, these methods have problems with the accuracy of the reference measurement data, and it is difficult to distinguish between slip and inflow, which indicates that the charged material flows into the center of the furnace, and it is difficult to detect abnormal furnace conditions. However, abnormalities cannot be quantitatively evaluated, and appropriate actions cannot be taken depending on the degree of abnormality.

また、スリップが発生した場合には、上記の如き方法を
とることな(、実際の操業では、差指の状況によって、
スリップの大きさをf11断し、これに基づいてそれに
対応するアクションがとられている。すなわち、第7図
に示すように、スリップが発生ずると、差指の深度差が
犬きくなり、その大、小によってスリップの程度、大小
を評価検出している。しかし、このように差指によって
スリップを検知すると、スリップ以外のものまでも、ス
リップとして誤って検出される。すなわち、差指によっ
て検出する場合には、第8図に示すように、重!I5を
装入原料4の表面に置き、この表面の下降と共に重錘5
が降下するため、重錘5の降下によって炉内の装入原料
4のしへルを検知する。しかし、所謂流込みでも、高炉
1内の装入原料4が降下中に中心部に移動し、この装入
原料の中心部への移動とともに重錘5も低い中心部に移
動し、差指の動きはスリップのとぎと同じになり、差指
のみではスリップと流込みとの区別ができない。
In addition, if a slip occurs, do not take the above method (in actual operation, depending on the situation of the index finger,
The magnitude of the slip is determined by f11, and corresponding actions are taken based on this. That is, as shown in FIG. 7, when a slip occurs, the depth difference between the index fingers becomes sharper, and the extent of the slip is evaluated and detected based on its magnitude. However, when slips are detected using the index finger in this way, even things other than slips are erroneously detected as slips. That is, when detecting with the index finger, as shown in FIG. I5 is placed on the surface of the charging material 4, and as this surface descends, the weight 5
Since the weight 5 is lowered, the lowering of the charged material 4 in the furnace is detected by the lowering of the weight 5. However, even in so-called pouring, the charging material 4 in the blast furnace 1 moves to the center while descending, and as the charging material moves to the center, the weight 5 also moves to a lower center, and the weight of the index finger The movement is the same as that of a slip, and it is impossible to distinguish between a slip and a flow using only the index finger.

発明が解決しようと1−る課題 本発明はこれらの問題を解決することを目的とし、具体
的には、従来技術では差指によるスfノツプ検知ではス
リップと流込みとの区別ができず、これらに対応づるア
クションができないこと、また、吹抜けの発生時の炉内
カスの反応効率の低下に対する評価が困難でこれに対応
するアクションが適切に行なうことができないこと、更
に、このような炉内状況の異常を正確に検出し、適切な
アクションを実施する高炉の操業方法が未だ研究、開光
され−こいないこと等の問題を解決することを目的とす
る。
1. Problems to be Solved by the Invention The present invention aims to solve these problems.Specifically, in the prior art, it is not possible to distinguish between slip and flow by detecting the slip with the index finger. In addition, it is difficult to evaluate the reduction in the reaction efficiency of the in-furnace scum when blow-by occurs, and it is not possible to take appropriate actions in response to this. The purpose of this study is to solve problems such as the fact that a method of operating a blast furnace that accurately detects abnormal conditions and takes appropriate action has not yet been researched or disclosed.

課題を解決するための 手段ならびにその作用 ずなわら、本発明方法は、高炉炉内の装入原料の降下量
に基づいて、スリップ、吹抜(プ等の炉況異常事態を検
知して、高炉操業を行なう際に、連続する少なくとも2
つのバッチ装入間で埋込み時のレベル差を測定し、この
レベル差が予め定めた所定値を越えたときにスリップと
判定し、前記1くベル差が前記所定値以下で炉頂カス温
度が急上昇したときに吹抜けと判定して、操業条件を制
御することを特徴とする。
Means for solving the problem and its operation, the method of the present invention detects abnormal situations in the furnace condition such as slips and blowouts based on the amount of descent of the charging material in the blast furnace, and At least two consecutive
The level difference at the time of embedding between two batches is measured, and when this level difference exceeds a predetermined value, it is determined to be a slip, and when the difference in level is less than the predetermined value, the furnace top scum temperature is It is characterized by determining that an atrium has occurred when there is a sudden rise, and controlling the operating conditions.

また、本発明方法は、スリップ及び吹抜けの判定前後の
炉頂カス組成中のN27農度の変化をもとにスリップ及
び吹抜けの発生強度を予測し、この予測強度に基づいC
操業条件を制1ifl することを特徴とする。
In addition, the method of the present invention predicts the occurrence intensity of slip and blow-through based on the change in the N27 concentration in the furnace top scum composition before and after the determination of slip and blow-through, and based on this predicted intensity, C
It is characterized by controlling operating conditions.

更に、本発明方法は、高炉の炉体を円周方向で複数個に
区画して、各区画毎に前記レベル差を測定し、これら各
区画毎に前記レベル差が前記所定値を越えたときにスリ
ップと判定し、ifJ記レベル差が前記所定値以下て炉
頂ガス温度の急上昇したときに吹抜(ブと判定して、操
業条件を制御することを特徴とする。
Further, in the method of the present invention, the furnace body of the blast furnace is divided into a plurality of sections in the circumferential direction, the level difference is measured for each section, and when the level difference for each section exceeds the predetermined value, It is characterized in that a slip is determined to be present when the level difference indicated by J is equal to or less than the predetermined value and the furnace top gas temperature rapidly increases, and a blowout is determined to be present, and the operating conditions are controlled.

そこで、これらの手段たる構成ならひにその作用につい
て更に具体的に説明すると、次の通りである。
Therefore, the effects of these means will be explained in more detail as follows.

まず、本発明者等は、炉内におけるスリップと流込みと
を差指によって区別し、これを定量化して把握するため
に、操業データを解析しU1究したところ、装入原料埋
込み時にレベル差(△l)の存在を確認することが必要
であることがわがった。
First, the present inventors distinguished slip and inflow in the furnace using index fingers, and in order to quantify and understand this, the inventors analyzed operational data and investigated the U1 method. It was found that it was necessary to confirm the existence of (Δl).

そこで、更に進んで、装入原石表面レベルが確実に下が
っていることを確認するために、連続する2つのバッチ
について原料装入時のレベル(埋込み時の1ノベル)を
比較してその差(△l)を求めたところ、この差(△l
)によってスリップと流込みとが区別できることがわが
った。
Therefore, in order to go further and confirm that the surface level of the charged rough stone has definitely decreased, we compared the level at the time of raw material charging (1 novel at the time of embedding) for two consecutive batches and the difference ( When we calculated the difference (△l), we found that this difference (△l
), it was found that slips and inflows can be distinguished.

すなわち、第9図(a)はスリップ発生の場合を示す差
指の説明図であり、第9図(1))は流込みの場合を示
J−差指の説明図である。スリップ発生のときには、単
位バラf装入の埋込み時のレベルと、次のバッチ装入の
埋込み時のレベルとの間でレベル差(△l)があり、こ
のレベル差(△l)がある値以上になっているとぎには
、スリップが発生し、レベル差(△l)の大きさにより
スリップの大きさが評価される。一方、第9図(())
に示ずように、差指の深度差が人ぎくあられれているが
、連続覆−る2つのハツチ間において埋込み時のレベル
差(△l)がほとんど認められない。この場合は流込み
と評価される。
That is, FIG. 9(a) is an explanatory diagram of the index finger showing the case where slipping occurs, and FIG. 9(1)) is an explanatory diagram of the J-index finger showing the case of flowing. When slipping occurs, there is a level difference (△l) between the level at the time of charging unit bulk f charging and the level at the time of filling the next batch charging, and the value at which this level difference (△l) is When the level difference is higher than that, a slip occurs, and the magnitude of the slip is evaluated based on the magnitude of the level difference (Δl). On the other hand, Figure 9 (())
As shown in Figure 2, the difference in depth of the index finger is clearly noticeable, but the level difference (△l) at the time of embedding is hardly recognized between the two successive hatches. In this case, it is evaluated as inflow.

更に詳しく説明すると、スリップが発生しているときに
は、実際に装入原料が降下しでいる。
To explain in more detail, when slipping occurs, the charged material is actually falling.

このために、次バッチの装入においても差指が大きく下
がり、レベル差(△l)も大きな値となる。これに対し
、流込みが発生しているときには、差指に変化が表われ
ても、実際には原料力(降下していないため、次ハツチ
の装入では差指はほとんど下がらず、1ノベル差(△l
)は小さな値になる。
For this reason, even when charging the next batch, the index finger drops significantly and the level difference (Δl) also becomes a large value. On the other hand, when pouring is occurring, even if a change appears in the index finger, the raw material force (not falling) is actually lowered, so the index finger hardly lowers when charging the next hatch, and one novel Difference (△l
) will be a small value.

また、スリップの検出精度を上げるために、高炉の炉体
を円周方向で複数個に区画し、各区画毎にレベル差(△
Il)を検出し、スリップを検出することもできる。こ
のように炉内を複数個に分けて各区画に差指(炉内装入
物表面レベルセンサー)のデータを用いてレベル差(△
l)を検出する場合に、次の通りに境界値、α、β、γ
・・・・・・等を定めて、スリップの発生を検出する。
In addition, in order to improve slip detection accuracy, the blast furnace body is divided into multiple sections in the circumferential direction, and each section has a level difference (△
Il) and slip can also be detected. In this way, the inside of the furnace is divided into multiple sections, and the level difference (△
l), the boundary values α, β, γ are determined as follows:
..., etc., to detect the occurrence of slip.

(1)少なくとも2つの方向で17ベル差(△11、△
12)が生じているとき、 △It1>α、△II2>βのときにスリップありとす
る。
(1) 17 bell difference in at least two directions (△11, △
12) occurs, it is assumed that there is a slip when △It1>α and △II2>β.

(2)1つの方向だけが著しく降下し、大きなレベル差
(△j?1)が生じているとき、△I11>γのときに
スリップありとする。
(2) When there is a significant drop in only one direction and a large level difference (Δj?1) occurs, it is determined that there is a slip when ΔI11>γ.

すなわち、(1)のケースは、2つ若しくは2つ以上の
方向でスリップとずべきレベル差がそれぞれ生じている
場合であって、比較するレベル差は、スリップとして認
識すべきレベル差及びスリップを区別する規模の小さな
レベル差とし、これらを同時に満たされた時にスリップ
とする。
In other words, case (1) is a case where slip and level difference occur in two or more directions, and the level difference to be compared is the level difference that should be recognized as slip and the slip. A small level difference is used to distinguish between them, and when they are satisfied at the same time, it is considered a slip.

ここで、判定レベル差を小とし、他区画との比較で行な
う理由は、スリップの与えた降下量の影響を評価するた
めである。また、(2)のケースは局部的なスリップで
あることがら、単独で炉況に与える影響が人となるレベ
ル差をそれぞれスリップ判定の境界値とする。従って、
境界値はγ〉αさβの関係になる。
Here, the reason why the determination level difference is set small and the comparison is made with other sections is to evaluate the influence of the amount of descent caused by slipping. In addition, since case (2) is a localized slip, the level difference that alone affects the furnace condition is set as the boundary value for slip determination. Therefore,
The boundary values have the relationship γ>αβ.

また、上記の如く、複数個の方向でレベル差(△l)を
検出してスリップの発生を検知する場合、装入原料の表
面が降下し、その降下量、つまり、レベル酸△11、△
12・・・・・・が生じたとぎ、表面降下と炉熱の低下
との間には、第10図に示す如く、強い関係が認められ
ない。これに反し、装入原料の表面の降下量がある値以
上のとぎには、その前後のか頂ガス組成中の分圧として
の△N2の変化量は炉熱の低下度に対して実用に耐える
ことができる強い関係が第12図に示J−如く認められ
る。このところから、本発明方法においCは、N2%に
よってスリップの大ぎさを評価する。
In addition, as described above, when detecting the occurrence of slip by detecting the level difference (△l) in multiple directions, the surface of the charged raw material falls, and the amount of the fall, that is, the level acid △11, △
12... occurs, there is no strong relationship between the surface drop and the decrease in furnace heat, as shown in FIG. On the other hand, when the surface drop of the charged material exceeds a certain value, the amount of change in △N2 as a partial pressure in the top gas composition before and after that can withstand the degree of decrease in furnace heat in practical terms. A strong relationship, as shown in FIG. 12, can be seen. From this point, in the method of the present invention, C evaluates the magnitude of slip based on N2%.

ずなわら、N2%は炉頂カスのガス組成中のN2分圧と
しての温度を示すものである。この理由は、炉下部でス
リップが発生した場合には、ある程度還元された装入原
料(Fe203→Fed)について、 FeO+ Go−J Fe 4− Co2Co、+C→
2GO FeO+ Q−+ Fe + G。
Of course, N2% indicates the temperature as N2 partial pressure in the gas composition of the furnace top scum. The reason for this is that when slip occurs in the lower part of the furnace, FeO+ Go−J Fe 4− Co2Co, +C→
2GO FeO+ Q-+ Fe + G.

の反応が急速に生じる結果、炉頂ガス組成中のN2%が
低下するがらである。
As a result of the rapid reaction, the N2% in the top gas composition decreases.

そのために、スリップが炉況に与えた影響を炉下部での
反応の指標となる炉頂カス中のN2%で評価するとスリ
ップ発生前と発生後のN2%低下巾の大小によってスリ
ップの大ぎさが評価できる。換言すると、N2自体は高
炉内部の反応に寄与せず、従って、N2量の絶対値を用
いてのスリップの大小の評価は困難である。
Therefore, when evaluating the influence of slip on the furnace condition using the N2% in the furnace top scum, which is an index of the reaction in the lower part of the furnace, the magnitude of the slip can be determined by the magnitude of the N2% decrease before and after the occurrence of the slip. It can be evaluated. In other words, N2 itself does not contribute to the reaction inside the blast furnace, and therefore it is difficult to evaluate the magnitude of slip using the absolute value of the amount of N2.

しかし、スリップ発生のときには、上記の如く、N2%
は変化し、このため、スリップ発生前と発生後の炉頂ガ
ス中のN2%の変化量でスリップの犬きざは評価でき、
好ましくは、次のN2%の変化量で求める。炉頂ガス中
N2の変化量(△N2 )を経時的に示すと、第11図
に示す通りに変化する。第11図において、↓表示の時
期でスリップが生じ、スリップ発生後はN2%の大幅な
低下が見られ、スリップの評価に用いることの好適であ
ることがわかる。この炉頂カス中のN2%の変化中、ス
リップの発生する直近の最大値とスリップ後の最小値と
の差をN2%の変化量としてスリップ評価に利用すれば
、スリップ発生前の炉況の異常を含め、評価できること
になり、スリップ程度の定量的評価がより正確になる。
However, when slipping occurs, as mentioned above, N2%
changes, and therefore, the degree of slip can be evaluated by the amount of change in N2% in the top gas before and after slip occurs.
Preferably, the following N2% change amount is used. When the amount of change in N2 in the furnace top gas (ΔN2) is shown over time, it changes as shown in FIG. In FIG. 11, a slip occurs at the time indicated by ↓, and a significant decrease in N2% is observed after the slip occurs, indicating that it is suitable for use in slip evaluation. During this change in N2% in the furnace top scum, if the difference between the maximum value immediately before slippage and the minimum value after slipping is used as the amount of change in N2% for slip evaluation, the furnace condition before slipping can be evaluated. This allows evaluation including abnormalities, making quantitative evaluation of the degree of slip more accurate.

なJ5、図中11.12は、それぞれスリップ発生前と
発生後の直近時間を示し、tl は10〜50分間、1
2は60分間程度である。更に、炉頂ガスの分析は連続
的に行なうことができ、N2%は精度良く求めることが
できるほか、N2%の最大値、最小値はN2%の変化率
から計算機により自動的に求めることができる。
J5, 11.12 in the figure indicates the most recent time before and after the occurrence of slip, respectively, tl is 10 to 50 minutes, 1
2 is about 60 minutes. Furthermore, analysis of furnace top gas can be performed continuously, and N2% can be determined with high accuracy. In addition, the maximum and minimum values of N2% can be automatically determined by a computer from the rate of change of N2%. can.

また、装入原料面の降下量が小さくても、炉頂ガス温度
の急激な上昇や炉■負ガス中N2濃度に大きな変化が生
じることがある。ここではこれを吹抜けと定義するが、
このとき、炉頂カス温度上昇量と前記スリップの評価時
と同様N2%の変化量の指標で吹抜けを評価ずればよい
ことがわがった。
Furthermore, even if the amount of descent of the charging material surface is small, a sudden rise in the furnace top gas temperature and a large change in the N2 concentration in the furnace negative gas may occur. Here, this is defined as an atrium, but
At this time, it was found that blow-through could be evaluated using the index of the change in N2% as in the evaluation of the furnace top scum temperature rise and the slip described above.

そこで、以上の通りに高炉操業する際の好適例を挙げる
と、次の通りである。
Therefore, preferred examples of operating the blast furnace as described above are as follows.

1、スリップの認知 △Z1 >αがつ△12〉β・・・・・・(1)△11
 >γ   ・・・・・・・・・・・・・・・・・・(
2)の関係が成立したときには、スリップ有りと認知す
る。
1. Recognition of slip △Z1 >α Gatsu △12>β・・・・・・(1) △11
>γ ・・・・・・・・・・・・・・・・・・(
When the relationship 2) is established, it is recognized that there is a slip.

ここで、a−0,6〜1.2m (平均0.9m)β−
0,3〜0.8用(平均0.(3m)γ−1,5〜2.
5m (平均2,0m126 スリップを炉熱への影響
度から、人、中、小に区分する。
Here, a-0.6 to 1.2 m (average 0.9 m) β-
For 0.3~0.8 (average 0.(3m) γ-1.5~2.
5m (average 2.0m126 Slips are classified into human, medium, and small based on the degree of influence on furnace heat.

a)△N2 < 81で、(1)あるいは(2)に示す
式が成立し、△11<+)、のときには、スリップが小
さく、炉熱への影響が小さい。
a) When △N2 < 81, the formula shown in (1) or (2) is established, and when △11 < +), the slip is small and the influence on the furnace heat is small.

b) a、 < ΔN2 < a2で(1)あるいは(
2)で示す式が成立し、△11<blのときには、スリ
ップは中程度で、炉熱への影響も中である。
b) a, < ΔN2 < a2 and (1) or (
When the formula shown in 2) holds true and Δ11<bl, the slip is moderate and the influence on the furnace heat is moderate.

C)△N2 > a2で(1)あるいは(2)で示す式
が成立し、△11>b、のときには、スリップが大きく
、炉熱への影響が人である。
C) When △N2 > a2, the equation (1) or (2) is established, and when △11>b, the slip is large and the influence on the furnace heat is significant.

ここで、al < a、。Here, al<a.

b1ニスリップを区別できる△l値 なお、途中で、法理1湿分ヤ酸素冨化率等の条作力(変
更されると、水分の分解によるカス量変化、装入N2量
の変化等によって、N2’lfA度が変化する。この変
化は理論的に吟味の上で、N2)震度を補正し−C5基
準状態と条件を同等(こづ−る。
△l value that can distinguish b1 Nislip Furthermore, during the process, the law 1 moisture, oxygen enrichment rate, etc., row cropping force (if changed, due to changes in the amount of waste due to decomposition of water, changes in the amount of charged N2, etc.) The N2'lfA degree changes.This change is theoretically examined, and the N2) seismic intensity is corrected to make the conditions equivalent to the -C5 reference state.

ここで、スリップと認知すべき量β(ま0,3m以上と
する。この理由はC0,3m未満でき流込Jメとの区別
ができなく、好ましく(ま、β(ま0.6m以上として
明確な区別化を11なう。
Here, the amount that should be recognized as slip is β (well, 0.3 m or more. The reason for this is that if it is less than C0.3 m, it cannot be distinguished from the flowing J method, so it is preferable (well, β (well, if it is 0.6 m or more) Make a clear distinction.

また、局部的に生じるスリップが炉に与える影響大と評
価できる量としC1γは少なくとも1.5m以上であり
、りfましくは2m以上とすることにより区分てきる。
In addition, C1γ is defined as an amount that can be evaluated as having a large influence on the furnace due to locally generated slip, and is classified by setting it to at least 1.5 m or more, preferably 2 m or more.

なお、α、βは組合せで評価する場合の降下量であるこ
とから、αはβとγ両者の中間値をどる。すなわち、局
部的にスリップを生じIこ場合、γに)ヱする降小量で
なく、炉にへえる影響(基中規模、まIこ、スリップと
の区別を行なう認知最に比へ人と評価でき、かつ、他部
分でもIll下が生じているとの状況下でスリップを検
出2−?l−る。
Note that since α and β are the amounts of decline when evaluated in combination, α takes the intermediate value between both β and γ. In other words, it is not the small amount of precipitation that causes localized slip (I, in this case, γ), but rather the impact on the reactor (in this case, medium-scale, in which case it is difficult to distinguish between slip and slip). A slip can be detected under the condition that it can be evaluated and under conditions are occurring in other parts as well.

また、スリップの大きさ等の評価は次のように行なう。In addition, evaluation of the size of slip etc. is performed as follows.

スリップの認知後のN2濃度の変化量を必要区別に区切
り、つまり、評価したい数に区別しN2’tlA度の大
小によりスリップ強度を求める。
The amount of change in N2 concentration after recognition of slip is divided into necessary divisions, that is, into the number desired to be evaluated, and the slip strength is determined based on the magnitude of the N2'tlA degree.

また、スリップ認知時の降下量を上記の如く、人、中と
規模(こより分(プてN2 i11度の変化量とを組合
せることでスリップ強度を求めることができる。
In addition, the slip strength can be determined by combining the amount of descent at the time of slip recognition with the amount of change of human, intermediate, and scale (N2 i11 degrees) as described above.

すなわら、 (1)スリップ発生時、N21度の変化量は、その差異
が少なくとも0.2%以上明確なものとして0.5%以
上生じており、大規模なものでは7%以上に達する。こ
41は本発明法によってN2ンIt度差(△N2 )に
よって検知すると、測定できる。
In other words, (1) When a slip occurs, the change in N21 degrees occurs by 0.5% or more in cases where the difference is at least 0.2% or more, and reaches 7% or more in large-scale cases. . This 41 can be measured by detecting the N2-It degree difference (ΔN2) using the method of the present invention.

従って、0.2〜7 % (7%を越える量としても良
L1)のN2濃度差(△N2 )を必要区分に区切って
、この区切った各段階別にスリップ強度を設定すること
により、スリップの大きざの評価が、各段階に分けて評
価できる。例えば、(1)又は(2)の式を満たし、N
2淵度差(△N2 )を0.2〜7%で区切った場合、
(1)段階に区切って、その各区切りヲ8.、a2・・
・・・・al−1と表示する。)1)△N2<0.2%
・・・・・・スリップ強度1(al ) 2) 0.2%・〜△N2<a、、・・・・・・スリッ
プ強度?(al ) 3)a2  て△N2〈a3・・・・・・スリップ強度
34) a fn−+) <△N2<a、、・・・・・
・スリップ強度1]とすることができ、各強度(二対応
じて採るべき高炉操業アクションを予め設定する。
Therefore, by dividing the N2 concentration difference (△N2) from 0.2 to 7% (amount exceeding 7% is acceptable) into necessary categories, and setting the slip strength for each of the divided stages, slip can be reduced. The size can be evaluated by dividing it into each stage. For example, if formula (1) or (2) is satisfied, N
If the two-way difference (△N2) is divided into 0.2 to 7%,
(1) Divided into stages and each division 8. , a2...
...Displayed as al-1. )1) △N2<0.2%
...Slip strength 1 (al) 2) 0.2%...△N2<a,...Slip strength? (al) 3)a2 te△N2〈a3...Slip strength 34) a fn-+) <△N2<a,,...
・The blast furnace operation action to be taken corresponding to each slip strength (2) can be set in advance.

(2)スリップ発生規模とN2濃度差、△N2の区分を
組合せることで、次のスリップ強度に分類できる。ここ
で、スリップ規模の小、中又は中、人を111、C2と
すると、(1)又は(2)式を満たし、■△N2 <8
1  △1口<1〕1 ・・・スリップ強度小■ai 
<△N、<a、、  △ln<111 ・・・スリップ
強度中(懸△N2>a2  △l n> l]1・・・
・・・スリップ強度大また、大規模スリップの場合のみ
を細分化し、■△13こ・1〕1  △12>β・・・
・・・スリップ強度1■△L>l)2  △l、>β・
・・スリップ強度2■a2 <△N2〈a3・・・・・
・スリップ強度3■△N2〉al−1・・・・・・スリ
ップ強度nと評価することができ、))は高炉操業上必
要な精度で定めれば良い。
(2) By combining the scale of slip occurrence, the difference in N2 concentration, and the classification of ΔN2, the following slip strengths can be classified. Here, if the slip size is small, medium or medium, and the number of people is 111 and C2, then formula (1) or (2) is satisfied, ■△N2 <8
1 △1 mouth<1] 1...Slip strength small ■ai
<△N, <a,, △ln<111 ... Slip strength medium (hang △N2>a2 △l n> l] 1...
...If the slip strength is large, only cases with large slips are subdivided into ■△13ko・1〕1 △12>β...
...Slip strength 1■△L>l)2 △l,>β・
・・Slip strength 2■a2 <△N2〈a3・・・・
- Slip strength 3■△N2>al-1... It can be evaluated as slip strength n, and )) may be determined with the accuracy required for blast furnace operation.

また、吹抜けの判定は次の通りに行なう。In addition, the determination of open space is performed as follows.

吹抜けは炉頂ガス温度の急変をもって判定する。吹抜(
プの区別は直近のカス温度の最大値をもって判定し、少
なくとも300 ’C以上とすることで吹抜けの発生が
検知可能であり、好ましくは、400℃を越えた段階で
吹抜(′:Iとすれば、炉に与える影響を持つ吹抜けが
検出できる。
Blow-through is determined by a sudden change in the furnace top gas temperature. Atrium (
The distinction between the two groups is determined by the maximum value of the most recent waste temperature, and the occurrence of blow-through can be detected when the temperature is at least 300'C or higher.Preferably, when the temperature exceeds 400 degrees For example, it is possible to detect atriums that have an effect on the furnace.

これもΔN2をもとに強度別に分は評価することができ
、その例を示すと、 ■吹抜(プ発生(差指△ll−,lとα、β、γの比較
と炉頂温度から区別)・・・・・・強度1■吹抜は発生
がつa2<△N2〈a3・・・・・・強度2■吹抜け発
生がつ△N2>ah    ・・・・・・強度11以上
述べた各スリップ強度、吹抜(プ強度に従つCYめ操業
に対するアクション量を定めた例を示す。
This can also be evaluated for each strength based on ΔN2. For example, )...Intensity 1■ Atrium does not occur a2<△N2<a3...Intensity 2■Atrium does not occur △N2>ah...Intensity 11 Each of the above An example is shown in which the action amount for CY operation is determined according to slip strength and blowout strength.

ここで、BVは送風流量を示し、減風割合で表示、CR
Iまコークス比を示し、上昇値(g荷量)で表示、ブラ
ンクとは鉱石装入なしを表示、チャージ数を表わず。
Here, BV indicates the air flow rate, expressed as the air reduction rate, CR
It shows the coke ratio and shows the rise value (g load).Blank means no ore charging and does not show the number of charges.

なお、この表は吹抜け、スリップ毎に待つこともでき、
評価上同様と児なぜるなら一つの表として用意しておく
ことができる。また、炉況に及ばず影響を定量的に評価
する各強度となるため、アクションの設定も容易である
In addition, this table can also be used for each atrium or slip.
If the results are similar for evaluation purposes, it can be prepared as one table. In addition, since each intensity is a quantitative evaluation of the impact without affecting the furnace condition, it is easy to set actions.

なお、この表から定められるアクション量は、過去のア
クションリレキと比較され、過去のリレキをもとに最終
アクションが決定される。
Note that the action amount determined from this table is compared with past action recall, and the final action is determined based on the past action recall.

実施例 実施例1゜ 高炉操業において第1図に示す如く、連続するハツチ装
入間で、レベル差△11、△12をみた。時間t1にお
い一〇スリップが発生した。
Examples Example 1 During blast furnace operation, as shown in FIG. 1, level differences △11 and △12 were observed between successive hatch charges. Ten slips occurred at time t1.

しかし、このときの△N2の評価は「小スリップ」てあ
り、アクションはとらず、以降も炉頂温度、ΔN、に変
化はなく、アクションはとることなく、炉況は安定した
However, the evaluation of ΔN2 at this time was "small slip" and no action was taken.Thereafter, there was no change in the furnace top temperature or ΔN, no action was taken, and the furnace condition became stable.

実施例2゜ 実施例1と同様に、レベル差△11、△12をみたとこ
ろ、第2図に示す通りであった。この場合は、時間t]
においてスリップが発生した。この11 時点での評価
では「小スリップ」であり、アクションはとっていなか
ったん(,12時点では△N2が低下し、「スリップ強
度3Jを検知した。このため、送風量を700ON m
3/nl i nから560ON m3/m i nに
下げ、コークス比を20klJ/を上け、ブランクチャ
−ジを1チヤージ装入した。更に、13時点ではΔN2
が更に低下し、「スリップ強度5」を検知した。この時
には、減風200ONm3/m i n、コークス比5
0 kgバ、ブランクチャージ3チヤージのアクション
に対応するが、既に実施したアクションを?i1i正し
、送J!Ill量を500ON n13/nl!nM■
げ、更にコークス比30 l<a / tアップ、ブラ
ンク2チヤージ装入を実施した。
Example 2 As in Example 1, the level differences △11 and △12 were observed as shown in FIG. In this case, time t]
A slip occurred. The evaluation at the 11th point was that it was a "small slip" and no action was taken.
The coke ratio was lowered from 3/nl in to 560 ON m3/min, the coke ratio was increased by 20 klJ/, and one charge of blank charge was introduced. Furthermore, at time point 13, ΔN2
further decreased, and "slip strength 5" was detected. At this time, the wind was reduced by 200ONm3/min, and the coke ratio was 5.
0 kg bar, it corresponds to the blank charge 3 charge action, but what about the action that has already been performed? i1i correct, sending J! Ill amount is 500ON n13/nl! nM■
Further, the coke ratio was increased by 30 l<a/t, and two blank charges were carried out.

実施例3 実施例1と同様に、レベル差△11、△12をみJこと
ころ、第3図(こ示す通りであった。すなわら、1時点
でスリップは発生していないが、炉頂温度が上昇し、Δ
N2も低下し、「吹抜(ブ強度2」を検知した。このた
め、送風流量を700ONm3/ m i nから56
0ON m3/minに下げ、コークス比を20 kg
/ t J二け、ブランクチャージを1ヂヤージ装入し
た。更に12時点では△N2が低下し、′吹抜は強度3
」を検、知した。このため、既に実施したアクションを
補正し、送風量を500ON lll3/m i I′
lに下げ、コークス比を10kg/lアップ、ブランク
チャージを1チA7−ジ装入した。
Example 3 As in Example 1, the level differences △11 and △12 were observed in Figure 3 (as shown in Figure 3). The top temperature increases and Δ
N2 also decreased, and "blow-out strength 2" was detected.Therefore, the air flow rate was changed from 700ONm3/min to 56ONm3/min.
Reduce the coke ratio to 0ON m3/min and reduce the coke ratio to 20 kg.
/t J2, 1 charge of blank charge was charged. Furthermore, at the 12th point, △N2 decreased, and the strength of the atrium was 3.
” was detected and learned. For this reason, the action that has already been taken is corrected and the air flow rate is increased to 500ON lll3/m i I'
The coke ratio was increased by 10 kg/l, and one A7-tube blank charge was charged.

〈発明の効果〉 以上説明したよう[こ、本発明方法は、高炉炉内の装入
原料の降下量に基づいて、スリップ、吹抜は等の炉況異
常事態を検知して、高炉操業を行なう際に、連続する少
なくとも2つのバッチ装入間で埋込み時のレベル差を測
定し、この1ノベル差が予め定めた所定値を越えたとき
にスリップと判定し、前記レベル差が前記所定値以下で
炉頂カス温度が芯上昇したときに吹抜けと判定して、操
業条件を制御することを特徴とJ−る。
<Effects of the Invention> As explained above, the method of the present invention detects abnormal furnace conditions such as slips and blowouts based on the amount of descent of the charging material in the blast furnace, and operates the blast furnace. In this case, the level difference at the time of embedding is measured between at least two consecutive batches, and when this one-novel difference exceeds a predetermined value, it is determined that a slip has occurred, and the level difference is less than or equal to the predetermined value. J-1 is characterized in that when the furnace top scum temperature rises at the core, it is determined that blow-through has occurred, and the operating conditions are controlled.

従って、本発明法によれば、高炉の操業におけるスリッ
プと流込みとの差別やスリップと吹抜けとの区別ができ
るため、これら炉況異常に対応するアクションをとるこ
とができ、従来法に比べて効率よく操業を行なうことが
できる。
Therefore, according to the method of the present invention, it is possible to differentiate between slip and inflow, and between slip and blow-through in blast furnace operation, so it is possible to take action to respond to these abnormal furnace conditions, compared to the conventional method. Operations can be carried out efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図ならびに第3図はそれぞれ本発明方法の
各実施例のタイムフローを示ず各説明図、第4図は高炉
の装入原料の停滞部の発生を説明1゛る説明図、第5図
は第4図に示す停滞部からスリップ発生に到る説明図、
第6図はスリップ発生時の装入原料のレベル変化の説明
図、第7図は本発明でスリップの発生を区別する際の説
明図、第8図は差指による装入原料のレベル検知方法の
説明図、第9図(a)ならびに(b)はそれぞれスリッ
プの場合と流込みの場合の装入原料のレベル変化を示す
説明図、第10図は装入原料のレベル変化量とその炉熱
への影響との関係を示すグラフ、第11図は装入原料の
レベル変化と炉熱への影響との関係を示すグラフ、第1
2図は△N2とか熱への影響との関係を示すグラフであ
る。 符号1・・・・・・高炉     2・・・・・・停滞
部分3・・・・・・空洞     4・・・・・・装入
物5・・・・・・重錘
Figures 1, 2, and 3 are explanatory diagrams that do not show the time flow of each embodiment of the method of the present invention, and Figure 4 is an explanation of the occurrence of stagnation in the charging material of the blast furnace. Figure 5 is an explanatory diagram of the occurrence of slip from the stagnation part shown in Figure 4,
Figure 6 is an explanatory diagram of changes in the level of charged raw material when slip occurs, Figure 7 is an explanatory diagram for distinguishing the occurrence of slip in the present invention, and Figure 8 is a method for detecting the level of charged raw material using an index finger. Figures 9(a) and (b) are explanatory diagrams showing the level changes of the charging material in the case of slipping and pouring, respectively, and Figure 10 shows the amount of level change of the charging material and its furnace. Figure 11 is a graph showing the relationship between the effect on heat and the effect on furnace heat.
Figure 2 is a graph showing the relationship between ΔN2 and its influence on heat. Code 1: Blast furnace 2: Stagnant part 3: Cavity 4: Charge 5: Weight

Claims (1)

【特許請求の範囲】 1)高炉炉内の装入原料の降下量に基づいて、スリップ
、吹抜け等の炉況異常事態を検知して、高炉操業を行な
う際に、連続する少なくとも2つのバッチ装入間で埋込
み時のレベル差を測定し、このレベル差が予め定めた所
定値を越えたときにスリップと判定し、前記レベル差が
前記所定値以下で炉頂ガス温度が急上昇したときに吹抜
けと判定して、操業条件を制御することを特徴とする高
炉の操業方法。 2)スリップ及び吹抜けの判定前後の炉頂ガス組成中の
N_2濃度の変化をもとにスリップ及び吹抜けの発生強
度を予測し、この予測強度に基づいて操業条件を制御す
ることを特徴とする請求項1記載の高炉の操業方法。 3)高炉の炉体を円周方向で複数個に区画して、各区画
毎に前記レベル差を測定し、これら各区画毎に前記レベ
ル差が前記所定値を越えたときにスリップと判定し、前
記レベル差が前記所定値以下で炉頂ガス温度の急上昇し
たときに吹抜けと判定して、操業条件を制御することを
特徴とする請求項1または2記載の高炉の操業方法。
[Scope of Claims] 1) Based on the amount of descent of the charged material in the blast furnace, abnormal situations such as slip and blow-through are detected, and at least two successive batches are processed when operating the blast furnace. The level difference at the time of embedding is measured at the entrance, and when this level difference exceeds a predetermined value, it is determined to be a slip, and when the level difference is less than the predetermined value and the furnace top gas temperature rises rapidly, a blow-through is detected. A method of operating a blast furnace characterized by determining that the operating conditions are controlled. 2) A claim characterized in that the intensity of occurrence of slip and blow-through is predicted based on the change in N_2 concentration in the top gas composition before and after the judgment of slip and blow-through, and the operating conditions are controlled based on this predicted intensity. The method of operating a blast furnace according to item 1. 3) Divide the furnace body of the blast furnace into a plurality of sections in the circumferential direction, measure the level difference in each section, and determine a slip when the level difference in each section exceeds the predetermined value. 3. The blast furnace operating method according to claim 1, wherein when the level difference is equal to or less than the predetermined value and the furnace top gas temperature rises rapidly, it is determined that blow-through occurs and the operating conditions are controlled.
JP14980788A 1988-06-17 1988-06-17 Blast furnace operation method Expired - Fee Related JP2678767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14980788A JP2678767B2 (en) 1988-06-17 1988-06-17 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14980788A JP2678767B2 (en) 1988-06-17 1988-06-17 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH01319614A true JPH01319614A (en) 1989-12-25
JP2678767B2 JP2678767B2 (en) 1997-11-17

Family

ID=15483142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14980788A Expired - Fee Related JP2678767B2 (en) 1988-06-17 1988-06-17 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP2678767B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270393A (en) * 2009-04-21 2010-12-02 Nippon Steel Corp Control method and controller for sounding device
CN115044719A (en) * 2022-06-13 2022-09-13 武汉钢铁有限公司 Method for judging charge level position by lowering charge level and damping down
CN115735010A (en) * 2020-07-06 2023-03-03 杰富意钢铁株式会社 Operation guidance method, blast furnace operation method, molten iron manufacturing method, and operation guidance device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270393A (en) * 2009-04-21 2010-12-02 Nippon Steel Corp Control method and controller for sounding device
CN115735010A (en) * 2020-07-06 2023-03-03 杰富意钢铁株式会社 Operation guidance method, blast furnace operation method, molten iron manufacturing method, and operation guidance device
CN115044719A (en) * 2022-06-13 2022-09-13 武汉钢铁有限公司 Method for judging charge level position by lowering charge level and damping down
CN115044719B (en) * 2022-06-13 2023-09-22 武汉钢铁有限公司 Method for judging material level position by reducing material level damping down

Also Published As

Publication number Publication date
JP2678767B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
EP0641863B1 (en) Blast furnace operation management method and apparatus
CN102758032B (en) Method for real-time predication of blast furnace pipeline fault probability
Norman et al. Wear tests on grinding balls
JPH049843B2 (en)
JPH01319614A (en) Method of operating blast furnace
Azadi et al. Nonlinear prediction model of blast furnace operation status
Agrawal et al. Advances in thermal level measurement techniques using mathematical models, statistical models and decision support systems in blast furnace
CN104537177B (en) Cohesive zone softening face method for determining position and device in a kind of blast furnace
EP3989013B1 (en) Method for controlling process, operation guidance method, method for operating blast furnace, method for producing hot metal, and device for controlling process
JP2021080556A (en) Method and device for judging furnace conditions in blast furnace, and program for judging furnace conditions in blast furnace
US4149877A (en) Controlling pig iron refining
JP2696114B2 (en) Blast furnace operation management method
JPH01319611A (en) Method of predicting slip in blast furnace operation
TWI700372B (en) Blast furnace facility and monitoring method for liquid level of slag of blast furnace
JPH0254706A (en) Method for operating blast furnace
JPH10310807A (en) Operation of blast furnace
JPS57149403A (en) Detection of gas flow distribution in blast furnace
JPS5974209A (en) Detection of distribution of gaseous flow in blast furnace
KR20040017934A (en) Method for preventing channeling in blast furnace
KR100402019B1 (en) Method For Anticipating Channeling In Blast Furnace
RU2095421C1 (en) Method of testing distribution of charge materials along section of blast furnace
JPS59221583A (en) Method of monitoring internal state of vertical type furnace
JPS5910967B2 (en) Blast furnace operating method excellent in preventing slip occurrence
SU643536A1 (en) Method of heat regulation of blast furnace
JPS58213806A (en) Operating method of blast furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees