JPH01319611A - Method of predicting slip in blast furnace operation - Google Patents

Method of predicting slip in blast furnace operation

Info

Publication number
JPH01319611A
JPH01319611A JP14980488A JP14980488A JPH01319611A JP H01319611 A JPH01319611 A JP H01319611A JP 14980488 A JP14980488 A JP 14980488A JP 14980488 A JP14980488 A JP 14980488A JP H01319611 A JPH01319611 A JP H01319611A
Authority
JP
Japan
Prior art keywords
value
slip
difference
blast furnace
ventilation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14980488A
Other languages
Japanese (ja)
Other versions
JP2733564B2 (en
Inventor
Mitsuru Kiguchi
木口 満
Masaaki Sato
政明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14980488A priority Critical patent/JP2733564B2/en
Publication of JPH01319611A publication Critical patent/JPH01319611A/en
Application granted granted Critical
Publication of JP2733564B2 publication Critical patent/JP2733564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To greatly improve prediction accuracy and to allow adequate action by comparing the present value and past average value of the N2 concn. of a furnace top gas, cumulatively calculating the differences thereof and predicting the generation of a slip when the calculated value exceeds a set value. CONSTITUTION:The N2 concn. is detected by continuously measuring the concn. of the furnace top gas. The present N2 concn. and the average value of the N2 concn. for the past specified period before this detection are compared and the difference ( SP) thereof is determined. The difference ( SP) is cumulatively calculated when the difference ( SP) attains the prescribed or above in a positive direction. The generation of the slip is predicted and. for example, the reduction of draft by about 10-20% is executed when the cumulatively calculated value exceeds the predetermined threshold N2 value. The sure action to the slip is thus executed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高炉操業におけるスリップ予知方法に係り、詳
しくは、炉填ガス組成におけるN2瀾度、通気抵抗指数
等の通気抵抗値あるいは高炉高さ方向各部のシャフト差
圧を指標として高炉操業中に発生するスリップを予知す
る高炉操業におけるスリップ予知方法に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for predicting slip in blast furnace operation, and more specifically, the present invention relates to a method for predicting slip in blast furnace operation. The present invention relates to a method for predicting slip in blast furnace operation, which predicts slip occurring during blast furnace operation using shaft differential pressure as an index.

従  来  の  技  術 一般に、高炉操業におい−C、スリップの発生は炉熱の
低下や犬「1]な生産量の低下をおさえ、これが高炉操
業管理上大きな問題になっている。
Conventional technology In general, during blast furnace operation, the occurrence of -C and slip suppresses a decrease in furnace heat and production volume, which has become a major problem in blast furnace operation management.

このスリップとは、炉内の圧力損失が増力口して炉内圧
力が装入物の下降する力に釣り合い、この状態になると
、棚吊りが発生し、これにともなって徐々に炉内にスリ
ップホールが発生しかつ形成され、このスリップホール
のところに装入物が急降下する現象である。更に、これ
らが発達すると、炉内圧力と装入物荷重との釣り合いが
著しく崩れ、炉頂に装入物力(吹上げ、所謂吹抜りが発
生ずる。
This slip occurs when the pressure loss inside the furnace is increased and the pressure inside the furnace balances the force of the downward movement of the charges. When this happens, shelving occurs, and as a result, slippage gradually occurs inside the furnace. This is a phenomenon in which a hole is generated and formed, and the charge suddenly drops to the slip hole. Furthermore, if these develop, the balance between the pressure inside the furnace and the load of the charge will be significantly disrupted, and the force of the charge (blown up, so-called blowout) will occur at the top of the furnace.

このため、高炉操業においては、スリップの発生を予知
し、壬の発生を未然に防止することが必要で、適格にこ
れを予知できれば高炉操業)〕(大巾に改善されて、技
術的意味はきわめて大きい。このところから、従来から
、スリップや吹抜【づ等を防止する方法として種々の方
法が提案され、その一つとして、例えば、特開昭62−
270712号公報に示される如く、“°高炉状況検出
システム″が提案されている。この方法は、炉内装入物
の荷下り速度とゾンデから1qられる情報等とによって
スリップを予知するものであって、口の炉況検出システ
ムでは、各種センサーがらデータを所定のタイミングで
取込むデータ入力手段と、このデータに基づいて炉内装
入物の荷下り速度、炉内の圧力損失、シャフト圧力、シ
ャツ1〜温度、固定ゾンデの温度、ガス利用率、炉口ゾ
ンデの温度等の高炉炉内状況を示す各種データを作成す
るデータ作成手段と、この各種データを基準データと比
較して真偽データを作成する手段と、この真偽データを
記憶する手段と、各種の知識ベースを記憶する手段と、
前記記憶する手段の真偽データ及び知識ベースに基づい
て所定の推論を行なって吹抜けやスリップを予測する手
段とを設(プて成るものである。
Therefore, in blast furnace operation, it is necessary to predict the occurrence of slip and prevent the occurrence of slip.If this can be properly predicted, blast furnace operation will be improved. From this point of view, various methods have been proposed to prevent slips and stairwells.
As shown in Japanese Patent No. 270712, a "°Blast Furnace Condition Detection System" has been proposed. This method predicts slippage based on the unloading speed of the contents in the furnace and the information received from the sonde. An input means and, based on this data, the unloading speed of the contents in the furnace, the pressure loss in the furnace, the shaft pressure, the shirt temperature, the temperature of the fixed sonde, the gas utilization rate, the temperature of the furnace mouth sonde, etc. a data creation means for creating various data indicating the internal situation; a means for comparing the various data with reference data to create truth/false data; a means for storing the truth/false data; and a means for storing various knowledge bases. means and
A means for predicting a blowout or a slip by making a predetermined inference based on the truth data and knowledge base of the storing means is provided.

しかしながら、このシステムでは、まず、用いられるデ
ータ、例えば、荷下り速度は装入毎に炉内装入物の表面
に差指等の検尺センサーを下げて検出したデータであっ
て、このデータは炉内の装入物表面近傍における原料の
流れ込みあるいは検尺センサーの倒れ等によって影響さ
れて変化し、このため、このデータを用いても、スリッ
プの予知を高精度に行なうことは困難である。
However, in this system, first of all, the data used, for example, the unloading speed, is the data detected by lowering a measuring sensor such as an index finger to the surface of the contents in the furnace every time it is charged; It is affected by the flow of raw material near the surface of the charge or the fall of the measuring sensor, and therefore it is difficult to predict slip with high accuracy even using this data.

また、ゾンデから得られる情報は単に高炉操業状況のみ
を示すのにとどまらず、原料装入によっても変化する。
Furthermore, the information obtained from the sonde does not only indicate the operational status of the blast furnace, but also changes depending on the raw material charging.

すなわち、例えば、原料装入時には全体的に炉内カス温
度が低下するが、その後、経時的に回復する変化がみら
れ、ゾンデがら得られる情報では、高炉操業上の変化と
原料装入による変化とを区別することは困難である。
In other words, for example, when charging raw materials, the temperature of the waste in the furnace decreases overall, but then it recovers over time, and the information obtained from the sonde indicates that changes in blast furnace operation and changes due to charging raw materials are observed. It is difficult to distinguish between

一般に云って、スリップの原因となるスリップホールの
発生は、徐々に僅がづつ行なわれるものである。しかし
、従来例では、スリップホールの発生は一定周期毎に判
断されるため、口れを予知することは困難である。また
、スリップホールは高炉内に生じた空洞で空隙率の異常
に小さい部分である。これを正確に推定するには、単位
時間における高炉内に装入した鉱石、コークス等の炉内
装入物の体積と炉内で溶融し滴下した溶融体の体積との
差で求めるのが本節である。しかし、現在のところ、高
炉内での溶融滴下量をある精度をもって推定することは
行なわれておらず、このところからも、従来例の如ぎ一
定周期毎の判断ではスリップホールの発生や形成を予測
することは困難である。
Generally speaking, slip holes that cause slips occur gradually. However, in the conventional example, since the occurrence of slip holes is determined at regular intervals, it is difficult to predict the occurrence of slip holes. In addition, slip holes are cavities created within the blast furnace that have an abnormally low porosity. In order to accurately estimate this, in this section, it is determined by the difference between the volume of the blast furnace contents such as ore and coke charged into the blast furnace and the volume of the molten material that has melted and dripped in the blast furnace per unit time. be. However, at present, it is not possible to estimate the amount of molten dripping in a blast furnace with a certain degree of accuracy, and from this point of view, it is difficult to estimate the occurrence and formation of slip holes by making judgments at regular intervals as in the past. It is difficult to predict.

また、スリップが上記の如く炉内圧力とのバランスによ
って発生ずることから、スリップ予知に適切な情報とし
てシャフト圧力(差圧)が考えられる。しかし、シャフ
ト圧力の動きをみると、スリップが起こる前であっても
、変動中は必ずしも大きくない。換言すると、シャフト
圧力のレベル管理のみではスリップだけを予知すること
は困難である。
Furthermore, since slip occurs due to the balance with the furnace pressure as described above, shaft pressure (differential pressure) can be considered as information suitable for predicting slip. However, if we look at the movement of shaft pressure, even before slipping occurs, it is not necessarily large during fluctuations. In other words, it is difficult to predict slip only by controlling the shaft pressure level.

また、例えば、特開昭58−71310号公報に記載さ
れるように、高炉の圧力損失と炉内装入物荷重との比を
求め、この比が棚吊り、スリップ又は吹抜けを発生させ
ない条件を予め設定し、この条件を満たずように送風す
る高炉送用方法が提案されている。しかし、炉内装入物
荷重の測定精度を高めることがきわめてむづかしいため
、スリップ等の予知を正確に行なうことは困難である。
For example, as described in Japanese Patent Application Laid-Open No. 58-71310, the ratio between the pressure loss of the blast furnace and the load of the contents in the furnace is determined, and the conditions under which this ratio does not cause shelving, slipping, or blow-through are determined in advance. A blast furnace feeding method has been proposed in which air is blown so as not to satisfy this condition. However, since it is extremely difficult to increase the accuracy of measuring the load of the contents in the furnace, it is difficult to accurately predict slips and the like.

発明が解決しようとする課題 本発明はこれらの問題を解決することを目的とし、具体
的には、高炉操業においてスリップ等の予知を行なうデ
ータが外乱を受は易いデータであるため、スリップ等の
予知精度が悪く、その予知が不十分で正確にスリップ等
の予知が行なうことができず、スリップ防止対策の遅れ
を生じたり 必要以上の処置をとることとなり、従って
、炉熱の低下や減産になるなどの問題があること、また
、このようなスリップを精度よく予知する方法等が未だ
十分研究されていない等の問題を解決することを目的と
する。
Problems to be Solved by the Invention The purpose of the present invention is to solve these problems.Specifically, the data used to predict slips, etc. in blast furnace operation is data that is easily affected by disturbances. The prediction accuracy is poor, and the prediction is insufficient and it is not possible to accurately predict slips, etc., resulting in delays in taking preventive measures or taking more measures than necessary, resulting in a decrease in furnace heat and production. The purpose of this invention is to solve the problems that there are problems such as slippage, and that methods for predicting such slips with high accuracy have not yet been sufficiently researched.

課題を解決するための 手段ならびにその作用 すなわち、本発明方法は、連続的に測定される炉頂ガス
組成中からN2″a度を検出し、現在のN2濃度を求め
、このとき以前の過去一定期間のN2濃度平均値に比較
して、その差分が正の方向に所定値以上になったときに
、前記差分を累積計算し、この累積計算値が予め定めた
N2境界値をこえたとぎにスリップ発生を予知すること
を特徴とする。
Means for solving the problem and its operation, that is, the method of the present invention detects the N2''a degree from the continuously measured furnace top gas composition, determines the current N2 concentration, and at this time, the previous past constant When the difference exceeds a predetermined value in the positive direction compared to the average N2 concentration value of the period, the difference is cumulatively calculated, and when this cumulative calculation value exceeds a predetermined N2 boundary value, It is characterized by predicting the occurrence of slip.

以下、本発明法によって高炉操業上の事故の一つのスリ
ップの発生を予知し、それを修復して高炉操業を行なう
方法について説明すると、次の通りである。
Hereinafter, a method of predicting the occurrence of slip, which is one of the accidents during blast furnace operation, and repairing the slip to operate the blast furnace using the method of the present invention will be described as follows.

まず、本発明者等は、高炉操業において、スリップ発生
時の種々の操業データを解析し、その上で、高炉操業ト
の事故の一つのスリップ発生の原因を調べたところ、 °゛スリップ発生前には、炉頂ガス組成中のN2濃度が
上昇し、これに伴って通気抵抗が上昇する口と、″ がわがった。
First, the present inventors analyzed various operational data at the time of slip occurrence in blast furnace operation, and then investigated the cause of slip occurrence, which is one of the accidents in blast furnace operation. In this case, the N2 concentration in the top gas composition increased, and the ventilation resistance increased accordingly.

更に進んで、このスリップの発生機構を実高炉操業に近
いと云われる非定常断面均一モデルによって解析したと
ころ、 °°高炉下部でスリップホールが形成された時には、炉
頂ガス組成中のN2濃度が上昇することが認められ、ス
リップ発生前には炉頂ガス中のN2濃度が高いレベルで
推移していること、″ びわかった。
Going further, we analyzed the slip generation mechanism using an unsteady uniform cross-section model that is said to be close to actual blast furnace operation, and found that when a slip hole is formed at the bottom of the blast furnace, the N2 concentration in the top gas composition increases. It was found that the N2 concentration in the furnace top gas remained at a high level before the slip occurred.

そこで、本発明者等は、これらの成因について、更に検
討したところ、次の通りであった。
Therefore, the present inventors further investigated these causes and found the following.

すなわち、高炉操業において、スリップが発生するとき
には、送風圧力が上昇する。これは、炉内、つまり、装
入物中に通気抵抗が大きい断面が形成され、この通気抵
抗の大きい断面の直下に空隙率の大きな部分、つまり、
スリップボールが形成するがらと思われる。換言すると
、通気抵抗の大きい断面は若干降下スピードが遅く、こ
の断面の直下に、空隙率の大きな部分、つまり、スリッ
プホールが形成するからと思われる。換言すると、通気
抵抗の大きい断面は降下スピードが他の断面に較べて遅
く、このため、この断面の下部、すなわち、スリップホ
ールでは、未還元物(FedX等)の到来が減少する。
That is, in blast furnace operation, when slip occurs, the blowing pressure increases. This is because a cross section with high ventilation resistance is formed in the furnace, that is, in the charge, and directly below this cross section with high ventilation resistance, there is a part with high porosity, that is,
It seems that a slip ball is formed. In other words, the descending speed of the cross section with high ventilation resistance is somewhat slow, and it is thought that this is because a portion with high porosity, that is, a slip hole, is formed directly below this cross section. In other words, the cross-section with high ventilation resistance has a lower descending speed than other cross-sections, and therefore, the arrival of unreduced substances (FedX, etc.) at the lower part of this cross-section, that is, the slip hole, is reduced.

−方、未還元物の到来が減少するに拘らず、スリップホ
ールには、下部からCOガスが十分に上昇し、赤熱コー
クスも十分存在する。このため、スリツプホールにおい
て、次の(1)、(2)ならびに(3)に示す各種還元
反応の進行が減少し、なかでも、(2)ならびに(3)
に示す反応が吸熱反応であることもあって、これら反応
の減少によって熱が過剰になり、過熱部が形成される。
- On the other hand, although the arrival of unreduced substances is reduced, CO gas sufficiently rises from the lower part of the slip hole, and red-hot coke is also sufficiently present. Therefore, the progress of various reduction reactions shown in (1), (2), and (3) below is reduced in the slip hole, and among them, (2) and (3)
Since the reactions shown in are endothermic reactions, the reduction in these reactions results in excess heat and the formation of a superheated zone.

FeO−+−co = Fe + Co2・・−・・・
(1)C十C02= 2CO・・・・・・・・・・・・
(2)FeO+ C= CO−1−Fe  −・−・−
(3)要するに、 (1)スリップホールでの還元反応の局部的減少は、炉
頂ガス組成にd5いて、CO+CO2i1度の減少を招
来し、これにともなってN2濃度が増加する。
FeO-+-co = Fe + Co2...
(1)C0C02= 2CO・・・・・・・・・・・・
(2) FeO+ C= CO-1-Fe −・−・−
(3) In short: (1) The local reduction in the reduction reaction at the slip hole causes a decrease in the top gas composition of d5, CO+CO2i1 degree, and the N2 concentration increases accordingly.

(2)通気抵抗が大きくかつ降下スピードが遅い断面の
下部には上記の如き過熱部が形成されることがら、その
断面から上部への熱供給が増加し、融肴園の範囲が拡大
するため、通気抵抗が大巾に増加する。
(2) Since the above-mentioned superheated area is formed at the bottom of the cross section where the ventilation resistance is large and the descent speed is slow, the heat supply from that cross section to the top increases, and the range of the confectionery garden expands. , ventilation resistance increases significantly.

本発明は上記のところの研究解析の結果にもとずいて、
なかでも、炉頂ガス組成中のN2濃度の変化を利用し、
スリップ発生を予知する。
The present invention is based on the results of the above research and analysis,
In particular, by utilizing changes in N2 concentration in the top gas composition,
Predict slip occurrence.

まず、本発明法においては、連続的に測定される炉頂ガ
スの各組成のうちで、L濃度を検出し、現在のN2 ン
腰度(以下、N2現在値という。)と、検出以前、つま
り、過去の一定期間、例えば数十分間、数時間のN2ン
m度の平均値(以下、N2過去平均値という。)とを対
比して、その差分を求める。そこで、この差分が正の方
向に一定の境界値(以■、N2境界値という。)をこえ
たときには、未還元物の到来の減少を予知する。
First, in the method of the present invention, the L concentration is detected in each composition of the top gas that is continuously measured, and the current N2 concentration (hereinafter referred to as the current N2 value) and the concentration before detection are determined. That is, the difference is determined by comparing the average value of N2 degrees over a certain period of time in the past, for example, several tens of minutes or several hours (hereinafter referred to as N2 past average value). Therefore, when this difference exceeds a certain boundary value (hereinafter referred to as N2 boundary value) in the positive direction, it is predicted that the arrival of unreduced substances will decrease.

次に、差分をN2境界値に比較してスリップの発生を予
知するほか、差分が境界値を正の方向にこえたときには
、そのときから、差分を累積計算し、スリップボールへ
の未還元物の到来の減少量を求める。すなわち、上記の
如く、スリップ発生を予知し、これに併せて、予知以後
の差分を累積計算すると、形成されたスリップボールの
大きさやその継続時間が具体的に把握でき、炉内におけ
るスリップの形成程度がわがり、スリップホール修復の
ために具体的な対策がたてられる。
Next, the difference is compared with the N2 boundary value to predict the occurrence of slip, and when the difference exceeds the boundary value in the positive direction, the difference is cumulatively calculated from that point on, and the unreduced material to the slip ball is calculated. Find the amount of decrease in the arrival of . In other words, as described above, by predicting the occurrence of slip and cumulatively calculating the difference since the prediction, it is possible to concretely understand the size of the formed slip ball and its duration, and to check the formation of slip in the furnace. The extent of the damage was determined, and specific measures were taken to repair the slipholes.

なお、このようにスリップを予知してから差分を累積削
算し、これに併せて、例えば、送風量の減少その他操業
条件をコントロールしてスリップボールを修復し、スリ
ップホールへの未還元物の到来の減少を解消する。この
修復完了の時期は差分がN2境界値以下に降下したとき
として正確に判断でき、このときには、差分の累積計算
は停止する。
In addition, after predicting the slip in this way, the difference is cumulatively reduced, and in conjunction with this, for example, by reducing the amount of air flow and controlling the operating conditions, the slip ball is repaired, and the unreduced material is removed from the slip hole. Eliminate the decline in arrivals. The timing of completion of this repair can be accurately determined as when the difference falls below the N2 boundary value, and at this time, the cumulative calculation of the difference is stopped.

また、比較の対象になるN2境界値は、高炉の容量や炉
床面積を考慮してスリップの可否を実測して予め求めて
おくものである。例えば、4000m3級の高炉では0
.2%程度の一定値をとると、スリップは正確に予知で
きる。
Further, the N2 boundary value to be compared is determined in advance by actually measuring whether slip occurs or not, taking into consideration the capacity of the blast furnace and the area of the hearth. For example, in a 4000 m3 class blast furnace, 0
.. If a constant value of about 2% is taken, slip can be accurately predicted.

また、炉頂ガスのN2瀧度のほか、これに併せて、高炉
の圧損や通気抵抗指数をとり上げ、スリップをより正確
に予知できる。すなわち、炉内にスリップホールが形成
されると、通気抵抗が上昇し、この通気抵抗値をあられ
すものとして圧損や通気抵抗指数をとり、これらと測定
以前、つまり、過去の通気抵抗値の平均値との差分を求
め、この差分を上記のところと同様に通気性の境界値と
比較してスリップを予知する。
In addition to the N2 waterfall level of the furnace top gas, we also take into account the pressure drop and ventilation resistance index of the blast furnace, making it possible to predict slip more accurately. In other words, when a slip hole is formed in the furnace, the ventilation resistance increases, and the pressure drop and ventilation resistance index are calculated using this ventilation resistance value as a fallout, and these are combined with the average of the past ventilation resistance values. The difference between the two values is calculated, and this difference is compared with the air permeability boundary value in the same way as above to predict slippage.

この通気抵抗値からの予知方法を、N2濃度からの予知
方法のときに、併用すると、より正確にスリップlf予
知できる。更に詳しく説明すると、N2濃度変化のみに
よってスリップを予知すると、断続的に高炉円周方向で
繰返し、未還元物の荷下りの減少を生じた場合も、Li
1度が上昇する。このため、炉内通気抵抗値を組合せる
と、スリップ予知を行なうと、予知精度が向上する。
If this prediction method based on ventilation resistance value is used in combination with the prediction method based on N2 concentration, slip lf can be predicted more accurately. To explain in more detail, if slip is predicted only based on changes in N2 concentration, Li
1 degree rises. Therefore, when slip prediction is performed in combination with the furnace ventilation resistance value, the prediction accuracy is improved.

また、上記の如く、予知する際の検出因子について、更
に詳しく説明すると、次の通りである。
Further, as described above, the detection factors used in prediction will be explained in more detail as follows.

(1)炉頂ガスN2 (a)連続的に測定される炉頂ガスの組成のうちから、
Li1度を一定周期、例えば5分毎に検出する。
(1) Top gas N2 (a) From the composition of the top gas that is continuously measured,
Li1 degree is detected at a fixed period, for example, every 5 minutes.

なa5、途中で、送風湿分や酸素富化率等の条件が変更
されると、水分の分解によるガス量変化、装入N211
iの変化等によって、N21i1度が変化する。この変
化は理論的に吟味の上で、N2i!度を補正して、基準
状態と条f4を同等にする。
A5: If conditions such as air humidity and oxygen enrichment rate are changed during the process, the gas amount will change due to moisture decomposition, and the charging N211 will change.
N21i1 degree changes due to changes in i, etc. This change was theoretically examined and N2i! The degree is corrected to make the reference state and the article f4 equivalent.

(1))操業中のN2現在値とN2過去値との差分(△
N21をh4算により求める。
(1)) Difference between current N2 value and past N2 value during operation (△
N21 is determined by h4 calculation.

(C)差分(ΔN2 )が、例えば0.2%のN2境界
値以上になったときには、差分を累積計算(■・ΔN2
 )する。
(C) When the difference (ΔN2) exceeds the N2 boundary value of, for example, 0.2%, the difference is cumulatively calculated (■・ΔN2
)do.

(d)差分(ΔN2 )が例えば0.2%のN2境界値
以下になったときは、累積計算を停止し、ゼロにする。
(d) When the difference (ΔN2) becomes less than the N2 boundary value of, for example, 0.2%, the cumulative calculation is stopped and set to zero.

ここで、ゼロとする理由は、スリップボールの成長が止
まり、かつ解消できたと判定できる理由からである。
Here, the reason why it is set to zero is that it can be determined that the growth of the slip ball has stopped and that it has been resolved.

(e)累積割算値(T・ΔN2 )にも丁・N2境界値
を設定する。
(e) The cumulative division value (T·ΔN2) is also set to the D·N2 boundary value.

この■・N2境界値は、スリップが予想されている直前
の値を設定するほか、この値を大小に区切って、各段階
での境界値をそれぞれ設定しておくことで、スリップを
抑制する高炉操業法を採ることが可能となる。
In addition to setting this ■・N2 boundary value to the value immediately before slip is expected, this value can be divided into large and small values and boundary values for each stage are set for blast furnaces that suppress slip. It becomes possible to adopt the operating method.

1一定周期毎に累積計算値(1・ΔN2 )を計算し、
■・N2境界値と比較する。
Calculate the cumulative calculation value (1・ΔN2) every fixed period,
■・Compare with N2 boundary value.

以上の操作を一定の周期毎に行なう。The above operations are performed at regular intervals.

(2)通気性 この通気性を示す指標として通気抵抗指数を採用し、こ
の指数を一定の周期毎に集められたデータにもとずいて
長期と短期とに分けて次の通り割算し、スリップを予知
する。
(2) Air permeability The air permeability index is used as an index to indicate air permeability, and this index is divided into long-term and short-term based on data collected at regular intervals as follows: Predict slips.

(a)通気抵抗指数を求める炉内データの蒐集炉内の通
気抵抗を評価するために、例えば5分毎の如ぎ一定周期
にわたって通気抵抗指数を計算するデータ、例えば炉頂
圧力と送風圧力との差として得られる圧損等を求める。
(a) Collection of furnace data for calculating the ventilation resistance index In order to evaluate the ventilation resistance in the furnace, data for calculating the ventilation resistance index over a fixed period, such as every 5 minutes, such as furnace top pressure and blowing pressure. Find the pressure loss etc. obtained as the difference between.

次に、この各周期毎の通気抵抗指数を少なくとも8時間
(この時間は狂人原料の高炉中の在炉時間に相当する。
Next, the ventilation resistance index for each cycle was maintained for at least 8 hours (this time corresponds to the time the lunatic raw material was in the blast furnace).

)以上にわたって記憶する。) or more.

(i))長期上昇通気抵抗指数 スリップ発生の判断時には、上記の如く記憶された各周
期毎の通気抵抗指数をそのときから過去例えば8時間に
わたって平均を求め、この平均値を判断時の最新周期の
通気抵抗指数とを比較し、その差分を長期上昇通気抵抗
指数とする。
(i)) Long-term rising ventilation resistance index When determining the occurrence of slip, calculate the average of the ventilation resistance index for each period stored as described above over the past period, for example, 8 hours, and use this average value for the latest cycle at the time of judgment. and the ventilation resistance index, and the difference is taken as the long-term rising ventilation resistance index.

(C)短期上昇通気抵抗指数 操業中、例えば5分毎の如き周期で、その判断時以前3
0秒よりも短い期間の通気抵抗指数の最大値に対し、そ
のときから過去例えば30分間の通気抵抗指数の平均値
を対比し、その差を短期上昇通気抵抗指数とする。
(C) Short-term rising airflow resistance index During operation, at a cycle such as every 5 minutes, 3 times before the time of the judgment.
The maximum value of the ventilation resistance index for a period shorter than 0 seconds is compared with the average value of the ventilation resistance index for the past 30 minutes, for example, from that time, and the difference is taken as the short-term rising ventilation resistance index.

(d)通気性境界値 以上の通りに、通気抵抗指数の差分を長期と短期に分け
て、短期上昇ならびに長期上昇の各通気抵抗指数を求め
、これら指数を予め設定した通気性境界値に比較する。
(d) As per the air permeability boundary value, divide the difference in air resistance index into long-term and short-term, calculate short-term increase and long-term increase air resistance index, and compare these indices with the preset air permeability boundary value. do.

この比較において、各上背指数が通気性境界値をこえた
ときに、スリップの発生を予知する。
In this comparison, the occurrence of slipping is predicted when each upper back index exceeds the air permeability boundary value.

また、上記のところでは、通気性を示す指標として通気
抵抗指数を採用するが、これに代って以下の如く、高炉
において、その高さ方向に所定間隔をおき炉内圧力(以
下シャフト差圧という。)を測定し、この各測定場所の
シャフト差圧を用いてもスリップは予知できる。
In addition, in the above section, the ventilation resistance index is adopted as an index showing the permeability, but instead of this, in the blast furnace, the internal pressure (hereinafter referred to as shaft differential pressure Slip can also be predicted by measuring the shaft pressure difference at each measurement location.

まず、本発明者等は、スリップ発生時と通常操業時とに
おいて、シャフト差圧の変化について詳細に調べたとこ
ろ、スリップ発生時には、通常操業時に較べて、シャフ
ト差圧が高いレベルで、しかも、長時間にわたって推移
することがわがった。
First, the present inventors investigated in detail the changes in shaft differential pressure between when a slip occurs and during normal operation, and found that when a slip occurs, the shaft differential pressure is at a higher level than during normal operation. It was found that the change lasted for a long time.

次に、このシャフト差圧の変化をスリップの予知に利用
するために、高炉の各測定場所毎に、シャフト差圧を例
えば5分毎の如く一定の周期毎、又は時々刻々に求め、
現在のシャフト差圧(以下、差圧現在値という。)とそ
のときから例えば過去8時間のシャフト差圧の平均11
1I(以下、差圧過去平均値という。)とを比較して差
分を求める。この差分を累積計算し、この累積計算値が
予め定めた差圧境界値以上になったときに、スリップの
発生を予知する。この差分を累積割算することによりシ
ャフト差圧の大きさとともに継続時間が具体的に把握で
き、スリップの発生を予知することができる。
Next, in order to use the change in shaft differential pressure to predict slip, the shaft differential pressure is determined at each measurement location in the blast furnace at regular intervals, such as every 5 minutes, or every moment.
The current shaft differential pressure (hereinafter referred to as the current differential pressure value) and the average shaft differential pressure over the past 8 hours since then, for example 11
1I (hereinafter referred to as past average differential pressure) to determine the difference. This difference is cumulatively calculated, and when the cumulatively calculated value exceeds a predetermined differential pressure boundary value, the occurrence of slip is predicted. By cumulatively dividing this difference, the magnitude and duration of the shaft differential pressure can be concretely grasped, and the occurrence of slip can be predicted.

また、スリップ予知後は、減風等を行なって、スリップ
ホールを修復する。
Furthermore, after slip prediction, the slip hole is repaired by reducing the wind.

更に具体的に説明すると、シャフト差圧データを例えば
5分の如く一定周期毎に処理し、差圧現在値と差圧過去
平均値(例えば1時間前〜9時間前)との差分(△SP
)を求め、この差分(△SP)について累積計算を行な
って、差分(△SP)が差圧過去平均値より小さくなっ
たときには累積計算を停止して累積計算値(■・△SP
)を零にする。
More specifically, the shaft differential pressure data is processed at regular intervals, such as every 5 minutes, and the difference (ΔSP) between the current differential pressure value and the past average differential pressure value (for example, from 1 hour to 9 hours ago) is calculated.
), perform cumulative calculation for this difference (△SP), and when the difference (△SP) becomes smaller than the past average value of differential pressure, stop the cumulative calculation and calculate the cumulative calculation value (■・△SP).
) to zero.

このようなシャフト差圧の処理は各測定ポイントで、そ
れぞれ差圧境界値を予め定めて行なわれる。
Such shaft differential pressure processing is performed at each measurement point by predetermining a differential pressure boundary value.

次に、累積計算開始後、累積計算値(■・△SP)が予
め定めた差圧境界値より大きいかどうかを、高炉の各測
定ポイント毎に個別的に判断する。
Next, after starting the cumulative calculation, it is determined individually for each measurement point of the blast furnace whether the cumulative calculated value (■・ΔSP) is larger than a predetermined differential pressure boundary value.

この判断において、少なくとも一つの測定ポイン1へで
累積計算値(■・△SP)が差圧境界値より大きくなれ
ば、そのとぎにスリップの発生を予知し、例えば10〜
20%等の減風を行なう。
In this judgment, if the cumulative calculated value (■・△SP) for at least one measurement point 1 becomes larger than the differential pressure boundary value, then the occurrence of slip is predicted, and for example 10~
Reduce the wind by 20%, etc.

実施例 実施例1゜ まず、容量4000m’級の高炉操業時に、連続的に測
定される炉頂ガス組成のうちからN2濃度を検出し、予
知時のN2現在値がN2過去平均値(過去8時間にわた
る)をこえて大きいときには、その差分を累積し、N2
累積計算値(T・△N2 )を求めた。
Examples Example 1 First, during operation of a blast furnace with a capacity of 4000 m' class, the N2 concentration is detected from the top gas composition that is continuously measured. ), the difference is accumulated and N2
The cumulative calculation value (T·ΔN2) was determined.

次に、第1図に示す如く、N2累積計算値(■・ΔN2
 )を大、小に区分し、これに炉内通気抵抗(通気抵抗
指数をとった)の変化を関連させてスリップを予知し、
高炉の操業条件を調整した。
Next, as shown in Figure 1, the N2 cumulative calculation value (■・ΔN2
) is divided into large and small, and this is correlated with changes in the ventilation resistance in the furnace (ventilation resistance index taken) to predict slip.
The operating conditions of the blast furnace were adjusted.

すなわち、N2累積計算値(■・ΔN2 )が大きくか
つ通気抵抗が大のときには、第1表に示すアクション1
を選定し、最大限の7i風を行なってスリップを修復し
た。
In other words, when the N2 cumulative calculation value (■・ΔN2) is large and the ventilation resistance is large, action 1 shown in Table 1 is applied.
was selected and the slip was repaired by performing maximum 7i wind.

また、N2累積計算値(T・ΔN2 )が人でも通気抵
抗の上昇が小であれば、アクション2を選定し、減風量
が最大値のアクション1より減風量が若干量低下させた
。このように各ケースにおいて、第1表に示す各アクシ
ョンを選択すると、スリップ予知に対し、高炉操業の自
動化が達成できた。
In addition, if the increase in ventilation resistance was small even when the N2 cumulative calculated value (T·ΔN2) was for humans, action 2 was selected, and the air reduction amount was slightly lower than action 1, which had the maximum air reduction amount. In this way, in each case, by selecting each action shown in Table 1, automation of blast furnace operation could be achieved in response to slip prediction.

第  1  表 但し、!風量はAI > A2 > A3 > A4の
順に小さくなり、風量の低下量もB1> 82の順に小
さくなる。
Table 1 However,! The air volume decreases in the order of AI>A2>A3>A4, and the amount of decrease in the air volume also decreases in the order of B1>82.

また、」1記の通りに操業したときに、第2図に示ずよ
うに、(a)ならびに(b)の各期間では炉頂ガス組成
中でN211f1度がN2過去平均値をこえて高いレベ
ルで推移した。そこで、(a)、(I])の各期間にお
いてはN2現状値とN2過去平均値との差分を求め、こ
の差分を累積計算した。しかし、(a)期間では累積計
算4111(T・ΔN2 )があまり大きくならなかっ
たが、(1))期間では累積削算値(■・ΔN2 )が
徐々に大きくなり、予め設定したTN2境界値(2,0
%)をこえていた。このため、このこえたところで、送
風量を約20%稈度減風させたところ、差指に粗密がみ
られたが、スリップが発生せず、安定して操業を続ける
ことができた。
In addition, when operating as described in 1, as shown in Figure 2, in each period (a) and (b), the N211f1 degree in the top gas composition was higher than the past average value of N2. It remained at the level. Therefore, in each period (a) and (I]), the difference between the current N2 value and the past average N2 value was calculated, and this difference was cumulatively calculated. However, in the (a) period, the cumulative calculation 4111 (T・ΔN2 ) did not become very large, but in the (1)) period, the cumulative reduction value (■・ΔN2 ) gradually increased and reached the preset TN2 boundary value. (2,0
%). For this reason, when the air flow rate was reduced by approximately 20% after reaching this point, coarseness and density were observed in the index finger, but no slipping occurred and stable operation could be continued.

実施例2゜ まず、実施例1と同様に高炉操業し、この際に、第3図
に示す(C)ならひに(d)の期間において、差圧現在
値が差圧過去平均値より大きくなった。これら雨期間で
差分は同1ノベルであるが、継続時間が異なり、差分の
累積計算値(T・△SP)は差圧境界値より大きくなっ
たのは(d)期間てあり、10%減風を行なったところ
、累積計算値(T・△51))が差圧境界値より低下し
、スリップボールが修復できた。
Example 2゜ First, the blast furnace was operated in the same manner as in Example 1, and during the period (C) and (d) shown in Fig. 3, the current value of the differential pressure was larger than the past average value of the differential pressure. became. The difference in these rainy periods is the same novel, but the duration is different, and the cumulative calculated value of the difference (T・△SP) was greater than the differential pressure boundary value in period (d), which was reduced by 10%. When air was applied, the cumulative calculated value (T・Δ51)) decreased below the differential pressure boundary value, and the slip ball was repaired.

〈発明の効果〉 以上説明したように、本発明方法は、連続的に測定され
る炉頂ガス組成からN21litt度を求め、このLi
1度や通気抵抗指数等の炉内通気抵抗値を指標とし、ス
リップ判断時に、現在の指標値とそのとき以前過去一定
期間にわたって指標値を平均した平均値とを比較し、そ
の差分が所定値以」−のときに差分を累積し、その累積
計算値を、予め定めた境界値に対比してスリップの発生
を予知するものである。また、シャフト差圧と過去のシ
ャツ1へ差圧の平均値と比較し、所定値以上より高い場
合には、その差を累積し、ぞの累gi値に対応する境界
値を定め、この境界値に基づいて炉況異常を判断するも
のである。
<Effects of the Invention> As explained above, the method of the present invention determines the N21 lit degree from the continuously measured furnace top gas composition, and
The ventilation resistance value in the furnace such as 1°C or ventilation resistance index is used as an index, and when determining a slip, the current index value is compared with the average value obtained by averaging the index values over a certain period of time in the past, and the difference is calculated as a predetermined value. In this case, the difference is accumulated and the accumulated calculated value is compared with a predetermined boundary value to predict the occurrence of a slip. In addition, the shaft differential pressure is compared with the past average value of the differential pressure to the shirt 1, and if it is higher than a predetermined value, the difference is accumulated, a boundary value corresponding to the cumulative gi value is determined, and this boundary value is This is used to judge whether there is an abnormality in the furnace condition based on the value.

従って、本発明方法によればスリップ発生の予知精度が
大巾に向上するため、適切なアクションをとることが可
能であり、また、スリップが発生しそうな時のみに確東
にアクションがとることができるようになり、スリップ
に基づく問題はいずれも解決することが可能となった。
Therefore, according to the method of the present invention, the accuracy of predicting the occurrence of a slip is greatly improved, so it is possible to take appropriate action, and it is also possible to take corrective action only when a slip is likely to occur. Now all slip-related problems can be solved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法を実施する際の一例のアクションを指
示するフロー図、第2図は第1図の一例の作動タイムフ
ロー図、第3図は他の実施例の作動タイムフロー図であ
る。
Fig. 1 is a flow diagram showing an example of actions when carrying out the method of the present invention, Fig. 2 is an operation time flow diagram of the example shown in Fig. 1, and Fig. 3 is an operation time flow diagram of another embodiment. be.

Claims (1)

【特許請求の範囲】 1)連続的に測定される炉頂ガス組成中からN_2濃度
を検出し、現在のN_2濃度を求め、このとき以前の過
去一定期間のN_2濃度平均値に比較して、その差分が
正の方向に所定値以上になつたときに、前記差分を累積
計算し、この累積計算値が予め定めたN_2境界値をこ
えたときにスリップ発生を予知することを特徴とする高
炉操業におけるスリップ予知方法。 2)連続的に測定される炉頂ガス組成中からN_2濃度
を検出すると同時に、圧損または通気抵抗指数を含む通
気抵抗値を検出し、現在のN_2濃度を、このとき以前
の過去一定期間のN_2濃度の平均値に比較して、その
差が正の方向に所定値以上になったときに、前記差分を
累積計算し、この累積計算値が予め定めたN_2境界値
をこえ、これに併せて、現在の通気性を、このとき以前
過去一定期間の通気抵抗値の平均値に比較してその差分
を求め、この差分も考慮して、スリップ発生を予知する
ことを特徴とする高炉操業におけるスリップ予知方法。 3)所定周期毎に求めた通気抵抗値のうち、しかも、最
新の周期の通気抵抗値と、そのとき以前過去装入原料の
在炉時間に相当する時間にわたって平均した平均値との
差分を、長期上昇通気抵抗値として求めることを特徴と
する請求項2記載の高炉操業におけるスリップ予知方法
。 4)スリップ発生有無の判断時以前30秒より短かい期
間内における通気抵抗値とその判断時以前過去30分間
にわたつて通気抵抗値を平均した平均値との差分を、短
期上昇通気抵抗値とすることを特徴とする請求項2記載
の高炉操業におけるスリップ予知方法。 5)高さ方向に所定間隔をおいて高炉に形成された各測
定ポイントで検出されたシャフト差圧と、この測定時以
前過去一定期間にわたつてシャフト差圧を平均した平均
値とを比較し、前記シャフト差圧が所定値以上より高い
場合には、その差分を累積計算し、この累積計算値を予
め定めた差圧境界値と比較してスリップを予知すること
を特徴とする高炉操業におけるスリップ予知方法。
[Claims] 1) Detecting the N_2 concentration from the continuously measured furnace top gas composition, determining the current N_2 concentration, and comparing it with the average value of the N_2 concentration over a certain period in the past, The blast furnace is characterized in that the difference is cumulatively calculated when the difference exceeds a predetermined value in a positive direction, and occurrence of slip is predicted when this cumulatively calculated value exceeds a predetermined N_2 boundary value. A method for predicting slips in operations. 2) Detect the N_2 concentration from the continuously measured furnace top gas composition, and at the same time detect the ventilation resistance value including the pressure drop or ventilation resistance index, and calculate the current N_2 concentration from the N_2 concentration for a certain period of time in the past. When the difference exceeds a predetermined value in the positive direction compared to the average concentration value, the difference is cumulatively calculated, and when this cumulative calculation value exceeds a predetermined N_2 boundary value, , the current air permeability is compared with the average value of the air resistance values over a certain period in the past, the difference is calculated, and this difference is also taken into consideration to predict the occurrence of slip in blast furnace operation. Prediction method. 3) Among the ventilation resistance values obtained for each predetermined cycle, the difference between the ventilation resistance value of the latest cycle and the average value averaged over the time corresponding to the time in the furnace of the previously charged raw material at that time, 3. The method for predicting slip in blast furnace operation according to claim 2, characterized in that it is determined as a long-term increased ventilation resistance value. 4) The difference between the ventilation resistance value within a period shorter than 30 seconds before determining whether or not slipping has occurred and the average value obtained by averaging the ventilation resistance values over the past 30 minutes prior to the determination is defined as the short-term increased ventilation resistance value. The method for predicting slip in blast furnace operation according to claim 2. 5) Compare the shaft differential pressure detected at each measurement point formed in the blast furnace at a predetermined interval in the height direction with the average value obtained by averaging the shaft differential pressure over a certain period of time before this measurement. , in a blast furnace operation characterized in that, when the shaft differential pressure is higher than a predetermined value, the difference is cumulatively calculated, and this cumulatively calculated value is compared with a predetermined differential pressure boundary value to predict slip. Slip prediction method.
JP14980488A 1988-06-17 1988-06-17 Slip prediction method in blast furnace operation Expired - Fee Related JP2733564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14980488A JP2733564B2 (en) 1988-06-17 1988-06-17 Slip prediction method in blast furnace operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14980488A JP2733564B2 (en) 1988-06-17 1988-06-17 Slip prediction method in blast furnace operation

Publications (2)

Publication Number Publication Date
JPH01319611A true JPH01319611A (en) 1989-12-25
JP2733564B2 JP2733564B2 (en) 1998-03-30

Family

ID=15483076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14980488A Expired - Fee Related JP2733564B2 (en) 1988-06-17 1988-06-17 Slip prediction method in blast furnace operation

Country Status (1)

Country Link
JP (1) JP2733564B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271728A (en) * 1992-03-25 1993-10-19 Nkk Corp Method for preventing blowby in blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271728A (en) * 1992-03-25 1993-10-19 Nkk Corp Method for preventing blowby in blast furnace

Also Published As

Publication number Publication date
JP2733564B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US4901247A (en) Method for controlling an operation of a blast furnace
CN111639801A (en) Method and system for scoring furnace conditions of blast furnace
Azadi et al. Nonlinear prediction model of blast furnace operation status
WO1999023262A1 (en) Method of operating blast furnace
JPH01319611A (en) Method of predicting slip in blast furnace operation
JP2021080556A (en) Method and device for judging furnace conditions in blast furnace, and program for judging furnace conditions in blast furnace
JP2678767B2 (en) Blast furnace operation method
JP2696114B2 (en) Blast furnace operation management method
JP3099322B2 (en) Blast furnace heat management method
US20240118029A1 (en) Liquid level detection method and detection apparatus for the same, molten material liquid level detection method and detection apparatus for the same, and method for operating vertical furnace
US20240132982A1 (en) Residual liquid amount detection method and detection apparatus for the same, residual molten material amount detection method and detection apparatus for the same, and method for operating vertical furnace
CN115198040B (en) Coal injection quantity control method, device, equipment and storage medium
EP4269625A1 (en) Method for detecting remaining amount of liquid and detection device for same, method for detecting remaining amount of molten substance and detection device for same, and vertical furnace operation method
JP2724365B2 (en) Blast furnace operation method
WO2022168557A1 (en) Detection method and detection device for liquid level height of liquid, detection method and detection device for liquid level height of molten material, and operation method for vertical furnace
EP4155421A1 (en) Method for controlling hot metal temperature, operation guidance method, method for operating blast furnace, method for producing hot metal, device for controlling hot metal temperature, and operation guidance device
JPH11222610A (en) Method for controlling furnace heat of blast furnace
JPH1180820A (en) Device for supporting operation at the time of abnormal furnace condition in blast furnace and method therefor
JPS5974209A (en) Detection of distribution of gaseous flow in blast furnace
KR950010237B1 (en) Method of channeling with blast f&#39;ce
JP2001073013A (en) Method for deciding variation of furnace heat in blast furnace
WO2023131858A1 (en) Method and system for determining and controlling thermal level of a blast furnace
JP2022048698A (en) Control device for blast furnace, operation method for blast furnace, and program
JPH10310807A (en) Operation of blast furnace
JP2003306708A (en) Method for stably operating blast furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees