JPH10310807A - Operation of blast furnace - Google Patents

Operation of blast furnace

Info

Publication number
JPH10310807A
JPH10310807A JP11731597A JP11731597A JPH10310807A JP H10310807 A JPH10310807 A JP H10310807A JP 11731597 A JP11731597 A JP 11731597A JP 11731597 A JP11731597 A JP 11731597A JP H10310807 A JPH10310807 A JP H10310807A
Authority
JP
Japan
Prior art keywords
flow rate
furnace
top gas
value
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11731597A
Other languages
Japanese (ja)
Inventor
Seiji Jinno
成司 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11731597A priority Critical patent/JPH10310807A/en
Publication of JPH10310807A publication Critical patent/JPH10310807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately discriminate the increase of the furnace top gas flow rate caused by channeling or the other cause. SOLUTION: The detected value of blasting flow rate Vb and the detected value of furnace top gas flow rate Vt in a blast furnace body are sampled from a blasting flow meter and a furnace top gas flow meter arranged in the blast furnace body, and the arithmetic value of furnace top gas flow rate Vt ' is obtd. by using a nitrogen balance equation Vt '=(N2 content in the furnace tops gas/N2 content in blasting gas)×Vb ×60/1000. From this result, a reference value Vs =α×Vt ' for deciding whether the furnace top gas flow rate is raisen or not, is decided and a detecting index S is obtd. from Vt , Vs and Vt ' and it is decided whether the channeling is developed or not, based on whether this detecting index S becomes a boundary value β or higher or not, where αis an adjusting parameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉操業中におけ
る吹き抜け現象を炉頂ガス流量の変化量に基づいて検知
し、必要な措置を採れるようにした高炉操業方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a blast furnace, which detects a blow-by phenomenon during the operation of the blast furnace based on a variation in the gas flow rate of the furnace top and takes necessary measures.

【0002】[0002]

【従来の技術】高炉の操業中においては、炉内の圧力損
失が局所的に増加し、これが装入物荷重と釣り合った状
態になると装入物が局所的に静止した状態、いわゆる棚
吊りが発生し、棚吊りの上方では炉内装入物の降下が止
まり、棚吊りの下方では炉内装入物が降下するから、こ
れに伴って棚吊りの下方に空洞が生ずる。この空洞があ
る程度大きくなると棚吊りの横方向にある装入物が空洞
に滑り込み、これと連動して局部的に棚吊りが崩れる。
2. Description of the Related Art During the operation of a blast furnace, the pressure loss in the furnace locally increases, and when the pressure loss is balanced with the load of the load, the load is locally stopped, that is, a so-called shelf hanging. Then, the furnace interior material stops descending above the shelf hanging, and the furnace interior material descends below the shelf hanging, so that a cavity is created below the shelf hanging. When the cavity becomes large to a certain extent, the load in the lateral direction of the shelf hanging slides into the cavity, and in conjunction with this, the hanging of the shelf locally collapses.

【0003】棚吊りが大きく、その崩れが急激に起こる
と大量の装入物が局所的に比較的速く移動し、炉内の圧
力損失が局所的に低下し、そこから炉内ガスが上方に吹
き上げ、瞬時に炉頂までガスが吹き抜けて、炉頂ガスが
大きく増加する。このような吹き上げ現象は、所謂吹き
抜けと称され、炉内温度分布、炉内装入物分布を乱し、
適正な熱交換及び還元が行われなくなり、熔銑温度が乱
れ、極端な場合には冷え込みに至ることがあった。この
ため、吹き抜けが発生するとこれを早期に検知し、適切
な回復のための操作を行うことが必要とされている。
[0003] If the hanging of the shelf is large and the collapse occurs rapidly, a large amount of the charge moves locally and relatively quickly, and the pressure loss in the furnace decreases locally, and the furnace gas moves upward from there. The gas blows up and instantaneously blows up to the furnace top, and the furnace top gas greatly increases. Such a blow-up phenomenon is called a so-called blow-through, and disturbs the furnace temperature distribution, the furnace interior material distribution,
Appropriate heat exchange and reduction were not performed, and the temperature of the hot metal was disturbed. In extreme cases, the hot metal was sometimes cooled. Therefore, it is necessary to detect the occurrence of a blow-by at an early stage and to perform an operation for appropriate recovery.

【0004】ところで、このような吹き抜け現象は、一
般的には炉内状況を直接観測できないから、従来より炉
頂ガス流量の上昇等で検出することで吹き抜け発生を判
断している。しかし、炉頂ガス流量は、高炉本体に付設
されているガス清浄設備、炉頂圧回収発電装置の配管切
替えに伴う流量増加、炉頂装入装置を炉内圧力と均圧に
するために利用したガスには流量増加等の影響を受ける
ため、炉頂ガス流量の変化から正確に吹き抜け現象を検
知するのは難しい。
[0004] Since such a blow-through phenomenon cannot generally be observed directly in the furnace, the occurrence of blow-through has been conventionally judged by detecting a rise in the gas flow rate at the furnace top or the like. However, the furnace top gas flow rate is used to increase the flow rate due to the gas cleaning equipment attached to the blast furnace main body and the piping change of the furnace top pressure recovery power generation device, and to equalize the furnace top charging device with the furnace pressure. It is difficult to accurately detect a blow-through phenomenon from a change in the gas flow rate of the furnace top because the flow of the gas is affected by an increase in the flow rate or the like.

【0005】この対策として従来にあっては、例えば特
開平1−319614号公報には、連続する2つのバッ
チ装入間において埋め込み時のレベル差を測定し、この
レベル差が予め定めた所定値以下であって、しかも炉頂
ガス温度が急上昇したときに吹き抜け発生と判定し、操
業条件を制御する操業方法が開示されている。
As a countermeasure against this, conventionally, for example, in Japanese Patent Application Laid-Open No. 1-319614, a level difference at the time of embedding between two successive batches is measured, and the level difference is determined to be a predetermined value. An operating method is disclosed below, in which it is determined that blow-by has occurred when the furnace top gas temperature rises rapidly, and operating conditions are controlled.

【0006】また、特公平1−20203号公報には、
高炉の高さ方向の複数個所で炉壁内面における静圧を測
定し、これらの各静圧値に基づき各測定位置から炉頂ま
での圧力損失を求め、一方各測定位置から炉頂までの炉
内装入物荷重を求め、求めた圧力損失と装入物荷重との
比に対応して炉内吹き込み送風条件を調整し、吹き抜け
発生を防止する技術が提示されている。
Further, Japanese Patent Publication No. 1-20203 discloses that
The static pressure on the inner wall of the furnace wall is measured at several points in the height direction of the blast furnace, and the pressure loss from each measurement position to the furnace top is determined based on the static pressure values. A technique has been proposed in which the load on the interior is determined, the conditions for blowing in the furnace are adjusted in accordance with the ratio of the determined pressure loss to the load on the charge, and the occurrence of blow-through is prevented.

【0007】更に、特公平4−9843号公報には、高
炉に付設した各種センサーからのデータに基づいて荷下
がり速度、圧力損失、シャフト圧力、シャフト温度、固
定ゾンデの温度、ガス利用率、炉口ゾンデの温度等高炉
状況を示す各種データを求め、これらを夫々の基準値と
比較して真偽データを作成し、この真偽データと高炉に
ついての経験、実績データ等に基づいて、吹き抜け、ス
リップ等の発生を予測する方法が開示されている。
[0007] Further, Japanese Patent Publication No. 4-9843 discloses that the unloading speed, pressure loss, shaft pressure, shaft temperature, fixed sonde temperature, gas utilization rate, furnace pressure are based on data from various sensors attached to the blast furnace. Obtain various data indicating the blast furnace condition such as temperature of the mouth sonde, compare these with their respective reference values to create true / false data, and based on this true / false data and experience with the blast furnace, actual data, etc. A method for predicting the occurrence of a slip or the like is disclosed.

【0008】[0008]

【発明が解決しようとする課題】ところで特開平1−3
19614号公報に開示されている技術では、炉内装入
物表面レベルの降下と、炉頂ガス温度の急上昇とから、
吹き抜け発生と判定するが、炉頂装入装置及びガス清浄
設備の保護のための炉頂に散水することがあり、炉頂ガ
ス温度は300℃乃至400℃を越えることは少なく、
炉頂ガス温度の急上昇が発生したか否かの見極めが難し
く、また吹き抜け発生時には、スリップも同時に発生す
ることが多いが、これによって炉内装入物の埋め込みレ
ベル差が大きく変化するため、正確な検知は望めない。
SUMMARY OF THE INVENTION Incidentally, Japanese Patent Laid-Open Publication No. 1-3
According to the technology disclosed in Japanese Patent No. 19614, from a decrease in the furnace interior charge surface level and a sharp rise in the furnace top gas temperature,
Although it is determined that blow-through occurs, water may be sprayed on the furnace top for protection of the furnace top charging device and gas cleaning equipment, and the furnace top gas temperature rarely exceeds 300 ° C to 400 ° C.
It is difficult to determine whether a sharp rise in the furnace gas temperature has occurred.In addition, when blow-through occurs, slip often occurs at the same time. No detection can be expected.

【0009】更に、特公平1−20203号公報、特公
平4−9843号公報に開示の技術では吹き抜けを予測
する技術に関しても、炉頂ガス成分及び炉内装入物表面
レベルの変動及び炉頂圧力、炉壁圧力等から高炉装入物
の荷重と圧損を求めるが、高炉内装入物の荷重は、焼結
鉱やコークスの性状(粒度、還元粉化性、強度)及び炉
内状況、例えば高炉炉壁の損耗、内容積の変化、摩擦抵
抗の変化により変動するため、炉内各点の装入物荷重の
算出精度が低く、棚吊り等の発生可能性の推定精度も低
いという問題があった。
Furthermore, in the techniques disclosed in Japanese Patent Publication No. 1-20203 and Japanese Patent Publication No. 4-9843, the technique of predicting blow-through also includes fluctuations in the furnace top gas component, the surface level of the furnace interior charge, and the furnace top pressure. The load and pressure loss of the blast furnace charge are determined from the furnace wall pressure, etc., and the load of the blast furnace interior charge is determined by the properties (granularity, reduced powderability, strength) of the sinter or coke and the conditions inside the furnace, such as the blast furnace. Due to fluctuations due to wear of the furnace wall, changes in internal volume, and changes in frictional resistance, there is a problem in that the accuracy of calculating the load at each point in the furnace is low, and the accuracy of estimating the possibility of hanging a shelf is low. Was.

【0010】本発明者等は、高炉操業において、吹き抜
け発生時の種々の操業データを解析し、検知指標を調べ
た結果、 a) 炉頂ガス流量の上昇 b) 炉頂ガス圧力の上昇 c) 炉頂ガス中N2 成分の減少 d) 炉頂ガス中CO成分の上昇 e) 炉頂ガス中CO2 の減少 等現象が共通的に発生することが認められたが、この内
最も大きな変動を示したものが、炉頂ガス流量である。
なお炉頂ガス温度は、炉頂ガス流量と比較すると急上昇
するのに遅れが発生し、炉頂ガス組成も、ガス組成を分
析するのに遅れ時間が発生するため、早期の検知には不
適な指標であることが解った。
The present inventors analyzed various operation data at the time of blow-through in the blast furnace operation and examined the detection indices. As a result, a) an increase in the flow rate of the top gas b) an increase in the pressure of the top gas c) A decrease in the N 2 component in the top gas d) An increase in the CO component in the top gas e) A decrease in the CO 2 in the top gas was observed to occur in common. What is shown is the furnace top gas flow rate.
Note that the top gas temperature is not suitable for early detection because the top gas temperature rises sharply compared to the top gas flow rate, causing a delay, and the top gas composition also has a delay in analyzing the gas composition. It turned out to be an indicator.

【0011】図4は、高炉操業中における吹き抜け発生
前後の炉頂ガス流量の推移を示すグラフであり、横軸に
時刻(時,分)を、また縦軸に炉頂ガス流量(kNm3
/時)をとって示してある。このグラフから明らかなよ
うに吹き抜け発生時には、時系列的にみて炉頂ガス流量
が大きく上昇変動することが解る。
FIG. 4 is a graph showing the change of the gas flow rate of the furnace top before and after the occurrence of blow-through during the operation of the blast furnace. The horizontal axis represents time (hours, minutes), and the vertical axis represents the gas flow rate of the furnace top (kNm 3).
/ Hour). As is apparent from this graph, when blow-through occurs, the furnace top gas flow rate greatly fluctuates in a time series manner.

【0012】ところで前述の如く炉頂部のガス流量の増
加は、ガス清浄設備又は炉頂圧力回収発電装置の配管切
替え時、又は炉頂装入装置の均圧ガス回収時等にも生じ
る。図5は吹き抜け以外の原因による炉頂ガス流量の増
大を示すグラフであり、横軸に時刻(時,分)を、また
縦軸に炉頂ガス流量(kNm3 /時)をとって示してあ
る。グラフから明らかなように、配管切り替えによる流
量増加も吹き上げ発生時におけるのと、同様に炉頂ガス
流量の急増が生じていることが解る。
As described above, an increase in the gas flow rate at the furnace top also occurs when the piping of the gas cleaning equipment or the furnace pressure recovery power generation device is switched, or when the equalizing gas is recovered from the furnace top charging device. FIG. 5 is a graph showing an increase in the top gas flow rate due to a cause other than the blow-by, in which the horizontal axis represents time (hour, minute), and the vertical axis represents the top gas flow rate (kNm 3 / hour). is there. As is clear from the graph, it is understood that the flow rate increase due to the switching of the pipe also causes a sudden increase in the flow rate of the furnace top gas similarly to the case when the blow-up occurs.

【0013】そこで、吹き抜けに依る場合とそれ以外の
要因による場合とを区別する上で、炉頂ガス流量が所定
値以上に維持されている時間及びこの間の流量積算値が
吹き抜け発生を識別する上で極めて効果的であることを
知見した。
Therefore, in distinguishing between the case of the blow-by and the case of other factors, the time during which the flow rate of the furnace top gas is maintained at a predetermined value or more and the integrated value of the flow during this time are used to identify the occurrence of the blow-through. Was found to be extremely effective.

【0014】本発明は、吹き抜け発生時のガスの吹き上
げ量を、炉頂ガス流量としてこれを定量化することによ
り、炉内状況異常である吹き抜け発生を正確に検出し、
高炉操業の安定性を高め得るようにした高炉操業方法を
提供することを目的とする。
The present invention quantifies the blow-up amount of gas at the time of occurrence of blow-through as a furnace top gas flow rate, thereby accurately detecting the occurrence of blow-through which is an abnormal condition in the furnace.
An object of the present invention is to provide a blast furnace operating method capable of improving the stability of the blast furnace operation.

【0015】[0015]

【課題を解決するための手段】第1の発明に係る高炉操
業方法は、高炉に供給する送風流量及び炉頂ガス流量を
所定の時間間隔で検出し、窒素バランス式に基づき前記
送風流量検出値から炉頂ガス流量を演算し、この炉頂ガ
ス流量演算値から炉頂ガス流量の上昇を判定する基準値
を算出設定し、前記炉頂ガス流量検出値が前記基準値を
所定時間連続して超過したか否かを判断し、炉頂ガス流
量演算値に対する炉頂ガス流量検出値と基準値との差の
比を前記所定時間積算し、積算値が予め定めた境界値以
上に達した場合に吹き抜け発生と判断し、高炉操業条件
を変更することを特徴とする。
According to a first aspect of the present invention, there is provided a method for operating a blast furnace, comprising detecting a flow rate of blast supplied to a blast furnace and a flow rate of a top gas at predetermined time intervals, and detecting the detected flow rate of blast based on a nitrogen balance equation. Calculate the top gas flow rate from this, calculate and set a reference value for determining an increase in the top gas flow rate from the calculated value of the top gas flow rate, and the detected value of the top gas flow rate continuously exceeds the reference value for a predetermined time. It is determined whether or not the sum has exceeded, and the ratio of the difference between the detected value of the top gas flow rate and the reference value to the calculated value of the top gas flow rate is integrated for the predetermined time, and the integrated value reaches or exceeds a predetermined boundary value. It is characterized in that it is determined that a blow-through has occurred and the blast furnace operating conditions are changed.

【0016】第1の発明にあっては、炉頂ガス流量が増
大した場合に、それが吹き抜けによるものか、また他の
原因に依るものかを正確に識別することが可能となる。
According to the first aspect, when the flow rate of the furnace top gas increases, it is possible to accurately determine whether the flow rate is due to blow-by or another cause.

【0017】第2の発明に係る高炉操業方法は、高炉に
供給する送風流量及び炉頂ガス流量を所定の時間間隔で
検出し、窒素バランス式に基づき前記送風流量検出値か
ら炉頂ガス流量を演算し、この炉頂ガス流量演算値から
炉頂ガス流量の上昇を判定する基準値を算出設定し、前
記炉頂ガス流量検出値が前記基準値を所定時間連続して
超過したか否かを判断し、炉頂ガス流量演算値に対する
炉頂ガス流量検出値と基準値との差の比を前記所定時間
積算して検知指標を得、該検知指標が予め定めた境界値
以上に達した場合に吹き抜け発生と判断し、前記検知指
標に高炉内への送風流量を低減する操業を行うことを特
徴とする。
In the blast furnace operating method according to a second aspect of the present invention, the flow rate of the blown air supplied to the blast furnace and the flow rate of the top gas are detected at predetermined time intervals. Calculate and set a reference value for judging an increase in the top gas flow rate from the calculated value of the top gas flow rate, and determine whether the detected value of the top gas flow rate continuously exceeds the reference value for a predetermined time. Judgment, the detection index is obtained by integrating the ratio of the difference between the detected value of the top gas flow rate with the calculated value of the top gas flow rate and the reference value for the predetermined time, and the detection index reaches or exceeds a predetermined boundary value. It is characterized in that it is determined that blow-by has occurred, and an operation for reducing the flow rate of air blown into the blast furnace is performed on the detection index.

【0018】第2の発明にあっては、吹き抜けが発生し
た場合に検知指標に対応して高炉本体に対する送風流量
を低減することで、該吹き抜け発生直後においても安定
した高炉操業を継続し得る。
According to the second aspect of the present invention, when blow-by occurs, the blast furnace flow rate to the blast furnace main body is reduced in accordance with the detection index, whereby stable blast-furnace operation can be continued immediately after blow-by occurs.

【0019】[0019]

【発明の実施の形態】以下本発明を、その実施の形態を
示す図面に基づき具体的に説明する。図1は、本発明に
係る高炉操業方法を実施するための装置の構成を示すブ
ロック図であり、図中1は高炉本体、Mは炉内に装入さ
れた炉内原料、SE1 は高炉本体1下部から炉内に供給
される送風流量を検出する送風流量計、SE2 は高炉本
体1の頂部のガス流量を検出する炉頂ガス流量計を示し
ている。これらは1又は複数個備えられており、複数個
ある場合はその平均値を送風流量検出値、炉頂ガス流量
検出値とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. FIG. 1 is a block diagram showing the configuration of an apparatus for carrying out a blast furnace operating method according to the present invention, in which 1 is a blast furnace main body, M is a raw material charged in the furnace, and SE 1 is a blast furnace. An air flow meter for detecting the air flow supplied from the lower portion of the main body 1 into the furnace, and SE 2 is a furnace gas flow meter for detecting the gas flow at the top of the blast furnace main body 1. One or a plurality of these are provided, and when there are a plurality of them, an average value thereof is used as a detected air flow rate and a detected furnace top gas flow rate.

【0020】送風流量計SE1 、炉頂ガス流量計SE2
夫々の検出値は予め定めた所定のタイミングTP (TP
≦2秒)でデータ検出器2へ取り込まれ、夫々送風流量
検出値G1 、炉頂ガス流量検出値G2 が求められ、演算
処理部3へ出力される。演算処理部3は、データ検出器
2から入力された送風流量検出値G1 、炉頂ガス流量検
出値G2 に基づいて所定の演算処理を行い、吹き抜け発
生か否かを判断し、吹き抜け発生と判断したときは、高
炉操業制御部4へ後述する検知指標Sを出力すると共
に、警告出力部5へ動作指令信号を出力する。
The air flow meter SE 1 and the furnace gas flow meter SE 2
Each detection value is determined at a predetermined timing TP ( TP
(≦ 2 seconds), the air flow rate detection value G 1 and the furnace top gas flow rate detection value G 2 are obtained and output to the arithmetic processing unit 3. The arithmetic processing unit 3 performs predetermined arithmetic processing based on the detected air flow rate G 1 and the detected flow rate G 2 of the furnace top gas input from the data detector 2 to determine whether or not blow-by has occurred. When the determination is made, a detection index S described later is output to the blast furnace operation control unit 4 and an operation command signal is output to the warning output unit 5.

【0021】高炉操業制御部4は検知指標Sに対応して
高炉本体1に対する送風流量を低減するよう制御を行
う。また警告出力部5は警報音を発し、又は人工音声に
より吹き抜けの発生状況、これに伴う操業条件の操作量
を呼び掛けると共に、表示画面に吹き抜け検出の事実と
検知指標Sの値と、高炉操業条件の操作量、例えば炉内
への送風流量をどれだけ低減するかその値を表示し得る
ようにしてある。以下、演算処理部3の処理内容につい
て、図2に示すフローチャートと共に説明する。
The blast furnace operation control section 4 performs control so as to reduce the flow rate of air blown to the blast furnace main body 1 in accordance with the detection index S. The warning output unit 5 emits a warning sound or calls for the occurrence state of the blow-by by an artificial voice and the operation amount of the operating condition associated therewith, and also displays the fact of the blow-by detection, the value of the detection index S, the blast furnace operating condition on the display screen. The amount of operation, for example, how much the air flow into the furnace is reduced, can be displayed. Hereinafter, the processing contents of the arithmetic processing unit 3 will be described with reference to the flowchart shown in FIG.

【0022】先ず、データ検出器2から所定時間間隔T
P (TP ≦2秒)送風流量検出値V b 、炉頂ガス流量検
出値Vt を取り込む (ステップS1)。まず窒素バラン
ス式である下記(1)式に従って風流量検出値Vb から
炉頂ガス流量演算値(kNm 3 /時)Vt ′を求める
(ステップS2)。
First, a predetermined time interval T
P(TP≤ 2 seconds) Ventilation flow detection value V b, Furnace top gas flow rate detection
Outgoing price Vt(Step S1). First nitrogen balun
The flow rate detection value V is calculated according to the following equation (1):bFrom
Furnace top gas flow rate calculation value (kNm Three/ Hour) Vt
(Step S2).

【0023】[0023]

【数1】 (Equation 1)

【0024】そして、この炉頂ガス流量演算値Vt ′に
基づき下記(2)式に従って炉頂ガス流量が上昇したか
否かを判定するための基準値VS (kNm3 /時)を算
出し、設定する (ステップS3)。 VS =α×Vt ′ …(2) 但し、α:調整パラメータ〔1.1〜1.3〕
A reference value V S (kNm 3 / hour) for determining whether or not the furnace gas flow rate has increased according to the following equation (2) is calculated based on the calculated furnace gas flow rate value V t '. And set (step S3). V S = α × V t ′ (2) where α is an adjustment parameter [1.1 to 1.3]

【0025】炉頂ガス流量検出値Vt が基準値VS を所
定時間T(時刻t1 から時刻t2 まで、例えば10秒)
以上連続して超過したか否かを判断し (ステップS
4)、越えた場合には、炉頂ガス流量演算値Vt ′に対
する炉頂ガス流量検出値Vt と基準値VS との差の比
を、前記超過期間(t1 〜t2 )にわたって積算するこ
とで下記(3)式に示す検知指標Sを得る (ステップS
5)。
The top gas flow rate detection value V t for a predetermined time reference value V S is T (from time t 1 to time t 2, the example, 10 seconds)
It is determined whether or not the number is continuously exceeded (step S
4), when exceeded, the ratio of the difference between the top gas flow rate detection value V t and the reference value V S for the top gas flow rate calculation value V t ', over the excess period (t 1 ~t 2) The detection index S shown in the following equation (3) is obtained by integrating (Step S
5).

【0026】[0026]

【数2】 (Equation 2)

【0027】この検知指標Sにより、吹き抜け発生時の
炉頂ガス流量の増加量を定量化できることとなり、この
検知指標Sが下記(4)式に示す如く予め定めた境界値
β以降に達したか否かを判断し (ステップS6)、β以
上の場合には吹き抜け発生と判断し、警告出力部5、高
炉操業制御部4を動作させる(ステップS7)。 S≧β …(4) β:吹き抜け検知用の境界値(β=4.0〜5.0)
With this detection index S, it is possible to quantify the increase amount of the furnace top gas flow rate at the time of occurrence of blow-through, and whether the detection index S has reached a predetermined boundary value β or more as shown in the following equation (4). It is determined whether or not blow-by has occurred (step S6). If it is equal to or greater than β, the warning output unit 5 and the blast furnace operation control unit 4 are operated (step S7). S ≧ β (4) β: Boundary value for blow-by detection (β = 4.0 to 5.0)

【0028】図3は吹き抜けによる炉頂ガス流量増加と
吹き抜け以外の要因による炉頂ガス流量増加とを識別す
るための境界値βと検知指標Sとの関係を示す説明図で
ある。なお調整パラメータαは1.2とした。図中白棒
は吹き抜けによる炉頂ガス流量の増加度数(件)を、ま
た黒棒は吹き抜け以外の要因による炉頂ガス流量増加度
数(件)を夫々示してある。これから明らかなように、
境界値βを適正に設定することで吹き抜け現象による炉
頂ガス境界の増加と、それ以外の要因による炉頂ガス流
量の増加とを明瞭に識別可能となることが解る。
FIG. 3 is an explanatory diagram showing a relationship between the boundary value β for identifying the increase in the furnace gas flow rate due to blow-through and the increase in the furnace gas flow rate due to factors other than blow-through, and the detection index S. The adjustment parameter α was 1.2. In the figure, a white bar indicates the degree of increase in the furnace gas flow rate (case) due to the blow-through, and a black bar indicates the degree of increase in the furnace gas flow rate (case) due to factors other than the blow-through. As is clear from this,
It can be understood that, by properly setting the boundary value β, it is possible to clearly distinguish an increase in the top gas boundary due to the blow-by phenomenon and an increase in the top gas flow rate due to other factors.

【0029】ところで、通常の高炉操業においては、炉
内原料が高炉本体1の下部から吹き込んだガスと熱交換
することにより溶融還元されるが、吹き抜け発生時に
は、瞬時にガスが炉頂まで通過してしまうため、吹き上
げたガスが熱交換を行わず炉頂へ逃げることとなる。高
炉操業制御部4は検知指標Sに比例して高炉本体に対す
る送風流量の低減を自動的に行い、安定した高炉操業を
可能とする。
In the ordinary blast furnace operation, the raw material in the furnace is melt-reduced by exchanging heat with the gas blown from the lower portion of the blast furnace main body 1. However, when blow-through occurs, the gas instantaneously passes to the furnace top. Therefore, the blown gas escapes to the furnace top without performing heat exchange. The blast furnace operation control unit 4 automatically reduces the flow rate of air blown to the blast furnace main body in proportion to the detection index S, thereby enabling stable blast furnace operation.

【0030】次に本発明方法についての試験結果を表1
に基づいて説明する。図1に示す如き装置を用いて送風
流量検出値Vb 、炉頂ガス流量検出値Vt を所定のタイ
ミングTP にて検出し、(2)式に従って基準値VS
求め、また(3)に従って検知指標Sを算出し、これら
を用いて吹き抜けの発生を検出した。表1は、上記した
条件での検知精度を図示しており、検知回数は13件あ
ったが、検知出来なかった場合、また吹き抜けでないの
に吹き抜けと判断した場合はいずれも0であった。
Next, the test results of the method of the present invention are shown in Table 1.
It will be described based on. Using a device such as shown in FIG. 1 detects blowing flow rate detection value V b, the top gas flow rate detection value V t at a predetermined timing T P, obtains a reference value V S according to Equation (2), and (3 ), The detection index S was calculated, and the occurrence of blow-by was detected using these. Table 1 illustrates the detection accuracy under the above-described conditions. The number of detections was thirteen, but was 0 when no detection was possible, and when it was determined that a blow-through was not detected.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】第1の発明にあっては、他の要因による
炉頂ガス流量の増大と区別して吹き抜け発生を正確に検
出することが出来る。
According to the first aspect of the present invention, the occurrence of blow-through can be accurately detected in distinction from an increase in the flow rate of the furnace top gas due to other factors.

【0033】第2の発明にあっては、第1の発明の効果
に加えて検知指標に対応して送風流量を低減すること
で、吹き抜け発生後にも高炉の安定操業を行うことが出
来る。
According to the second invention, in addition to the effects of the first invention, the blast furnace can be stably operated even after blow-by by reducing the air flow rate corresponding to the detection index.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施するための装置の構成を示す
ブロック図である。
FIG. 1 is a block diagram showing a configuration of an apparatus for implementing a method of the present invention.

【図2】演算処理部の処理過程を示すフローチャートで
ある。
FIG. 2 is a flowchart illustrating a processing procedure of an arithmetic processing unit.

【図3】吹き抜けによる炉頂ガス流量増加と吹き抜け以
外の要因による炉頂ガス流量増加とを識別するための境
界値と検知指標との関係を示す説明図である。
FIG. 3 is an explanatory diagram showing a relationship between a boundary value and a detection index for discriminating between an increase in a top gas flow rate due to blow-through and an increase in a top gas flow rate due to factors other than blow-through.

【図4】高炉操業中における吹き抜け発生前後の炉頂ガ
ス流量の時間的推移を示すグラフである。
FIG. 4 is a graph showing a temporal transition of a furnace gas flow rate before and after occurrence of blow-through during blast furnace operation.

【図5】吹き抜け以外の原因による炉頂ガス流量の増大
を示すグラフである。
FIG. 5 is a graph showing an increase in a furnace gas flow rate due to a cause other than blow-through.

【符号の説明】[Explanation of symbols]

1 高炉本体 2 データ検出器 3 演算処理部 4 高炉操業制御部 5 警報出力部 1 Blast furnace body 2 Data detector 3 Arithmetic processing unit 4 Blast furnace operation control unit 5 Alarm output unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高炉に供給する送風流量及び炉頂ガス流
量を所定の時間間隔で検出し、窒素バランス式に基づき
前記送風流量検出値から炉頂ガス流量を演算し、この炉
頂ガス流量演算値から炉頂ガス流量の上昇を判定する基
準値を算出設定し、前記炉頂ガス流量検出値が前記基準
値を所定時間連続して超過したか否かを判断し、炉頂ガ
ス流量演算値に対する炉頂ガス流量検出値と基準値との
差の比を前記所定時間積算し、積算値が予め定めた境界
値以上に達した場合に吹き抜け発生と判断し、高炉操業
条件を変更することを特徴とする高炉操業方法。
1. A flow rate of a blown gas and a flow rate of a top gas supplied to a blast furnace are detected at predetermined time intervals, and a flow rate of a top gas is calculated from the detected flow rate of the blown gas based on a nitrogen balance formula. A reference value for determining an increase in the top gas flow rate is calculated and set based on the value, and it is determined whether the detected value of the top gas flow rate has continuously exceeded the reference value for a predetermined period of time. The ratio of the difference between the detected value of the furnace top gas flow rate and the reference value is integrated for the predetermined time, and when the integrated value reaches or exceeds a predetermined boundary value, it is determined that blow-by has occurred, and the operating conditions of the blast furnace are changed. Characteristic blast furnace operating method.
【請求項2】 高炉に供給する送風流量及び炉頂ガス流
量を所定の時間間隔で検出し、窒素バランス式に基づき
前記送風流量検出値から炉頂ガス流量を演算し、この炉
頂ガス流量演算値から炉頂ガス流量の上昇を判定する基
準値を算出設定し、前記炉頂ガス流量検出値が前記基準
値を所定時間連続して超過したか否かを判断し、炉頂ガ
ス流量演算値に対する炉頂ガス流量検出値と基準値との
差の比を前記所定時間積算して検知指標を得、該検知指
標が予め定めた境界値以上に達した場合に吹き抜け発生
と判断し、前記検知指標に高炉内への送風流量を低減す
る操業を行うことを特徴とする高炉操業方法。
2. A flow rate of a blown gas and a flow rate of a top gas supplied to a blast furnace are detected at predetermined time intervals, and a flow rate of a top gas is calculated from the detected flow rate of the blown gas based on a nitrogen balance formula. A reference value for determining an increase in the top gas flow rate is calculated and set based on the value, and it is determined whether the detected value of the top gas flow rate has continuously exceeded the reference value for a predetermined period of time. The detection index is obtained by integrating the ratio of the difference between the detected value of the furnace top gas flow rate and the reference value to the predetermined time, and when the detection index has reached a predetermined boundary value or more, it is determined that blow-by has occurred and the detection is performed. A method for operating a blast furnace, characterized by performing an operation for reducing an air flow rate into the blast furnace as an index.
JP11731597A 1997-05-07 1997-05-07 Operation of blast furnace Pending JPH10310807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11731597A JPH10310807A (en) 1997-05-07 1997-05-07 Operation of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11731597A JPH10310807A (en) 1997-05-07 1997-05-07 Operation of blast furnace

Publications (1)

Publication Number Publication Date
JPH10310807A true JPH10310807A (en) 1998-11-24

Family

ID=14708717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11731597A Pending JPH10310807A (en) 1997-05-07 1997-05-07 Operation of blast furnace

Country Status (1)

Country Link
JP (1) JPH10310807A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167449B1 (en) 2009-08-27 2012-07-19 현대제철 주식회사 Method for anticipating channeling in blast furnace
KR101185214B1 (en) 2011-02-25 2012-09-26 현대제철 주식회사 Predicting Method ofr Chenneling of Blast Furnace
CN112961949A (en) * 2021-03-12 2021-06-15 鞍钢股份有限公司 Method for rapidly judging pipeline stroke of blast furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167449B1 (en) 2009-08-27 2012-07-19 현대제철 주식회사 Method for anticipating channeling in blast furnace
KR101185214B1 (en) 2011-02-25 2012-09-26 현대제철 주식회사 Predicting Method ofr Chenneling of Blast Furnace
CN112961949A (en) * 2021-03-12 2021-06-15 鞍钢股份有限公司 Method for rapidly judging pipeline stroke of blast furnace

Similar Documents

Publication Publication Date Title
JP5617293B2 (en) Slab surface state prediction method and slab surface state prediction apparatus
JPH049843B2 (en)
CN111394533B (en) Blast furnace burden distribution condition evaluation method and evaluation system
US8808421B2 (en) System for furnace slopping prediction and lance optimization
JPWO2018020929A1 (en) Waste weight estimation method and waste weight estimation device
JPH10310807A (en) Operation of blast furnace
JP5716333B2 (en) Slab surface quality prediction method and slab surface quality prediction apparatus
JPH11140520A (en) Method for predicting channeling in blast furnace operation, its device and recording medium
CN111518975A (en) Blast furnace tuyere small sleeve damage monitoring method and system
Kamo et al. Method for predicting gas channeling in blast furnace
JP7115240B2 (en) Breakout prediction method in continuous casting
JP7307341B2 (en) Furnace gas pressure fluctuation detection method
TWI748604B (en) Blast furnace abnormality judgment device, blast furnace abnormality judgment method, blast furnace operation method, and molten iron manufacturing method
JP6540654B2 (en) Blast furnace operation method
JP6927461B1 (en) Operation method and operation system of production equipment
JP2678767B2 (en) Blast furnace operation method
JP3487203B2 (en) Blast furnace condition prediction method
JPH08302413A (en) Method for controlling terminating point of blowing in converter
JP6575467B2 (en) Blast furnace operation method
JPH0711018B2 (en) Blow-through prevention method in blast furnace operation
JPH10298618A (en) Operation of blast furnace
JP2970357B2 (en) Blast furnace blow-through prevention method
KR950010237B1 (en) Method of channeling with blast f'ce
JP7359336B1 (en) Blast furnace slag level determination method, blast furnace operating method and control device
JP2733564B2 (en) Slip prediction method in blast furnace operation