JP3099322B2 - Blast furnace heat management method - Google Patents

Blast furnace heat management method

Info

Publication number
JP3099322B2
JP3099322B2 JP08215427A JP21542796A JP3099322B2 JP 3099322 B2 JP3099322 B2 JP 3099322B2 JP 08215427 A JP08215427 A JP 08215427A JP 21542796 A JP21542796 A JP 21542796A JP 3099322 B2 JP3099322 B2 JP 3099322B2
Authority
JP
Japan
Prior art keywords
calculated
fuel ratio
blast
furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08215427A
Other languages
Japanese (ja)
Other versions
JPH1046215A (en
Inventor
温弘 小細
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP08215427A priority Critical patent/JP3099322B2/en
Publication of JPH1046215A publication Critical patent/JPH1046215A/en
Application granted granted Critical
Publication of JP3099322B2 publication Critical patent/JP3099322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高炉の安定操業
を行うことによって溶銑成分の変動を抑制するための高
炉炉熱管理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace heat management method for suppressing fluctuations in molten iron components by performing stable operation of a blast furnace.

【0002】[0002]

【従来の技術】高炉における燃料比は、500kg/t
−pig(銑鉄)程度であるが、羽口から酸素を添加し
た熱風と共に微粉炭を吹込むことによって、100kg
/t−pig程度のコークスを微粉炭と置換することが
でき、低燃料比で操業することができる。しかしなが
ら、微粉炭吹込み時に炉況を安定操業するためには、炉
内の熱バランスを適切に維持することが重要である。高
炉内の熱バランス調整には、多くの方法が提案されてい
る。
2. Description of the Related Art The fuel ratio in a blast furnace is 500 kg / t.
-Pig (pig iron), but 100 kg by blowing pulverized coal with hot air added with oxygen from the tuyere.
Coke of about / t-pig can be replaced by pulverized coal, and operation can be performed at a low fuel ratio. However, in order to stably operate the furnace condition when pulverized coal is injected, it is important to properly maintain the heat balance in the furnace. Many methods have been proposed for adjusting the heat balance in a blast furnace.

【0003】例えば、高炉全体での熱収支、すなわち、
装入物質(高炉装入物、送風量)の総エンタルピー(入
熱)と排出物質(出銑滓量、廃ガス量)の総エンタルピ
ー(出熱)との差をとる熱精算を用いる総収支モデル、
高炉内部状態を反応または温度によって部分分割し、そ
の各部で熱収支をとる部分収支モデル、高炉を軸方向に
微小部分に分割し、微小高さ要素について炉内反応速度
を考慮して熱収支をとる微分収支モデル等がある。
For example, the heat balance of the entire blast furnace, that is,
Total balance using thermal accounting, which is the difference between the total enthalpy (heat input) of the charged materials (blast furnace charge, air volume) and the total enthalpy (heat output) of the discharged materials (amount of tappings and waste gas) model,
Partial balance model that divides the internal state of the blast furnace according to reaction or temperature and takes heat balance at each part, divides the blast furnace into minute parts in the axial direction, and considers the heat balance of the minute height element in consideration of the reaction speed inside the furnace. There is a differential balance model to be taken.

【0004】また、ソリューションロスカーボン量およ
び炉頂ガス成分中の窒素量を所定時間間隔ごとに求め、
この求めた値の所定時間幅における移動平均を算出し、
前記ソリューションロスカーボン量と窒素量の各々の移
動平均値と複数個設けられた閾値とを比較することによ
りそれぞれ評価点を与え、その評価点による総合評価に
従い高炉炉熱低下予測を行う方法(特公平6−3560
5号公報)が提案されている。
[0004] The amount of solution loss carbon and the amount of nitrogen in the top gas component are determined at predetermined time intervals,
Calculate a moving average of the obtained value in a predetermined time width,
An evaluation point is given by comparing a moving average value of each of the solution loss carbon amount and the nitrogen amount with a plurality of threshold values, and a method of predicting a blast furnace heat drop according to the comprehensive evaluation based on the evaluation points (particularly, Fairness 6-3560
No. 5) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】上記特公平6−356
05号公報に開示の方法は、高炉炉熱低下予測を行うの
みであるから、その際の昇熱アクション幅は操業者の経
験に基づくものとなり、経験の差に起因する個人差が大
きく、炉況の安定化は困難である。
SUMMARY OF THE INVENTION The above Japanese Patent Publication No. Hei 6-356
Since the method disclosed in Japanese Patent Publication No. 05 only performs a blast furnace furnace heat reduction prediction, the heat-up action width at that time is based on the experience of the operator, and the individual difference due to the difference in experience is large. It is difficult to stabilize the situation.

【0006】この発明の目的は、上記従来技術の欠点を
解消し、高炉炉熱の低下ならびに上昇を早期予測できる
と共に、その際の操作アクション幅を提示することによ
って、より高炉炉熱の安定を図ることができる高炉炉熱
管理方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks of the prior art, to be able to predict a decrease and an increase in blast furnace heat at an early stage, and to present an operation action width at that time, thereby further stabilizing the blast furnace heat. It is an object of the present invention to provide a blast furnace heat management method that can be achieved.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく、炉況を迅速的確に判断し、適切な熱バラン
スを維持するため、実用性に優れると共に、操業諸元が
変化している非安定状態にも適用できる炉熱管理方法を
確立すべく試験研究を重ねた。その結果、炉内の炉熱状
態を表す指標として、炉頂ガス成分等より求めたコーク
ス消費速度を銑鉄生成速度で除算して求めた計算コーク
ス比に、補助燃料吹込み量を銑鉄生成速度で除算して求
めた値と置換率との積を加算して計算燃料比を求め、計
算燃料比を送風温度および送風湿度により補正した計算
補正燃料比を求めることにより、炉内の熱バランスを精
度よく推定できることを究明し、この発明に到達した。
In order to achieve the above object, the present inventor has determined the furnace condition quickly and accurately and maintained an appropriate heat balance. Tests were conducted to establish a furnace heat management method applicable to the unstable state. As a result, as an index indicating the furnace heat state in the furnace, the calculated coke ratio calculated by dividing the coke consumption rate obtained from the furnace gas composition etc. by the pig iron generation rate, and the auxiliary fuel injection rate calculated using the pig iron generation rate The product of the value obtained by the division and the replacement rate is added to obtain the calculated fuel ratio, and the calculated fuel ratio is corrected by the blast temperature and blast humidity to obtain the calculated corrected fuel ratio. The inventors of the present invention have studied what can be well estimated and arrived at the present invention.

【0008】この発明の高炉炉熱管理方法は、炉頂ガス
成分等より求めたコークス消費速度を銑鉄生成速度で除
算して求めた計算コークス比に、補助燃料吹込み量を銑
鉄生成速度で除算して求めた値に置換率を乗じた値を加
算して計算燃料比を求め、該計算燃料比を送風温度およ
び送風湿度により補正した計算補正燃料比を求め、該計
算補正燃料比が予め定めた設定値となるよう送風湿度、
微粉炭吹込み量、送風温度、装入コークス比を調整して
炉内の熱バランスを管理することとしている。このよう
に、計算補正燃料比が予め定めた設定値となるよう送風
湿度、微粉炭吹込み量、送風温度、装入コークス比を調
整して炉内の熱バランスを管理することによって、増鉱
時等の非定常状態においても、溶銑温度をほぼ一定に保
持することができ、高炉炉況の安定化を図ることができ
る。
According to the blast furnace heat management method of the present invention, the amount of auxiliary fuel injected is divided by the pig iron generation rate to the calculated coke ratio obtained by dividing the coke consumption rate obtained from the furnace top gas component by the pig iron generation rate. The calculated fuel ratio is obtained by adding a value obtained by multiplying the calculated value by the replacement rate to obtain a calculated fuel ratio.The calculated corrected fuel ratio is obtained by correcting the calculated fuel ratio by the blast temperature and the blast humidity. Air humidity,
The heat balance in the furnace is controlled by adjusting the amount of pulverized coal blown, the air temperature and the charged coke ratio. As described above, the blast humidity, the pulverized coal injection amount, the blast temperature, and the charged coke ratio are adjusted so that the calculated corrected fuel ratio becomes a predetermined set value, and the heat balance in the furnace is managed, thereby increasing the ore increase. Even in an unsteady state such as time, the hot metal temperature can be kept almost constant, and the blast furnace condition can be stabilized.

【0009】[0009]

【発明の実施の形態】この発明におけるコークス消費速
度は、ガスクロマトグラフィーによる炉頂ガス成分分析
値から求めた炉頂(CO+CO2)排出速度等から下記
(1)式に基づいて算出したものである。 コークス消費速度(kg/min)=(a−b+c+d)/e ……(1)式 ただし、a : 炉頂(CO+CO2)排出速度、b
: 補助燃料中C投入速度、c : 浸炭によるC消
滅速度、d : 炉頂ダスト等C排出速度、e: コー
クス中C比率、である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The coke consumption rate in the present invention is calculated based on the following equation (1) from the furnace top (CO + CO 2 ) discharge rate and the like obtained from the furnace gas component analysis value by gas chromatography. is there. Coke consumption rate (kg / min) = (ab + c + d) / e (1) where a: furnace top (CO + CO 2 ) discharge rate, b
: C feed rate in auxiliary fuel, c: C disappearance rate by carburization, d: C discharge rate of furnace top dust, etc., e: C ratio in coke.

【0010】また、この発明における銑鉄生成速度(p
ig−t/min)は、ガスクロマトグラフィーによる
炉頂ガス成分分析値から求めた単位時間内に還元される
酸素量等から下記(2)式によって算出したものであ
る。 銑鉄生成速度(t/min)=(単位時間内に還元される酸素量)/(銑鉄1 kgを生産するのに還元すべき酸素量) ……(2)式
In the present invention, the production rate of pig iron (p
ig-t / min) is calculated by the following equation (2) from the amount of oxygen reduced in a unit time determined from the analysis value of the furnace gas components by gas chromatography. Pig iron production rate (t / min) = (amount of oxygen reduced in unit time) / (amount of oxygen to be reduced to produce 1 kg of pig iron) Equation (2)

【0011】この発明における計算コークス比(kg/
t−pig)は、前記(1)式により求めたコークス消
費速度(kg/min)と前記(2)式により求めた銑
鉄生成速度(t/min)から下記(3)式によって求
めたものである。 計算コークス比(kg/t−pig)=コークス消費速度(kg/min)/ 銑鉄生成速度(t/min) ……(3)式
In the present invention, the calculated coke ratio (kg /
(t-pig) is obtained by the following equation (3) from the coke consumption rate (kg / min) obtained by the above equation (1) and the pig iron production rate (t / min) obtained by the above equation (2). is there. Calculated coke ratio (kg / t-pig) = coke consumption rate (kg / min) / pig iron production rate (t / min) Equation (3)

【0012】この発明における計算燃料比は、前記
(3)式により求めた前記計算コークス比(kg/t−
pig)と補助燃料吹込み量(kg/min)を銑鉄生
成速度(pig−t/min)で除した値に置換率を乗
じた値から下記(4)式により求めたものである。な
お、置換率とは、補助燃料発熱量をコークス発熱量で除
して求めるが、最終的には、実績より求まる。 計算燃料比=計算コークス比(kg/t−pig)+[補助燃料吹込み量(k g/min)/銑鉄生成速度(pig−t/min)]×置換率 ……(4)式
The calculated fuel ratio in the present invention is the calculated coke ratio (kg / t-
pig) and a value obtained by dividing the auxiliary fuel injection amount (kg / min) by the pig iron production rate (pig-t / min), and multiplying the result by the replacement ratio, according to the following equation (4). Note that the replacement rate is obtained by dividing the calorific value of the auxiliary fuel by the calorific value of coke, but is ultimately obtained from actual results. Calculated fuel ratio = Calculated coke ratio (kg / t-pig) + [Auxiliary fuel injection amount (kg / min) / pig iron production rate (pig-t / min)] × replacement ratio (4)

【0013】この発明における計算補正燃料比は、前記
(4)式で求めた計算燃料比を送風温度および送風湿度
により補正し、下記(5)式により求めたものである。 計算補正燃料比=計算燃料比+A×(送風温度−B)+C×(送風湿度−D) …(5)式 ただし、A、B、C、Dは定数である。この(5)式に
おける定数A、Cは、高炉数式モデルにより求めたもの
を実績補正する。また、定数Bは、下式と前記定数Aよ
り求める。 送風温度ΔBT(℃)=[送風湿度(1g/Nm3)×1.677Kcal/ g)]/[0.335Kcal/Nm3・℃(空気比熱at1000℃)]=5 ℃/送風湿度1g/Nm3
The calculated corrected fuel ratio in the present invention is obtained by correcting the calculated fuel ratio obtained by the above equation (4) by the blast temperature and the blast humidity and by the following equation (5). Calculated corrected fuel ratio = calculated fuel ratio + A × (blast temperature−B) + C × (blast humidity−D) (5) where A, B, C, and D are constants. The actual values of the constants A and C in the equation (5) are obtained by the blast furnace mathematical model and corrected. Further, the constant B is obtained from the following equation and the constant A. Blast temperature ΔBT (° C.) = [Blow air humidity (1 g / Nm 3 ) × 1.677 Kcal / g)] / [0.335 Kcal / Nm 3 · ° C. (air specific heat at 1000 ° C.)] = 5 ° C./Blow air humidity 1 g / Nm Three

【0014】上記計算燃料比および計算補正燃料比の算
出は、送風温度、送風湿度の測定サンプリング時間Δt
毎に行うが、通常プロセスコンピータにおいては1分デ
ータで格納されるが、計算は10分毎に計算される。
The calculation of the calculated fuel ratio and the calculated corrected fuel ratio is based on the measurement sampling time Δt of the blast temperature and the blast humidity.
Although it is performed every time, it is usually stored as one-minute data in the process computer, but the calculation is performed every ten minutes.

【0015】この発明の高炉の炉熱管理方法において
は、前記(5)式により求めた計算補正燃料比は溶銑温
度の変動に比較してかなり早期に変動するので、送風条
件、原料装入条件を変更した場合においても、計算補正
燃料比を予め定めた設定値、例えば、8時間前までの平
均値より低下あるいは上昇し始めると、予め定めた設定
値となるよう送風湿度、微粉炭吹込み量、送風温度、装
入コークス比等を調整することによって、溶銑温度の変
動を抑制することができ、溶銑成分のバラツキを抑制し
て炉況の安定化を図ることができる。
In the method of managing the heat of a blast furnace according to the present invention, the calculated corrected fuel ratio obtained by the above equation (5) fluctuates much earlier than the fluctuation of the hot metal temperature. Is changed, when the calculated correction fuel ratio starts to decrease or increase from a predetermined set value, for example, an average value up to eight hours before, the air blowing humidity and pulverized coal blowing are set to the predetermined set values. By adjusting the amount, the blast temperature, the charged coke ratio, and the like, fluctuations in the hot metal temperature can be suppressed, and variations in the hot metal components can be suppressed to stabilize the furnace condition.

【0016】この発明における高炉の炉熱管理方法は、
前記(5)式により求めた計算補正燃料比が予め定めた
設定値となるよう送風湿度、微粉炭吹込み量、送風温
度、装入コークス比等を調整して炉内の熱バランスを管
理する。例えば、計算補正燃料比が予め定めた設定値よ
り低くなると、送風湿度を低下させることによって、計
算補正燃料比の低下を抑制して設定値に制御する。この
場合においては、前記(5)式による計算補正燃料比が
予め定めた設定値と同じ値になるよう送風湿度を逆算し
て低下させるので、送風湿度低下幅を求めることができ
る。このように、計算補正燃料比が予め定めた設定値と
なるよう送風湿度、微粉炭吹込み量、送風温度、装入コ
ークス比等を調整することによって、送風条件、原料装
入条件を変更した場合においても溶銑温度の変動を抑制
することができ、溶銑成分のバラツキを抑制することが
できる。
The furnace heat management method for a blast furnace according to the present invention comprises:
The heat balance in the furnace is managed by adjusting the blowing air humidity, the amount of pulverized coal injected, the blowing air temperature, the charged coke ratio, etc., so that the calculated corrected fuel ratio obtained by the above equation (5) becomes a predetermined set value. . For example, when the calculated corrected fuel ratio becomes lower than a predetermined set value, the ventilation humidity is reduced to control the calculated corrected fuel ratio to a set value while suppressing the decrease. In this case, the blast humidity is calculated back and reduced so that the calculated corrected fuel ratio according to the formula (5) becomes the same value as the predetermined set value, so that the blast humidity reduction width can be obtained. As described above, the blowing conditions and the raw material charging conditions were changed by adjusting the blowing air humidity, the pulverized coal blowing amount, the blowing air temperature, the charging coke ratio, and the like so that the calculated correction fuel ratio became a predetermined set value. Even in such a case, the fluctuation of the hot metal temperature can be suppressed, and the variation of the hot metal component can be suppressed.

【0017】[0017]

【実施例】【Example】

実施例1 内容積2700m3、羽口数28、出銑孔数2の高炉に
おいて、送風量4000Nm3/min、酸素添加量5
000Nm3/hr、送風温度1150℃、送風湿度3
0g/Nm3の送風条件、鉱石/コークス比3.70、
装入コークス比430kg/t−pig、出銑量200
t−pig/hr、出滓量60t/hrの定常条件下に
おいて、ガスクロマトグラフィーによる3分毎の炉頂廃
ガス成分分析、前記送風条件、原料装入条件などを1分
毎に測定し、これらの平均値を10分毎に算出して前記
(4)式および(5)式により計算燃料比および計算補
正燃料比を10分毎に演算した。得られた計算補正燃料
比は、予め定めた設定値(520kg/t−pig)と
比較し、計算補正燃料比が520kg/t−pigより
低下し始めた時点では、何のアクションも取らずに溶銑
温度が1510℃から1475℃に低下した時点で、送
風温度を1150℃から1180℃に上昇させると共
に、送風湿度を30g/Nm3から25g/Nm3に低下
させた。この比較例の場合における送風量、送風温度、
送風湿度、計算燃料比、計算補正燃料比、溶銑温度の経
時変化を図1に示す。また、前記得られた計算補正燃料
比と予め定めた設定値(520kg/t−pig)を比
較し、計算補正燃料比が520kg/t−pigより低
下し始めた時点で、計算補正燃料比を520kg/t−
pigで一定とすべく、送風湿度を30g/Nm3から
順次20g/Nm3に低下させ、計算補正燃料比が上昇
し始めた時点で、送風湿度を25g/Nm3まで順次上
昇させた。この場合における送風量、送風温度、送風湿
度、計算燃料比、計算補正燃料比、溶銑温度の経時変化
を図2に示す。
Example 1 In a blast furnace having an inner volume of 2700 m 3 , a tuyere number of 28 and a tap hole number of 2, a blowing amount of 4000 Nm 3 / min and an oxygen addition amount of 5
000Nm 3 / hr, blast temperature 1150 ° C, blast humidity 3
Blowing conditions of 0 g / Nm 3 , ore / coke ratio 3.70,
Charge coke ratio 430 kg / t-pig, tapping capacity 200
Under steady-state conditions of t-pig / hr and a slag amount of 60 t / hr, the furnace top waste gas component analysis by gas chromatography every three minutes, the blowing condition, the raw material charging condition, etc. were measured every minute. These average values were calculated every 10 minutes, and the calculated fuel ratio and the calculated corrected fuel ratio were calculated every 10 minutes by the formulas (4) and (5). The obtained calculated corrected fuel ratio is compared with a predetermined set value (520 kg / t-pig). When the calculated corrected fuel ratio starts to decrease below 520 kg / t-pig, no action is taken. When the temperature of the hot metal dropped from 1510 ° C. to 1475 ° C., the blast temperature was raised from 1150 ° C. to 1180 ° C., and the blast humidity was lowered from 30 g / Nm 3 to 25 g / Nm 3 . The air volume, air temperature,
FIG. 1 shows changes over time in the blast humidity, calculated fuel ratio, calculated corrected fuel ratio, and hot metal temperature. Further, the calculated corrected fuel ratio is compared with a predetermined set value (520 kg / t-pig), and when the calculated corrected fuel ratio starts to fall below 520 kg / t-pig, the calculated corrected fuel ratio is reduced. 520kg / t-
In order to maintain a constant pig, the blast humidity was sequentially reduced from 30 g / Nm 3 to 20 g / Nm 3 , and when the calculated corrected fuel ratio started to increase, the blast humidity was sequentially increased to 25 g / Nm 3 . FIG. 2 shows changes over time in the blown air amount, the blown air temperature, the blown air humidity, the calculated fuel ratio, the calculated corrected fuel ratio, and the hot metal temperature in this case.

【0018】図1に示すとおり、溶銑温度が1510℃
から1475℃に低下した時点で、送風温度を1150
℃から1180℃に上昇させると共に、送風湿度を30
g/Nm3から25g/Nm3に低下させた比較例の場合
は、溶銑温度が1460℃まで低下したのち、順次回復
したが、溶銑温度の変動は大きかった。これに対し、図
2に示すとおり、計算補正燃料比が520kg/t−p
igより低下し始めた時点で、計算補正燃料比を520
kg/t−pigで一定とすべく、送風湿度を30g/
Nm3から順次20g/Nm3に低下させた本発明例の場
合は、溶銑温度の低下は僅かで、溶銑温度1500℃を
維持することができると共に、溶銑温度の変動は僅かで
あった。
As shown in FIG. 1, the hot metal temperature is 1510 ° C.
When the air temperature has dropped from
℃ from 1180 ℃, and the ventilation humidity is 30
In the case of the comparative example in which the temperature was reduced from 25 g / Nm 3 to 25 g / Nm 3 , the hot metal temperature decreased to 1460 ° C., and then recovered, but the fluctuation of the hot metal temperature was large. On the other hand, as shown in FIG. 2, the calculated corrected fuel ratio is 520 kg / tp.
ig, the calculated corrected fuel ratio becomes 520.
In order to keep it constant at kg / t-pig, the blast humidity was set at 30 g /
In the case of the example of the present invention in which the temperature of the hot metal was gradually reduced from Nm 3 to 20 g / Nm 3 , the hot metal temperature was slightly reduced, the hot metal temperature could be maintained at 1500 ° C., and the fluctuation of the hot metal temperature was slight.

【0019】実施例2 実施例1と同じ高炉において、送風量4000Nm3
min、酸素添加量5000Nm3/hr、送風温度1
150℃、送風湿度35g/Nm3の送風条件、鉱石/
コークス比3.56、装入コークス比450kg/t−
pig、出銑量200t−pig/hr、出滓量60t
/hrの操業条件から、鉱石/コークス比を3.56か
ら3.70に増量するに際し、ガスクロマトグラフィー
による3分毎の炉頂廃ガス成分分析、送風条件、原料装
入条件などを1分毎に測定し、これらの平均値を10分
毎に算出して計算燃料比および計算補正燃料比を10分
毎に演算した。装入コークス比を450kg/t−pi
gから430kg/t−pigに低下させたのち、従来
からの経験に基づき、微粉炭吹込み量を15T/hrか
ら19.5T/hrに増量した。この比較例の場合にお
ける送風量、装入コークス比、送風温度、送風湿度、微
粉炭吹込み量、計算燃料比、計算補正燃料比、溶銑温度
の経時変化を図3に示す。また、鉱石/コークス比を
3.56から3.70に増量した時点から前記計算補正
燃料比を装入コークス比低下前の520kg/t−pi
gに維持すべく、微粉炭吹込み量を15T/hrから順
次19.5T/hrまで増量させた。この本発明例の場
合における送風量、装入コークス比、送風温度、送風湿
度、微粉炭吹込み量、計算燃料比、計算補正燃料比、溶
銑温度の経時変化を図4に示す。
Example 2 In the same blast furnace as in Example 1, the blowing rate was 4000 Nm 3 /
min, oxygen addition amount 5000 Nm 3 / hr, blowing temperature 1
Blowing conditions of 150 ° C, blowing humidity 35 g / Nm 3 , ore /
Coke ratio 3.56, charge coke ratio 450 kg / t-
pig, tapping amount 200t-pig / hr, tapping amount 60t
When the ore / coke ratio was increased from 3.56 to 3.70 from the operating conditions of / hr, the furnace top waste gas component analysis every 3 minutes by gas chromatography, the blowing condition, the raw material charging condition, etc. were changed for 1 minute. Each time, the average value was calculated every 10 minutes, and the calculated fuel ratio and the calculated corrected fuel ratio were calculated every 10 minutes. Charge coke ratio is 450kg / t-pi
g to 430 kg / t-pig, and then the pulverized coal injection amount was increased from 15 T / hr to 19.5 T / hr based on conventional experience. FIG. 3 shows the time-dependent changes in the blown air amount, charged coke ratio, blown air temperature, blown air humidity, pulverized coal injection amount, calculated fuel ratio, calculated corrected fuel ratio, and hot metal temperature in the case of this comparative example. Also, from the time when the ore / coke ratio was increased from 3.56 to 3.70, the calculated corrected fuel ratio was changed to 520 kg / t-pi before the charged coke ratio was reduced.
g, the pulverized coal injection rate was increased sequentially from 15 T / hr to 19.5 T / hr. FIG. 4 shows changes over time in the blown air amount, the charged coke ratio, the blown air temperature, the blown air humidity, the pulverized coal injection amount, the calculated fuel ratio, the calculated corrected fuel ratio, and the hot metal temperature in the case of the present invention.

【0020】図3に示すとおり、計算補正燃料比が増鉱
前の520kg/t−pigから上昇し始めた時点で、
従来からの経験に基づき、微粉炭吹込み量を15T/h
rから19.5T/hrに増量した比較例の場合は、溶
銑温度が設定値より大幅に上昇する過熱状態となってい
る。これに対し、図4示すとおり、鉱石/コークス比を
3.56から3.70に増量した時点から前記計算補正
燃料比を増鉱前の520kg/t−pigに維持すべ
く、微粉炭吹込み量を15T/hrから順次19.5T
/hrまで増量させた本発明例の場合は、溶銑温度をほ
ぼ1500℃で一定に保持することができた。
As shown in FIG. 3, when the calculated corrected fuel ratio starts to increase from 520 kg / t-pig before the mineral increase,
Based on past experience, pulverized coal injection rate was 15 T / h
In the case of the comparative example in which the amount was increased from r to 19.5 T / hr, the hot metal temperature was significantly higher than the set value, and the superheated state was established. On the other hand, as shown in FIG. 4, after the ore / coke ratio was increased from 3.56 to 3.70, pulverized coal injection was performed to maintain the calculated corrected fuel ratio at 520 kg / t-pig before the ore increase. 19.5T in order from 15T / hr
In the case of the present invention example where the amount was increased to / hr, the hot metal temperature could be kept constant at approximately 1500 ° C.

【0021】[0021]

【発明の効果】この発明は、ガスクロマトグラフィーに
よる炉頂廃ガス成分分析、送風条件、原料装入条件など
を1分毎に測定し、これらの平均値を10分毎に算出し
て計算燃料比および計算補正燃料比を10分毎に演算
し、計算補正燃料比が一定となるよう送風湿度、微粉炭
吹込み量、送風温度、装入コークス比等を調整すること
によって、溶銑温度の変動を抑制することができ、ひい
ては溶銑成分のバラツキを抑制して高炉の安定操業を図
ることができる。
According to the present invention, a fuel gas analysis is performed by measuring furnace waste gas component analysis by gas chromatography, blowing condition, raw material charging condition, etc. every one minute, and calculating an average value thereof every ten minutes. The ratio and the calculated corrected fuel ratio are calculated every 10 minutes, and the blast humidity, the amount of pulverized coal blown, the blast temperature, the charged coke ratio, etc. are adjusted so that the calculated corrected fuel ratio becomes constant, thereby changing the hot metal temperature. Can be suppressed, and the variation of the hot metal component can be suppressed, and stable operation of the blast furnace can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における従来例の送風量、送風温度、
送風湿度、計算燃料比、計算補正燃料比、溶銑温度の経
時変化を示すグラフで、(a)図は送風量の経時変化、
(b)図は送風温度の経時変化、(c)図は送風湿度の
経時変化、(d)図は計算燃料比の経時変化、(e)図
は計算補正燃料比の経時変化、(f)図は溶銑温度の経
時変化を示す。
FIG. 1 is a diagram illustrating a conventional example of a blower amount, a blower temperature,
The graph shows the time change of the blast humidity, the calculated fuel ratio, the calculated corrected fuel ratio, and the hot metal temperature, and FIG.
(B) the time-dependent change of the blast temperature, (c) the time-dependent change of the humidified air, (d) the time-dependent change of the calculated fuel ratio, (e) the time-dependent change of the calculated corrected fuel ratio, (f) The figure shows the change over time of the hot metal temperature.

【図2】実施例1における本発明例の送風量、送風温
度、送風湿度、計算燃料比、計算補正燃料比、溶銑温度
の経時変化を示すグラフで、(a)図は送風量の経時変
化、(b)図は送風温度の経時変化、(c)図は送風湿
度の経時変化、(d)図は計算燃料比の経時変化、
(e)図は計算補正燃料比の経時変化、(f)図は溶銑
温度の経時変化を示す。
FIGS. 2A and 2B are graphs showing a change over time in a blown air amount, a blown air temperature, a blown air humidity, a calculated fuel ratio, a calculated corrected fuel ratio, and a hot metal temperature in Example 1 of the present invention, and FIG. And (b) the change over time of the blast temperature, (c) the change over time of the humidity of the blast, (d) the change over time of the calculated fuel ratio,
(E) shows the change over time of the calculated corrected fuel ratio, and (f) shows the change over time of the hot metal temperature.

【図3】実施例2における従来例の送風量、装入コーク
ス比、送風温度、送風湿度、微粉炭吹込み量、計算燃料
比、計算補正燃料比、溶銑温度の経時変化を示すグラフ
で、(a)図は送風量の経時変化、(b)図は装入コー
クス比の経時変化、(c)図は送風温度と送風湿度の経
時変化、(d)図は微粉炭吹込み量の経時変化、(e)
図は計算燃料比の経時変化、(f)図は計算補正燃料比
の経時変化、(g)図は溶銑温度の経時変化を示す。
FIG. 3 is a graph showing a change over time of a blown air amount, a charged coke ratio, a blown air temperature, a blown air humidity, a pulverized coal injection amount, a calculated fuel ratio, a calculated corrected fuel ratio, and a hot metal temperature of the conventional example in Example 2, (A) the time-dependent change in the amount of blown air, (b) the time-dependent change in the charged coke ratio, (c) the time-dependent change in the blowing temperature and the humidity, and (d) the time-dependent change in the amount of pulverized coal injected. Change, (e)
The figure shows the change over time of the calculated fuel ratio, the figure (f) shows the change over time of the calculated corrected fuel ratio, and the figure (g) shows the change over time of the hot metal temperature.

【図4】実施例2における本発明例の送風量、装入コー
クス比、送風温度、送風湿度、微粉炭吹込み量、計算燃
料比、計算補正燃料比、溶銑温度の経時変化を示すグラ
フで、(a)図は送風量の経時変化、(b)図は装入コ
ークス比の経時変化、(c)図は送風温度と送風湿度の
経時変化、(d)図は微粉炭吹込み量の経時変化、
(e)図は計算燃料比の経時変化、(f)図は計算補正
燃料比の経時変化、(g)図は溶銑温度の経時変化を示
す。
FIG. 4 is a graph showing the change over time of the blown air amount, charged coke ratio, blown air temperature, blown air humidity, pulverized coal injection amount, calculated fuel ratio, calculated corrected fuel ratio, and hot metal temperature in Example 2 of the present invention. (A) Fig. (A) shows the change over time of the blowing amount, (b) shows the change over time of the charged coke ratio, (c) shows the change over time of the blowing temperature and the blowing humidity, and (d) shows the change over the pulverized coal blowing amount. change over time,
(E) shows the change over time of the calculated fuel ratio, (f) shows the change over time of the corrected fuel ratio, and (g) shows the change over time of the hot metal temperature.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高炉操業中における炉熱管理方法におい
て、炉頂ガス成分等より求めたコークス消費速度を銑鉄
生成速度で除算して求めた計算コークス比に、補助燃料
吹込み量を銑鉄生成速度で除算して求めた値に置換率を
乗算した値を加算して計算燃料比を求め、該計算燃料比
を送風温度および送風湿度により補正した計算補正燃料
比を求め、計算補正燃料比が予め定めた設定値となるよ
う送風湿度、微粉炭吹込み量、送風温度、装入コークス
比を調整して炉内の熱バランスを管理することを特徴と
する高炉炉熱管理方法。
In the method for managing heat in a furnace during operation of a blast furnace, the amount of auxiliary fuel injected is calculated based on a calculated coke ratio obtained by dividing a coke consumption rate obtained from a furnace gas composition or the like by a pig iron generation rate. The calculated fuel ratio is obtained by adding a value obtained by dividing the calculated fuel ratio by the replacement rate to obtain a calculated fuel ratio, and a calculated corrected fuel ratio obtained by correcting the calculated fuel ratio by the blowing temperature and the blowing humidity is obtained. A heat management method for a blast furnace, wherein a heat balance in a furnace is controlled by adjusting a blast humidity, a pulverized coal blowing amount, a blast temperature, and a charged coke ratio so as to have a set value.
JP08215427A 1996-07-25 1996-07-25 Blast furnace heat management method Expired - Fee Related JP3099322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08215427A JP3099322B2 (en) 1996-07-25 1996-07-25 Blast furnace heat management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08215427A JP3099322B2 (en) 1996-07-25 1996-07-25 Blast furnace heat management method

Publications (2)

Publication Number Publication Date
JPH1046215A JPH1046215A (en) 1998-02-17
JP3099322B2 true JP3099322B2 (en) 2000-10-16

Family

ID=16672165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08215427A Expired - Fee Related JP3099322B2 (en) 1996-07-25 1996-07-25 Blast furnace heat management method

Country Status (1)

Country Link
JP (1) JP3099322B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030028101A (en) * 2001-09-27 2003-04-08 주식회사 포스코 Steam control method by fine coal input amount
KR100994047B1 (en) 2003-11-26 2010-11-11 주식회사 포스코 A method for making up for furnace loss temperature
KR101176018B1 (en) 2010-12-28 2012-08-24 주식회사 포스코 Method for regulating temperature of furance in blast furnace process
KR102122422B1 (en) * 2018-11-26 2020-06-12 주식회사 포스코 Apparatus and method for controlling ratio of fuel and raw material in the blast furnace
CN110305998B (en) * 2019-06-28 2021-03-16 武汉钢铁有限公司 Online regulation and control method and device for reducing S content in blast furnace gas
CN115404298B (en) * 2022-08-12 2023-07-28 新疆八一钢铁股份有限公司 Coal injection method for European smelting furnace

Also Published As

Publication number Publication date
JPH1046215A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
JP3099322B2 (en) Blast furnace heat management method
TWI795277B (en) Heat supply estimation method, heat supply estimation device, heat supply estimation program, and blast furnace operation method
TWI797000B (en) Heat supply estimation method, heat supply estimation device, heat supply estimation program, and blast furnace operation method
KR100381094B1 (en) Method for theoretic combustion temperature of race way during blast furnace pulverized coal injection operation
US4432790A (en) Blast furnace control method
JP2010014318A (en) Molten iron method for manufacturing using vertical scrap melting furnace
TWI795278B (en) Heat supply estimation method, heat supply estimation device, heat supply estimation program, and blast furnace operation method
WO2022168396A1 (en) Supplied heat quantity estimation method, supplied heat quantity estimation device, and operation method for blast furnace
WO2022009617A1 (en) Method for controlling hot metal temperature, operation guidance method, method for operating blast furnace, method for producing hot metal, device for controlling hot metal temperature, and operation guidance device
JP2022152721A (en) Operation method of blast furnace
JP2022148377A (en) Blast furnace operation method
JP3722059B2 (en) Operation method of smelting reduction furnace
KR100356156B1 (en) A method for promoting combustibility in balst furnace
CN117034205A (en) Method for predicting content of temperature sensitive elements in molten iron smelted by blast furnace
JP2889088B2 (en) Blast furnace operation method
JP2002069517A (en) Method for operating smelting reduction furnace
JPH0128803B2 (en)
JPS60208405A (en) Operating method of blast furnace
RU2036735C1 (en) Method of regulating fuel agent supply to blast furnace
JPH09256011A (en) Blowing-off operation in blast furnace
JPH07278623A (en) Operation of blast furnace
JPH1161212A (en) Operation for injecting pulverized fine coal into blast furnace
CA1216156A (en) Blast furnace control method
JPH10147804A (en) Method for predicting furnace heat in blast furnace
CN115185250A (en) Method for controlling fuel ratio in production process of ferrous metallurgy blast furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees