JPH1161212A - Operation for injecting pulverized fine coal into blast furnace - Google Patents

Operation for injecting pulverized fine coal into blast furnace

Info

Publication number
JPH1161212A
JPH1161212A JP22631097A JP22631097A JPH1161212A JP H1161212 A JPH1161212 A JP H1161212A JP 22631097 A JP22631097 A JP 22631097A JP 22631097 A JP22631097 A JP 22631097A JP H1161212 A JPH1161212 A JP H1161212A
Authority
JP
Japan
Prior art keywords
coal
blast furnace
fine coal
pulverized fine
pulverized coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22631097A
Other languages
Japanese (ja)
Inventor
Tatsuo Kobayashi
達男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22631097A priority Critical patent/JPH1161212A/en
Publication of JPH1161212A publication Critical patent/JPH1161212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operational method of pulverized fine coal injection into a blast furnace which can restrain the heat variation in the blast furnace and the variation of pig iron producing speed in the case of using plural kinds of coal kinds as the pulverized fine coal injected from a blasting tuyere, particu larly, even at the time of changing the coal kind or when changing coke ratio. SOLUTION: The operational method of the blast furnace injects the pulverized fine coal together with hot blast from the blasting tuyere. In the case of using plural coal kinds as the pulverized fine coal, calorific value utilized in the blast furnace is pre-obtd. from the components in the pulverized fine coal, and the injecting quantity of the pulverized fine coal is changed so that the calorific value in the blast furnace before and after changing the coal kind or the coke ratio are equalized. At the same time, under consideration of the reaction efficiency in the furnace gas, oxygen enriching quantity is adjusted. By this method, the variations of the molten pig iron temp. and the production speed of the pig iron in the blast furnace can be minimized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、送風羽口より熱風
と共に微粉炭を吹込む高炉の操業方法において、複数種
類の炭種を使用する場合の、特に炭種変更時又はコーク
ス比変更時における微粉炭吹込み操業方法に関するもの
である。
The present invention relates to a method of operating a blast furnace in which pulverized coal is blown together with hot air from a blowing tuyere, in the case of using a plurality of types of coal, particularly when changing the type of coal or changing the coke ratio. It relates to a pulverized coal injection operation method.

【0002】[0002]

【従来の技術】一般に、高炉への微粉炭吹込み操業にお
いて、石炭の発熱量は、熱量計の測定、もしくは、Dulo
ng式で計算される発熱量により熱置換率を求め、微粉炭
の吹込み量を決定していたが、高炉内では炭素及び水素
分が完全に燃焼しないために、実際に高炉内で利用され
る熱量はこれらの熱量よりも低く、従来の発熱量を用い
ると熱置換率を正確に表現できない。また、炉内での炭
素及び水素の反応効率を考慮していないために、炭種の
違いによる銑鉄生成速度の変化に対しては評価すること
ができなかった。
2. Description of the Related Art Generally, in the operation of pulverized coal injection into a blast furnace, the calorific value of coal is measured by a calorimeter or Dulo.
The heat exchange rate was calculated from the calorific value calculated by the ng formula, and the amount of pulverized coal injected was determined.However, since carbon and hydrogen were not completely burned in the blast furnace, they were actually used in the blast furnace. The calorific value is lower than these calorific values, and if the conventional calorific value is used, the heat exchange rate cannot be accurately expressed. In addition, since the reaction efficiency of carbon and hydrogen in the furnace was not taken into consideration, it was not possible to evaluate the change in pig iron production rate due to the difference in coal type.

【0003】従来、このような問題に対して、例えば特
開平6−212217号では、微粉炭の発熱量と揮発分
を指標とし、ベース炭を基準として得られる、微粉炭の
相対置換率と相対高炉ガス発生量を増加させるように、
微粉炭を混合し、吹込む方法が提案されている。
Conventionally, to solve such a problem, for example, Japanese Patent Application Laid-Open No. Hei 6-212217 discloses a method in which the calorific value and volatile content of pulverized coal are used as indices, and the relative replacement ratio of pulverized coal and relative To increase blast furnace gas generation,
A method of mixing and pulverizing pulverized coal has been proposed.

【0004】また、特開平6−240320号では、予
め、個々の石炭の酸素成分量差を求めておき、この酸素
成分量差に基づいて、酸素成分量差に相応する酸素富化
量を増減させ、銑鉄生成速度を一定とさせる微粉炭吹込
み操業方法が提案されている。
In Japanese Patent Application Laid-Open No. 6-240320, a difference in the amount of oxygen in each coal is determined in advance, and the amount of oxygen enrichment corresponding to the difference in the amount of oxygen is increased or decreased based on the difference in the amount of oxygen. A pulverized coal injection operation method has been proposed in which the production rate of pig iron is kept constant.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た方法では、いずれの場合も、高炉の炉内反応に見合っ
た正確な熱置換率を表現できていないので、石炭の銘柄
の変更時や、コークス比の変更時に、熱変動や銑鉄生成
速度の変動が発生していた。
However, in any of the above-described methods, an accurate heat exchange rate that is appropriate for the reaction in the blast furnace cannot be expressed in any case. When the ratio was changed, heat fluctuations and fluctuations in pig iron production rate occurred.

【0006】本発明は、上記した従来の問題点に鑑みて
成されたものであり、送風羽口から吹き込む微粉炭とし
て、複数種類の炭種を使用する場合の、特に炭種変更時
又はコークス比変更時においても、高炉内における熱変
動や銑鉄生成速度の変動を抑制できる高炉の微粉炭吹込
み操業方法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and is intended for use in a case where a plurality of types of coal are used as pulverized coal blown from a blowing tuyere, particularly when changing the type of coal or coke. It is an object of the present invention to provide a pulverized coal injection operation method for a blast furnace that can suppress fluctuations in heat and pig iron production rate in the blast furnace even when the ratio is changed.

【0007】[0007]

【課題を解決するための手段】本発明の高炉の微粉炭吹
込み操業方法は、予め、微粉炭の成分から高炉内で利用
される熱量を求め、炭種やコークス比の変更前後におけ
る高炉内での発熱量が等しくなるように、微粉炭吹込み
量を変更し、同時に炉内ガスの反応効率を考慮して酸素
富化量を調整することとしている。そして、こうするこ
とにより、複数種類の炭種を使用する場合の、特に炭種
変更時又はコークス比変更時においても、熱変動や銑鉄
生成速度の変動を抑制できる。
According to the method for injecting pulverized coal into a blast furnace according to the present invention, the amount of heat used in the blast furnace is determined in advance from the components of the pulverized coal, and the amount of coal used in the blast furnace before and after the change in the coal type and coke ratio is determined. The amount of pulverized coal injected is changed so that the calorific value of the furnace becomes equal, and at the same time, the amount of oxygen enrichment is adjusted in consideration of the reaction efficiency of the gas in the furnace. In this manner, when a plurality of types of coal are used, particularly when the type of coal is changed or when the coke ratio is changed, a change in heat and a change in pig iron production rate can be suppressed.

【0008】[0008]

【発明の実施の形態】本発明では上記した問題を解決す
るために、以下の手順により微粉炭の吹込み量と送風条
件(酸素富化量)を調整することにより、石炭の銘柄変
更時や、コークス比の変更時における熱変動や銑鉄生成
速度の変動を防止することとした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, in order to solve the above-mentioned problems, the amount of pulverized coal to be blown and the blowing conditions (oxygen enrichment) are adjusted according to the following procedure to change the coal brand. In addition, it was decided to prevent heat fluctuations and fluctuations in pig iron production rate when changing the coke ratio.

【0009】高炉内での一酸化炭素利用率[ηCO]、水
素利用率[ηH2]、及び熱流比[HFR=(固体熱容量)/
(気体熱容量)]を初期値として与え、高炉内における
有効発熱量[Qef ]をコークス及び石炭成分より下記数
式1によって求める。
In the blast furnace, the utilization ratio of carbon monoxide [ηCO], the utilization ratio of hydrogen [ηH 2 ], and the heat flow ratio [HFR = (solid heat capacity) /
(Gas heat capacity)] as an initial value, and the effective calorific value [Qef] in the blast furnace is obtained from the coke and coal components by the following equation (1).

【0010】[0010]

【数1】Qef=(Q1+Q2×ηCO)×(%C)÷100+Q3×{(%
H)×ηH2−(%O)÷8 }÷100 (kcal/kg) 但し、C+(1/2)02=CO+Q1 CO+(1/2)02=CO2+Q2 H2+(1/2)02=H2O+Q3 Q1:Cの単位質量当たりの発熱量 Q2:CO中におけるCの単位質量当たりの発熱量 Q3:Hの単位質量当たりの発熱量
[Equation 1] Qef = (Q1 + Q2 × ηCO) × (% C) ÷ 100 + Q3 × {(%
H) × ηH 2 − (% O) ÷ 8} ÷ 100 (kcal / kg) where C + (1/2) 0 2 = CO + Q1 CO + (1/2) 0 2 = CO 2 + Q2 H 2 + (1/2) 0 2 = H 2 O + Q3 Q1: Heat value per unit mass of C Q2: Heat value per unit mass of C in CO Q3: Heat value per unit mass of H

【0011】次に、コークスと微粉炭の有効発熱量[(Q
ef,COKE)、(Qef,PC)] 、及び炉体と炉頂(炉頂ガス顕熱
分)の熱損失[Heat Loss/R] の総和が等しくなるよう
に、コークス比[C/R] と微粉炭比[PC/R]を下記の数式2
によって決定する。
Next, the effective calorific value of coke and pulverized coal [(Q
ef, COKE), (Qef, PC)] and the coke ratio [C / R] so that the sum of the heat loss [Heat Loss / R] of the furnace body and the furnace top (the sensible heat of the furnace gas) becomes equal. And the ratio of pulverized coal [PC / R] to
Determined by

【0012】[0012]

【数2】(C/R)×(Qef,COKE)+(PC/R)×(Qef,PC)−(Heat
Loss)/R=(C/R')×(Qef',COKE) +( PC/R')×(Qef',PC)
−(Heat Loss)/R' 但し、C/R'、PC/R' 、(Heat Loss)/R'、Qef'は、石炭銘
柄、コークス比変更前のコークス比、微粉炭比、炉体と
炉頂(炉頂ガス顕熱分)の熱損失、有効発熱量である。
[Equation 2] (C / R) × (Qef, COKE) + (PC / R) × (Qef, PC) − (Heat
(Loss) / R = (C / R ') × (Qef', COKE) + (PC / R ') × (Qef', PC)
− (Heat Loss) / R 'where C / R', PC / R ', (Heat Loss) / R' and Qef 'are the coal brand, coke ratio before coke ratio change, pulverized coal ratio, furnace body It is the heat loss and effective calorific value of the furnace top (the sensible heat of the furnace gas).

【0013】炉体と炉頂(炉頂ガス顕熱分)の熱損失[H
eat Loss/R] を熱流比HFR より下記の数式3によって求
める。
[0013] The heat loss [H
eat Loss / R] is calculated from the heat flow ratio HFR by the following equation (3).

【0014】[0014]

【数3】(Heat Loss)/R=g+h ×HFR (kcal/pt) 但し、g:実操業条件より求められる係数 h:実操業条件より求められる係数(Heat Loss) / R = g + h × HFR (kcal / pt) where g: coefficient obtained from actual operating conditions h: coefficient obtained from actual operating conditions

【0015】コークス比と微粉炭比及び送風中の調湿分
[BM/R]より炭素比[Carbon/R]及び水素比[Hydrogen/R]を
下記の数式4及び数式5によって計算する。
[0015] Coke ratio and pulverized coal ratio and humidity control during blowing
From [BM / R], the carbon ratio [Carbon / R] and the hydrogen ratio [Hydrogen / R] are calculated by the following formulas 4 and 5.

【0016】[0016]

【数4】Carbon/R=(C/R)×(%C)COKE÷100 +(PC/R)×(%
C)PC÷100 (kg/pt)
[Equation 4] Carbon / R = (C / R) × (% C) COKE ÷ 100 + (PC / R) × (%
C) PC ÷ 100 (kg / pt)

【0017】[0017]

【数5】Hydrogen/R=(C/R)×(%H)COKE÷100+(PC/R)×
(%H)PC÷100 +(BM/R)×2 ÷18÷1000 (kg/pt)
[Equation 5] Hydrogen / R = (C / R) × (% H) COKE ÷ 100 + (PC / R) ×
(% H) PC ÷ 100 + (BM / R) × 2 ÷ 18 ÷ 1000 (kg / pt)

【0018】上記した数式4及び数式5より、ηCO及び
ηH2O を下記の数式6および数式7で新たに求める。
From Equations 4 and 5, ηCO and ηH 2 O are newly obtained by Equations 6 and 7 below.

【0019】[0019]

【数6】ηCO=a+b ×(Carbon/R)+c ×HFR 但し、a:実操業条件より求められる係数 b:実操業条件より求められる係数 c:実操業条件より求められる係数ΗCO = a + b × (Carbon / R) + c × HFR where a: coefficient obtained from actual operating conditions b: coefficient obtained from actual operating conditions c: coefficient obtained from actual operating conditions

【0020】[0020]

【数7】ηH2O= d+e ×(Hydrogen/R)+f ×HFR 但し、d:実操業条件より求められる係数 e:実操業条件より求められる係数 f:実操業条件より求められる係数ΗH 2 O = d + e × (Hydrogen / R) + f × HFR where d: coefficient obtained from actual operating conditions e: coefficient obtained from actual operating conditions f: coefficient obtained from actual operating conditions

【0021】炉頂ガス(CO,CO2)中の酸素量[WO]を下記
の数式8によって算出する。
The oxygen content [WO] in the furnace top gas (CO, CO 2 ) is calculated by the following equation (8).

【0022】[0022]

【数8】WO=4÷3 ×(1+ηCO) ×{(Carbon/R)−(Dust/
R)×(%C)Dust÷100−1000×(%C)Pig ÷100 } (kg/p
t) 但し、Dust/R:炉頂から排出されるダストの原単位 (%C)Dust:ダスト中の炭素濃度 (%C)Pig :溶銑中の炭素濃度
[Equation 8] WO = 4 ÷ 3 × (1 + ηCO) × {(Carbon / R) − (Dust /
R) × (% C) Dust ÷ 100−1000 × (% C) Pig ÷ 100} (kg / p
t) However, Dust / R: Basic unit of dust discharged from furnace top (% C) Dust: Carbon concentration in dust (% C) Pig: Carbon concentration in hot metal

【0023】炉頂ガス中の酸素のうち送風からの酸素量
(Oxygen/R)を下記の数式9によって算出する。
The amount of oxygen (Oxygen / R) from the blast out of the oxygen in the furnace top gas is calculated by the following equation (9).

【0024】[0024]

【数9】Oxygen/R= {WO−O(Ore)−O(PC) ×(1−ηH
2O)}÷32×22.4−O2/R (Nm3/pt) 但し、O(Ore):鉱石由来の酸素 (kg/pt) O(PC) :PC由来の酸素 (kg/pt) O2/R:酸素原単位 (Nm3/pt)
Oxygen / R = {WO-O (Ore) -O (PC) × (1-ηH
2 O)} ÷ 32 × 22.4−O 2 / R (Nm 3 / pt) where O (Ore): oxygen from ore (kg / pt) O (PC): oxygen from PC (kg / pt) O 2 / R: Oxygen intensity (Nm 3 / pt)

【0025】送風条件(送風量、酸素量、調湿量)を基
に、送風原単位(BV/R)及び炉頂ガス発生量原単位(BG
/R)を下記の数式10及び数式11から算出する。
Based on the blowing conditions (blowing amount, oxygen amount, humidity control amount), the basic unit of air blowing (BV / R) and the basic unit of furnace gas generation amount (BG
/ R) is calculated from Equations 10 and 11 below.

【0026】[0026]

【数10】BV/R=(Oxygen/R) ÷(%O2)BV (Nm3/pt) 但し、(%O2)BV :送風空気中における酸素の体積割合BV / R = (Oxygen / R) ÷ (% O 2 ) BV (Nm 3 / pt) where (% O 2 ) BV is the volume ratio of oxygen in the blast air

【0027】[0027]

【数11】BG/R=(BV/R)×(%N2)BV +(PC/R)+(%N)PC÷2
8×22.4+(Carbon/R)÷12×22.4+(Hydrogen/R)÷2 ×2
2.4 (Nm3/pt) 但し、(%N2)BV :送風空気中における窒素の体積割合 (%N)PC:微粉炭中における窒素濃度
[Equation 11] BG / R = (BV / R) × (% N 2 ) BV + (PC / R) + (% N) PC ÷ 2
8 × 22.4 + (Carbon / R) ÷ 12 × 22.4 + (Hydrogen / R) ÷ 2 × 2
2.4 (Nm 3 / pt) where (% N 2 ) BV: nitrogen volume ratio in blast air (% N) PC: nitrogen concentration in pulverized coal

【0028】鉱石比(Ore/R )、コークス比及び炉頂ガ
ス発生原単位から下記の数式12によって熱流比 HFRを
算出する。
The heat flow ratio HFR is calculated from the ore ratio (Ore / R), the coke ratio, and the unit gas generation rate of the top using the following equation (12).

【0029】[0029]

【数12】 HFR={(C/R) ×i +(Ore/R) ×j }/(BG/R×k) 但し、i〜kは定数値HFR = {(C / R) × i + (Ore / R) × j} / (BG / R × k) where i to k are constant values

【0030】上記数式12によって熱流比 HFRが新たに
決定されると、上記した数式6,7よりηCO、ηH2を新
たに決定する。そして、求められたηCO、ηH2を上記数
式1に代入し、以下、数式2によって求められるコーク
スと微粉炭の有効発熱量が炭種変更やコークス比の変更
の前後で等しくなるまで収束計算を行って、△PC/R、△
BV/Rを求め、これに基づいて微粉炭吹込み量、酸素富化
量を調整する。
[0030] heat flow ratio HFR by the equation 12 is newly determined, newly determined ItaCO, the ItaH 2 from Equation 6 described above. Then, ItaCO been determined, the ItaH 2 are substituted into the equation 1, below, the convergence calculation until effective calorific value of coke and pulverized coal obtained by Equation 2 is equal before and after the change of coal type change or coke ratio Go, △ PC / R, △
The BV / R is obtained, and the pulverized coal injection amount and oxygen enrichment amount are adjusted based on this.

【0031】上記したような本発明によれば、コークス
と微粉炭の有効発熱量が炭種変更やコークス比の変更の
前後で等しくなるまで収束計算を行って△PC/R、△BV/R
を求め、これに基づいて微粉炭吹込み量、酸素富化量を
調整するので、炭種変更時やコークス比の変更時におい
ても、熱変動や銑鉄生成速度の変動を抑制できる。
According to the present invention as described above, convergence calculation is performed until the effective calorific value of coke and pulverized coal becomes equal before and after the change of the coal type and the change of the coke ratio, and ΔPC / R, ΔBV / R
And the amount of pulverized coal injection and the amount of oxygen enrichment are adjusted based on this, so that even when the coal type is changed or the coke ratio is changed, it is possible to suppress heat fluctuations and fluctuations in pig iron production rate.

【0032】[0032]

【実施例】以下、本発明の効果を確認するために行った
実験結果について説明する。内容積2700m3 の高炉
において、図2に示したような石炭の銘柄変更を行った
ところ、従来の総発熱量による置換率で微粉炭吹込み量
変更を行うと、溶銑温度、銑鉄生成速度の変動を起こ
し、安定な操業を行うことが出来なかった。この時の操
業推移を図2に示す。
EXAMPLES The results of experiments conducted to confirm the effects of the present invention will be described below. In a blast furnace having an inner volume of 2700 m 3, the coal brand was changed as shown in FIG. 2. Due to fluctuations, stable operations could not be performed. The operation transition at this time is shown in FIG.

【0033】これに対して、本発明における高炉内有効
発熱量を用いて微粉炭吹込み量、酸素量調整を行った場
合、図1に示すように、溶銑温度、銑鉄生成速度の変動
を起こすことなく、石炭の銘柄変更を行うことが可能と
なった。なお、実験に使用した図1、図2中の石炭A〜
Dの各成分は下記表1の通りである。
On the other hand, when the pulverized coal injection amount and the oxygen amount are adjusted using the effective calorific value in the blast furnace according to the present invention, as shown in FIG. 1, the hot metal temperature and the pig iron production rate fluctuate. It was possible to change the brand of coal without any change. 1 and 2 used in the experiment.
Each component of D is as shown in Table 1 below.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
炭種変更時又はコークス比の変更時に、石炭及びコーク
スの、高炉内で有効に利用される熱量を元に、微粉炭吹
込み量を変更し、送風条件を調整することにより、高炉
内の熱変動や銑鉄の生成速度を最小限にすることが可能
となる。
As described above, according to the present invention,
When the coal type or coke ratio is changed, the amount of coal and coke that is effectively used in the blast furnace is changed based on the amount of pulverized coal injected, and the blowing conditions are adjusted. Fluctuations and the rate of pig iron formation can be minimized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】石炭銘柄変更時における本発明方法の操業の推
移を示す図である。
FIG. 1 is a diagram showing the transition of the operation of the method of the present invention when a coal brand is changed.

【図2】石炭銘柄変更時における従来方法の操業の推移
を示す図である。
FIG. 2 is a diagram showing changes in the operation of the conventional method when changing the coal brand.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 送風羽口より熱風と共に微粉炭を吹き込
む高炉操業方法において、前記微粉炭に複数の炭種を使
用する場合、予め、微粉炭の成分から高炉内で利用され
る熱量を求め、炭種やコークス比の変更前後における高
炉内での発熱量が等しくなるように、微粉炭吹込み量を
変更し、同時に炉内ガスの反応効率を考慮して酸素富化
量を調整することを特徴とする高炉の微粉炭吹込み操業
方法。
In a blast furnace operating method in which pulverized coal is blown together with hot air from a blowing tuyere, when a plurality of coal types are used for the pulverized coal, a calorie used in the blast furnace is determined in advance from components of the pulverized coal. Change the pulverized coal injection amount so that the calorific value in the blast furnace before and after the change in coal type and coke ratio is equal, and at the same time adjust the oxygen enrichment amount in consideration of the reaction efficiency of the gas in the furnace. Characterized by the pulverized coal injection method of the blast furnace.
JP22631097A 1997-08-22 1997-08-22 Operation for injecting pulverized fine coal into blast furnace Pending JPH1161212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22631097A JPH1161212A (en) 1997-08-22 1997-08-22 Operation for injecting pulverized fine coal into blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22631097A JPH1161212A (en) 1997-08-22 1997-08-22 Operation for injecting pulverized fine coal into blast furnace

Publications (1)

Publication Number Publication Date
JPH1161212A true JPH1161212A (en) 1999-03-05

Family

ID=16843206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22631097A Pending JPH1161212A (en) 1997-08-22 1997-08-22 Operation for injecting pulverized fine coal into blast furnace

Country Status (1)

Country Link
JP (1) JPH1161212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460657B1 (en) * 2000-05-29 2004-12-09 주식회사 포스코 Apparatus for setting amount of fine coal injection
KR100805712B1 (en) * 2001-10-08 2008-02-21 주식회사 포스코 Method for regulating the temperature of furnace using the character of coal itself

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460657B1 (en) * 2000-05-29 2004-12-09 주식회사 포스코 Apparatus for setting amount of fine coal injection
KR100805712B1 (en) * 2001-10-08 2008-02-21 주식회사 포스코 Method for regulating the temperature of furnace using the character of coal itself

Similar Documents

Publication Publication Date Title
JPH11241109A (en) Method for injecting pulverized fine coal and reducing gas into blast furnace
JPS60159104A (en) Method for operating blast furnace
JPH1161212A (en) Operation for injecting pulverized fine coal into blast furnace
JP3620407B2 (en) Operation method of pulverized coal injection to blast furnace
JP3384298B2 (en) Blast furnace operation method
JP7105708B2 (en) Method for determining injection amount of reducing gas and method for operating blast furnace
JP3099322B2 (en) Blast furnace heat management method
JP2001240906A (en) Method for injecting reducing gas into blast furnace
JP4325401B2 (en) Manufacturing method of low silicon hot metal
JP2020045508A (en) Operation method of blast furnace
JP2001234213A (en) Blast furnace operation method
JPH11241108A (en) Method for injecting pulverized fine coal into blast furnace
JP7265161B2 (en) Blast furnace operation method
KR100356156B1 (en) A method for promoting combustibility in balst furnace
JPH04110405A (en) Method for operating blast furnace
US4521246A (en) Operating a blast furnace with the injection of hot reducing gases
JP4325128B2 (en) Low silicon operation method in blast furnace mass injection into blast furnace.
JPH0578721A (en) Operation method of smelting reduction
JP2023114182A (en) Operation method of blast furnace
JP2627232B2 (en) Blast furnace operation method
JPS6357704A (en) Operation of blast furnace
JPS63166914A (en) High oxygen-rich blasting blast furnace
JP2000282112A (en) Method for injecting pulverized coal into blast furnace
JP2003013120A (en) Method of operating blast furnace
JPH06100911A (en) Operation of blast furnace when blowing large quantity of pulverized coal