JPH0128803B2 - - Google Patents

Info

Publication number
JPH0128803B2
JPH0128803B2 JP10697484A JP10697484A JPH0128803B2 JP H0128803 B2 JPH0128803 B2 JP H0128803B2 JP 10697484 A JP10697484 A JP 10697484A JP 10697484 A JP10697484 A JP 10697484A JP H0128803 B2 JPH0128803 B2 JP H0128803B2
Authority
JP
Japan
Prior art keywords
amount
iron oxide
hot metal
concentration
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10697484A
Other languages
Japanese (ja)
Other versions
JPS60251204A (en
Inventor
Chisato Yamagata
Yoshimasa Kajiwara
Takanobu Inada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10697484A priority Critical patent/JPS60251204A/en
Publication of JPS60251204A publication Critical patent/JPS60251204A/en
Publication of JPH0128803B2 publication Critical patent/JPH0128803B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • C21B5/023Injection of the additives into the melting part

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、酸化鉄を送風羽口から高炉内に吹込
んで溶銑中Si濃度を制御する高炉操業法におい
て、高炉から出銑される溶銑のSi濃度と共に溶銑
温度を的確に制御し、荷下がりの安定化をはかる
高炉操業方法に関する。 従来技術とその問題点 高炉内における溶銑中へのSi移行は、炉床湯溜
部におけるスラグーメタル反応よりもむしろSiO
ガスを媒介とするガス―メタル反応が主要な役割
を果している。SiOガスを媒介とする溶銑中への
Siの移行は、次の2つの過程に大別される(鉄と
鋼vol・58 1972 219頁)。 すなわち、レースウエイ近傍の高温低酸素分
圧領域におけるコークス中灰分を主源とする
SiO2とコークス中の固体炭素との反応によるSiO
ガスの生成過程、軟化融着帯以下における上昇
ガス流中に含まれるSiOガスと滴下している溶銑
中の炭素との反応による溶銑中へのSi移行過程で
あり、この両過程を反応式で表わすと以下のよう
になる。 (SiO2)+C=SiO(g)+CO(g) SiO(g)+Si+CO(g) ここで、( )はその化合物がスラグ中に存在
することを示す慣用表記法であり、元素名の下線
はその成分が溶銑中に存在することを示す慣用表
記法である。また、(g)はその化合物が気体で
あることを示す慣用表記法である。従つて、溶銑
中Si濃度の制御方法としては、SiOガス発生反応
の制御と溶銑中へのSi移行反応の制御とがある。 実際の高炉操業において、前者の制御手段とし
ては、コークス中灰分量の制御による羽口前持ち
込みSiO2量の制御や羽口前温度制御によるSiOガ
ス発生速度の制御等が実施されている。後者の制
御手段としては、装入物分布制御に基づいたコー
クス比制御による融着帯レベルの管理や焼結鉱の
被還元性・軟化融着性状制御による融着帯レベル
の制御等がある(鉄と鋼Vol・68 1982 A129
頁)。 溶銑中のSi濃度の制御方法としては、上記の高
炉内での溶銑中へのSi移行メカニズムに立脚した
制御手段以外に、送風羽口から酸化鉄を炉内に吹
込み、下記の反応によつて溶銑中Siを酸化させ
る、いわゆる炉内脱珪手段が開発されている(特
開昭53−87908、特開昭56−29601、特開昭58−
77508)。 Si+2FeO=(SiO2)+2Fe この制御手段の場合、上記反応が適切に制御さ
れれば、出銑直前でのSi濃度の制御ができ、溶銑
中Si濃度の管理が容易に実施できる。 しかしながら、従来の酸化鉄の吹込みによる溶
銑中Si濃度の制御方法には、次のような欠点があ
つた。 まず第1に、酸化鉄の炉内吹込みは単位時間当
りの流量を一定値に維持する方法で実施されてい
るが、実操業においては予知できない装入物の物
理的・化学的性状変化や炉内の装入物降下異常等
の外乱因子によつて、炉内のガス流分布、ガス・
固体の温度分布が変化して融着帯レベルが変動す
る結果、炉床に滴下してくる溶銑中Si濃度が変化
するが、各羽口に均等に吹込まれている酸化鉄に
よつて酸化される溶銑中のSi量がほぼ一定である
ので、高炉から排出される溶銑中Si濃度が変動を
きたすことである。 第2の問題点は、酸化鉄の炉内吹込み量を各送
風羽口で管理せず、全吹込み量で管理しているこ
とである。すなわち、通常の酸化鉄吹込み操業に
おいて、小量吹込みの場合には、円周方向の等分
割となる方位の羽口から等流量の酸化鉄を吹込
み、多量吹込みの場合は全羽口から吹込むが、各
羽口からの吹込み量が等量となるように配管設計
を行ない、酸化鉄の吹込み流量は集合配管の元で
全流量を管理しているにすぎない。しかし、この
方法では、高炉炉命末期に耐火物が円周方向に不
均一に損耗したり、円周方向に不均一に付着物が
形成したり、あるいは装入装置の不備のため装入
物が偏心して炉内に装入されていたり、また円周
方向に装入物降下速度が不均一となつているなど
の場合、炉床に滴下してくる溶銑中のSi濃度が円
周方向でばらつくという欠点がある。 なお、酸化鉄吹込みがない場合の出銑口別Si濃
度のばらつきを緩和する方法として、出銑口方位
別の羽口からの燃料吹込み量を調整する方法が提
案されている(特開昭58−117805)。 酸化鉄吹込みにおいて、上記のごとく炉床に滴
下してくる溶銑中Si濃度に円周方向でばらつきが
ある状況下で、従来のように円周方向に均等に酸
化鉄吹込みを実施すると、各出銑口から排出され
る溶銑中Si濃度にばらつきが生じてしまう。 そこで、この発明者らは、羽口からの酸化鉄吹
込み操業時に、外乱により出銑毎のSi濃度のばら
つきを緩和させる方法として、出銑口から排出さ
れる溶銑中のSi濃度を実測し、目標Si濃度との差
から酸化鉄吹込み量を演算し、当該出銑口方位の
羽口からの酸化鉄吹込み量をフイードバツク制御
する方法を先に提案した(特開昭59−64733)。こ
の方法により、前記した従来の酸化鉄吹込みによ
る問題はすべて解決され、高炉から出銑される溶
銑中のSi濃度を一定範囲に維持することが可能と
なつたのである。 ところが、円周方向での酸化鉄吹込み量偏差が
大きい場合、溶銑温度のばらつきが大きくなり、
荷下がり状況にも影響をおよぼす可能性があるこ
とが新たな問題として生じた。 すなわち、羽口からの酸化鉄吹込みは、前記
の反応により溶銑中Siを酸化させる、いわゆる炉
内脱珪作用があるが、同時に吹込み酸化鉄の一部
は、下記の反応によつてレースウエイ先端のコ
ークス帯においてコークス中の固体炭素により直
接還元される。 FeO+C=Fe+CO(g) 上記反応は吸熱反応であり、特に円周方向での
酸化鉄吹込み量偏差を大きくした場合、炉下部に
おける円周方向の熱バランスをくずすことにな
り、溶銑温度のばらつきが大きくなるとともに、
熱流比(固体の熱容量流量/ガスの熱容量流量)
を介して円周方向の荷下がり状況にも影響をおよ
ぼし、スリツプ、羽口破損発生等の炉況悪化につ
ながる可能性がある。 発明の目的 本発明は、上記のような円周方向方位別に酸化
鉄吹込み量を調整することにより出銑口別の溶銑
中Si濃度のばらつきを減少させる操業法におい
て、円周方向での酸化鉄吹込み量偏差が大きい場
合に、出銑口方位毎に吹込み量を分割制御できる
ことを活用して、熱補償として円周方向での燃料
吹込み量調整、または円周方向での蒸気吹込み量
調整を同時に行なうことにより、出銑口別の溶銑
温度のばらつきを低減するとともに、荷下がりの
安定化をはかることを目的とするものである。 発明の構成・作用 現状の高炉操業においては、外乱因子による炉
内状態の変動および円周方向の炉内状態の不均一
は不可避的に生じるので、本発明は、その結果で
ある溶銑中Si濃度の変化を出銑口別に計測し、目
標Si濃度との差に応じて、当該出銑口方位の送風
羽口からの酸化鉄吹込み量を変更するとともに、
その酸化鉄吹込み量に対応した熱補償として必要
な当該出銑口方位の燃料吹込み量または蒸気吹込
み量を算出し、当該出銑口方位の羽口からの酸化
鉄吹込み量とともに、燃料吹込み量または蒸気吹
込み量をフイードバツク制御して、高炉から出銑
される溶銑のSi濃度および温度を一定範囲に維持
する方法である。 以下、本発明に係る高炉操業方法を第1図に基
づいて説明する。 第1図は本発明法を実施するための装置構成を
示すもので、高炉1への酸化鉄吹込みは、酸化鉄
貯蔵タンク2より流量制御弁3、流量計4を通つ
て送風羽口5から炉内に吹込まれる。一方、補助
燃料貯蔵タンク6にも、それぞれ流量制御弁7、
流量計8が設置され、また蒸気配管にも流量制御
弁9、流量計10が設置されている。なお図示し
ていないが、流量制御弁3,7,9および流量計
4,8,10は各送風羽口に設置されている。酸
化鉄貯蔵タンク2は出銑口方位別に出銑口の数、
またはそれ以上羽口本数まで、複数個設置されて
いる。 上記各送風羽口の酸化鉄吹込み量は、各出銑口
18で公知の発光分光分析法、鋳床での例えば濃
淡電池による迅速分析により測定された溶銑中の
Si濃度と、後述する方法により設定された目標Si
濃度を演算器11に入力し、両者のSi濃度の差に
基づいて必要な酸化鉄吹込み量を算出し、現在の
吹込み量の実測値を参考に、流量制御弁3の開度
を制御することによつて行なう。 また同時に、酸化鉄吹込みに対応した熱補償と
して必要な燃料吹込み量、または蒸気吹込み量の
調整は、演算器12において、上記酸化鉄吹込み
量を基に羽口レベルでの熱バランス・物質バラン
ス計算を行なうことにより熱補償に必要な燃料吹
込み量または蒸気吹込み量を求め、当該方位の流
量制御弁7または9の開度を制御することによつ
て行なう。 目標Si濃度は、入力データ設定器17を介して
手動入力するか、または高炉の排ガスデータ1
3、装入物データ14、送風データ15、出銑デ
ータ16に基づいて、演算器12中に内蔵した数
式シミユレーシヨンモデル(例えば鉄と鋼vol・
68 1982 A129頁)で演算して連続的に自動入力
する。 次に、酸化鉄吹込み量と熱補償に必要な燃料吹
込み量または蒸気吹込み量の演算方法について説
明する。 第2図は、A高炉(内容積2700m3)において、
羽口1本当りの酸化鉄吹込み量に対して、後述す
る方法で算出した熱補償に必要な蒸気吹込み量を
参考にして当該方位の蒸気吹込み量を同時に調整
した場合の溶銑中Si濃度の実績値を示す。 すなわち、ある出銑口から排出された溶銑中Si
濃度の実測値と目標Si濃度との差から、その出銑
口方位にある羽口の1本当りの酸化鉄吹込み量の
変化量を求めることができる。この第2図に示す
関係は演算器11に内蔵されており、現在の溶銑
中Si濃度と目標のSi濃度を入力することにより、
自動的に酸化鉄吹込み量が算出され、その値に応
じて流量調整弁3の開度を制御する。また同時
に、酸化鉄吹込みに伴なう熱補償に必要な蒸気吹
込み量は、酸化鉄吹込み量の変化量を入力とし
て、同じく第2図を用いその出銑口方位にある羽
口1本当りの蒸気吹込み量の変化量を求めること
ができる。この蒸気吹込み量に関しても、第2図
に示す関係が演算器11に内蔵されており、先に
算出された酸化鉄吹込み量を入力することによ
り、自動的に蒸気吹込み量が算出され、流量調整
弁9の開度を制御する。この第2図の関係は、酸
化鉄吹込みに伴なう熱補償手段として、燃料吹込
み量を調整した場合にも同様に得ることができ
る。 なお、酸化鉄吹込みに伴なう熱補償に必要な蒸
気吹込み量は、高炉の排ガスデータ13、装入物
データ14、送風データ15、出銑データ16に
基づいて、演算器12中に内蔵した数式シミユレ
ーシヨンモデル(例えば鉄と鋼vol・68 1982
A129頁)で演算される。 実施例 A高炉(内容積2700m3)における本発明の実施
結果を第1表および第2表に示す。すなわち、第
1表の期間Aにおいては、No.2出銑口から排出さ
れる溶銑中Si濃度が高く、溶銑中Siのばらつき
(Vsi)は0.121%と大きかつたが、溶銑温度のば
らつき(VTPig)は9.1℃であつた。そこで、No.2
出銑口方位の羽口からの酸化鉄吹込み量を290
Kg/hr・本増加させてNo.2出銑口から排出される
溶銑中Si濃度を低下させた結果、溶銑中Si濃度の
ばらつき(Vsi)は0.060%まで低下したが、酸化
鉄吹込みのアクシヨン量が大きいため、No.2出銑
口から排出される溶銑温度が低下した結果、溶銑
温度のばらつき(VTPig)が17.6℃と増大した。ま
た、No.2出銑口方位で荷下がりが悪化し、スリツ
プおよび生鉱下りによる羽口破損が頻発し、炉況
悪化に至つた。 第2表の期間Bにおいては、No.3出銑口から排
出される溶銑中Si濃度が高く、溶銑中Siのばらつ
き(Vsi)は0.129%と大きかつたが、溶銑温度の
ばらつき(VTPig)は9.3℃であつた。そこで、No.
3出銑口方位の羽口からの酸化鉄吹込み量を340
Kg/hr・本増加させると同時に、当該方位の蒸気
吹込み量を第2図の関係に基づいて93Kg/hr・本
減少させた結果、No.3出銑口から排出される溶銑
中Si濃度が低下して溶銑中Si濃度のばらつき
(Vsi)も0.056%まで低下するとともに、熱補償
を行なつたことにより、No.3出銑口から排出され
る溶銑温度の低下は抑制され、溶銑温度のばらつ
き(VTPig)も9.7℃と上昇しなかつた。また、荷
下がりも良好で、スリツプおよび生鉱下がりによ
る羽口破損も皆無であつた。
Industrial Application Field The present invention is a blast furnace operating method in which iron oxide is injected into the blast furnace from the blast tuyeres to control the Si concentration in the hot metal. The present invention also relates to a blast furnace operating method for stabilizing unloading. Prior art and its problems Si migration into hot metal in a blast furnace is caused by SiO2 rather than slag metal reaction in the hearth sump.
Gas-metal reactions mediated by gases play a major role. Into hot metal using SiO gas as a medium
The transition of Si can be roughly divided into the following two processes (Tetsu to Hagane Vol. 58, 1972, p. 219). In other words, the main source of coke is ash in the high temperature, low oxygen partial pressure region near the raceway.
SiO by reaction of SiO 2 with solid carbon in coke
The gas generation process and the Si transfer process into the hot metal due to the reaction between the SiO gas contained in the rising gas flow below the softening cohesive zone and the carbon in the dripping hot metal, and these two processes can be expressed by a reaction equation. The expression is as follows. (SiO 2 ) + C = SiO (g) + CO (g) SiO (g) + C = Si + CO (g) where () is a conventional notation to indicate that the compound is present in the slag, and is an element The underlined name is a common notation to indicate that the component is present in the hot metal. Further, (g) is a common notation indicating that the compound is a gas. Therefore, methods for controlling the Si concentration in hot metal include controlling the SiO gas generation reaction and controlling the Si transfer reaction into the hot metal. In actual blast furnace operation, the former control means include controlling the amount of SiO 2 brought in before the tuyere by controlling the ash content in the coke, and controlling the SiO gas generation rate by controlling the temperature before the tuyere. The latter control means include controlling the cohesive zone level by controlling the coke ratio based on charge distribution control, and controlling the cohesive zone level by controlling the reducibility and softening and cohesive properties of sintered ore ( Iron and Steel Vol・68 1982 A129
page). In addition to the above-mentioned control method based on the Si transfer mechanism into the hot metal in the blast furnace, methods for controlling the Si concentration in the hot metal include injecting iron oxide into the furnace through the blast tuyere and using the following reaction. A so-called in-furnace desiliconization method for oxidizing Si in hot metal has been developed (Japanese Patent Application Laid-open No. 53-87908, JP-A No. 56-29601, JP-A No. 58-
77508). Si + 2FeO = (SiO 2 ) + 2Fe In the case of this control means, if the above reaction is appropriately controlled, the Si concentration can be controlled immediately before tapping, and the Si concentration in the hot metal can be easily managed. However, the conventional method of controlling the Si concentration in hot metal by blowing iron oxide has the following drawbacks. First of all, iron oxide is injected into the furnace using a method that maintains the flow rate per unit time at a constant value, but in actual operation, there are unpredictable changes in the physical and chemical properties of the charge. Disturbance factors such as anomalies in the fall of the burden in the furnace can cause changes in the gas flow distribution in the furnace,
As the temperature distribution of the solid changes and the cohesive zone level fluctuates, the Si concentration in the hot metal dripping into the hearth changes. Since the amount of Si in the hot metal that is discharged from the blast furnace is almost constant, the Si concentration in the hot metal discharged from the blast furnace fluctuates. The second problem is that the amount of iron oxide blown into the furnace is not managed at each blowing tuyere, but is managed based on the total amount blown into the furnace. In other words, in normal iron oxide injection operations, when a small amount of iron oxide is being injected, an equal amount of iron oxide is injected from the tuyeres that are equally divided in the circumferential direction, and when a large amount of iron oxide is being injected, the same amount of iron oxide is injected from all the tuyeres. Although it is blown in through the mouth, the piping is designed so that the amount blown in from each tuyere is equal, and the total flow rate of iron oxide is simply controlled under the collective piping. However, with this method, the refractory wears out unevenly in the circumferential direction at the end of the life of the blast furnace, deposits are formed unevenly in the circumferential direction, or the charging If the charge is eccentrically charged into the furnace, or if the rate of descent of the charge is uneven in the circumferential direction, the Si concentration in the hot metal dripping onto the hearth may vary in the circumferential direction. The disadvantage is that it varies. In addition, as a method to alleviate the variation in Si concentration depending on the taphole when there is no iron oxide injection, a method has been proposed in which the amount of fuel injected from the tuyeres is adjusted depending on the direction of the taphole (Unexamined Japanese Patent Publication No. 117805). In iron oxide injection, when the Si concentration in the hot metal dripping into the hearth varies in the circumferential direction as described above, if iron oxide injection is performed evenly in the circumferential direction as in the past, This results in variations in the Si concentration in the hot metal discharged from each taphole. Therefore, the inventors actually measured the Si concentration in hot metal discharged from the taphole as a method to alleviate the variation in Si concentration for each tap due to disturbance during iron oxide injection operation from the tuyere. previously proposed a method of calculating the amount of iron oxide injected from the difference from the target Si concentration and controlling the amount of iron oxide injected from the tuyere in the relevant taphole direction through feedback control (Japanese Patent Laid-Open No. 59-64733). . This method solves all the problems caused by the conventional iron oxide injection described above, and makes it possible to maintain the Si concentration in the hot metal tapped from the blast furnace within a certain range. However, when the deviation in the amount of iron oxide injected in the circumferential direction is large, the variation in hot metal temperature becomes large.
A new problem has arisen that may also affect the unloading situation. In other words, the injection of iron oxide from the tuyere has the so-called in-furnace desiliconization effect, which oxidizes Si in the hot metal through the reaction described above, but at the same time, a part of the injected iron oxide is oxidized by the reaction described below. It is directly reduced by the solid carbon in the coke in the coke zone at the tip of the way. FeO + C = Fe + CO (g) The above reaction is an endothermic reaction, and especially if the deviation in the amount of iron oxide injected in the circumferential direction is increased, the heat balance in the circumferential direction in the lower part of the furnace will be disrupted, resulting in variations in hot metal temperature. As the becomes larger,
Heat flow ratio (solid heat capacity flow rate/gas heat capacity flow rate)
This may also affect the unloading situation in the circumferential direction, which may lead to deterioration of furnace conditions such as slips and tuyere breakage. Purpose of the Invention The present invention aims to reduce the variation in Si concentration in hot metal from tap hole to taphole by adjusting the amount of iron oxide injected in each direction in the circumferential direction, as described above. When the iron injection amount deviation is large, the fact that the injection amount can be divided and controlled for each direction of the taphole can be used to adjust the fuel injection amount in the circumferential direction as heat compensation, or to control the steam injection in the circumferential direction. By adjusting the charging amount at the same time, the purpose is to reduce variations in hot metal temperature from tap hole to tap hole and to stabilize unloading. Structure and operation of the invention In the current blast furnace operation, fluctuations in the condition inside the furnace due to disturbance factors and non-uniformity in the condition inside the furnace in the circumferential direction inevitably occur. The change in Si concentration is measured for each taphole, and depending on the difference from the target Si concentration, the amount of iron oxide injected from the blast tuyeres in the relevant taphole direction is changed.
Calculate the amount of fuel or steam injected from the tuyere in the direction of the taphole, which is necessary for heat compensation corresponding to the amount of iron oxide injected, and This method maintains the Si concentration and temperature of hot metal tapped from a blast furnace within a certain range by feedback controlling the amount of fuel or steam injected. Hereinafter, the blast furnace operating method according to the present invention will be explained based on FIG. 1. FIG. 1 shows the configuration of an apparatus for implementing the method of the present invention. Iron oxide is injected into a blast furnace 1 from an iron oxide storage tank 2 through a flow control valve 3 and a flow meter 4 through a blowing tuyere 5. is blown into the furnace. On the other hand, the auxiliary fuel storage tank 6 also has a flow control valve 7,
A flow meter 8 is installed, and a flow control valve 9 and a flow meter 10 are also installed in the steam piping. Although not shown, flow rate control valves 3, 7, 9 and flow meters 4, 8, 10 are installed at each ventilation tuyere. The iron oxide storage tank 2 has the number of tap holes depending on the direction of the tap hole,
Or more than one tuyere is installed. The amount of iron oxide blown into each of the above-mentioned blast tuyeres is determined by the amount of iron oxide in the hot metal measured at each taphole 18 by a known optical emission spectrometry method, or by rapid analysis using a concentration cell, for example, at the cast bed.
Si concentration and target Si set by the method described below
Input the concentration into the calculator 11, calculate the required amount of iron oxide injection based on the difference in the Si concentration between the two, and control the opening degree of the flow rate control valve 3 with reference to the actual measured value of the current injection amount. Do by doing. At the same time, the adjustment of the amount of fuel injection or the amount of steam injection necessary for heat compensation corresponding to the injection of iron oxide is carried out in the calculation unit 12 by adjusting the heat balance at the tuyere level based on the amount of iron oxide injection. - The amount of fuel or steam injected necessary for heat compensation is determined by calculating the material balance, and this is done by controlling the opening degree of the flow rate control valve 7 or 9 in the relevant direction. The target Si concentration can be input manually via the input data setting device 17 or by inputting the blast furnace exhaust gas data 1.
3. Based on the charge data 14, air blowing data 15, and tap iron data 16, a mathematical simulation model built into the calculator 12 (for example, iron and steel vol.
68 1982 A129 page) and input continuously automatically. Next, a method of calculating the amount of iron oxide blown and the amount of fuel blown or steam blown necessary for heat compensation will be explained. Figure 2 shows that in blast furnace A (inner volume 2700m 3 ),
Si in hot metal when the amount of steam injection in the relevant direction is simultaneously adjusted with reference to the amount of steam injection necessary for heat compensation calculated using the method described below with respect to the amount of iron oxide injection per tuyere. Indicates the actual concentration value. In other words, Si in the hot metal discharged from a certain taphole
From the difference between the measured concentration value and the target Si concentration, it is possible to determine the amount of change in the amount of iron oxide injected into each tuyere in the direction of the tap hole. The relationship shown in FIG. 2 is built into the calculator 11, and by inputting the current Si concentration in hot metal and the target Si concentration,
The amount of iron oxide blown is automatically calculated, and the opening degree of the flow rate regulating valve 3 is controlled according to the calculated value. At the same time, the amount of steam injection required for heat compensation accompanying the injection of iron oxide can be calculated using the same figure 2, using the amount of change in the amount of iron oxide injection as input. The amount of change in the actual amount of steam injection can be determined. Regarding this steam injection amount, the relationship shown in Fig. 2 is built into the calculator 11, and by inputting the previously calculated iron oxide injection amount, the steam injection amount is automatically calculated. , controls the opening degree of the flow rate adjustment valve 9. The relationship shown in FIG. 2 can be similarly obtained when the amount of fuel injection is adjusted as a means for compensating for the heat accompanying the injection of iron oxide. The amount of steam injection necessary for heat compensation accompanying iron oxide injection is calculated in the computing unit 12 based on the blast furnace exhaust gas data 13, charge data 14, ventilation data 15, and tap iron data 16. Built-in mathematical simulation model (e.g. Tetsu to Hagane vol.68 1982
A129) is calculated. Example The results of implementing the present invention in a blast furnace A (inner volume 2700 m 3 ) are shown in Tables 1 and 2. In other words, during period A in Table 1, the Si concentration in the hot metal discharged from the No. 2 taphole was high, and the variation in Si in the hot metal (V si ) was as large as 0.121%, but the variation in hot metal temperature (V TPig ) was 9.1°C. Therefore, No.2
The amount of iron oxide injected from the tuyere in the direction of the taphole is 290.
As a result of increasing the Si concentration in hot metal discharged from the No. 2 taphole by increasing Kg/hr, the variation in Si concentration in hot metal (V si ) decreased to 0.060%, but iron oxide injection Because of the large amount of action, the temperature of the hot metal discharged from the No. 2 taphole decreased, and as a result, the variation in hot metal temperature (V TPig ) increased to 17.6°C. In addition, unloading worsened at the No. 2 taphole direction, and tuyere damage due to slips and unloading of raw ore occurred frequently, leading to deterioration of furnace conditions. In period B of Table 2, the Si concentration in the hot metal discharged from the No. 3 taphole was high, and the variation in Si in the hot metal (V si ) was as large as 0.129%, but the variation in hot metal temperature (V si ) was large. TPig ) was 9.3℃. Therefore, No.
The amount of iron oxide injected from the tuyere in the direction of the 3 taphole is 340.
As a result of increasing the amount of steam injected in this direction by 93 kg/hr based on the relationship shown in Figure 2, the Si concentration in the hot metal discharged from the No. 3 taphole As a result, the variation in Si concentration in hot metal (V si ) decreased to 0.056%. At the same time, thermal compensation suppressed the drop in the temperature of hot metal discharged from the No. 3 taphole, and the hot metal The temperature variation (V TPig ) also did not increase, at 9.7°C. In addition, unloading was good, and there was no damage to the tuyere due to slips or falling raw ore.

【表】【table】

【表】【table】

【表】 発明の効果 上記実施例からも明らかなごとく、本発明法に
よれば、出銑口別のSi濃度を実測し、目標Si濃度
との差に応じて、当該出銑口方位の羽口からの酸
化鉄吹込み量を制御し、同時に熱補償として蒸気
吹込み量または燃料吹込み量を制御することによ
り、酸化鉄吹込みのアクシヨン量が大きい場合で
も、当該方位での溶銑温度低下がなく、荷下がり
安定下で高炉から排出される溶銑中Si濃度のばら
つきを低減することができる。
[Table] Effects of the Invention As is clear from the above examples, according to the method of the present invention, the Si concentration of each taphole is actually measured, and the impeller of the taphole direction is adjusted according to the difference from the target Si concentration. By controlling the amount of iron oxide injected from the mouth and at the same time controlling the amount of steam or fuel injected as heat compensation, even if the action amount of iron oxide injection is large, the temperature of hot metal in the relevant direction can be reduced. Therefore, it is possible to reduce the variation in the Si concentration in the hot metal discharged from the blast furnace under stable unloading conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法を実施するための装置構成を
示すブロツク図、第2図は同上における酸化鉄吹
込み量の変化とSi濃度の変化および蒸気吹込み量
の関係を示す図表である。 1……高炉、2……酸化鉄貯蔵タンク、3,
7,9……流量制御弁、4,8,10……流量
計、5……送風羽口、6……補助燃料貯蔵タン
ク、11,12……演算器、13……排ガスデー
タ、14……装入物データ、15……送風デー
タ、16……出銑データ、17……入力データ設
定器、18……出銑口。
FIG. 1 is a block diagram showing the configuration of an apparatus for implementing the method of the present invention, and FIG. 2 is a chart showing the relationship between changes in the amount of iron oxide blown, changes in Si concentration, and amount of steam blown in the same. 1...Blast furnace, 2...Iron oxide storage tank, 3,
7, 9... Flow control valve, 4, 8, 10... Flow meter, 5... Blowing tuyere, 6... Auxiliary fuel storage tank, 11, 12... Arithmetic unit, 13... Exhaust gas data, 14... ...Charge data, 15...Blowing data, 16...Tapping data, 17...Input data setting device, 18...Tapping port.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化鉄を送風羽口から高炉に吹込む高炉操業
法において、各出銑口別の溶銑中Si濃度を実測
し、目標Si濃度との差に応じて、当該出銑口方位
の送風羽口からの酸化鉄吹込み量を変更し、かつ
前記酸化鉄吹込み量に応じて当該出銑口方位の燃
料吹込み量または蒸気吹込み量を調整することに
より、高炉から出銑される溶銑のSi濃度および温
度を一定範囲に維持することを特徴とする高炉操
業方法。
1 In the blast furnace operation method in which iron oxide is injected into the blast furnace from the blast tuyere, the Si concentration in the hot metal for each taphole is actually measured, and depending on the difference from the target Si concentration, the blast tuyere of the relevant taphole direction is By changing the amount of iron oxide injected from the blast furnace and adjusting the amount of fuel or steam injected in the direction of the taphole in accordance with the amount of iron oxide injected, the amount of hot metal tapped from the blast furnace can be changed. A blast furnace operating method characterized by maintaining Si concentration and temperature within a certain range.
JP10697484A 1984-05-26 1984-05-26 Operating method of blast furnace Granted JPS60251204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10697484A JPS60251204A (en) 1984-05-26 1984-05-26 Operating method of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10697484A JPS60251204A (en) 1984-05-26 1984-05-26 Operating method of blast furnace

Publications (2)

Publication Number Publication Date
JPS60251204A JPS60251204A (en) 1985-12-11
JPH0128803B2 true JPH0128803B2 (en) 1989-06-06

Family

ID=14447261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10697484A Granted JPS60251204A (en) 1984-05-26 1984-05-26 Operating method of blast furnace

Country Status (1)

Country Link
JP (1) JPS60251204A (en)

Also Published As

Publication number Publication date
JPS60251204A (en) 1985-12-11

Similar Documents

Publication Publication Date Title
JPH0128803B2 (en)
JP3099322B2 (en) Blast furnace heat management method
JPS60262909A (en) Operating method of blast furnace
JPS60208405A (en) Operating method of blast furnace
JP4759985B2 (en) Blast furnace operation method
US4432790A (en) Blast furnace control method
KR100985238B1 (en) Method for controlling the amount of supplying pulverized coal as to gas using ratio in blast furnace
TWI795277B (en) Heat supply estimation method, heat supply estimation device, heat supply estimation program, and blast furnace operation method
JP2022148377A (en) Blast furnace operation method
JPS6156211A (en) Method for operating blast furnace
TWI794865B (en) Method of controlling temperature of molten iron, method of operation instruction, operation method of blast furnace, method of manufacturing molten iron, device for controlling temperature of molten iron, and operation instruction device
WO2022168396A1 (en) Supplied heat quantity estimation method, supplied heat quantity estimation device, and operation method for blast furnace
JP2022152721A (en) Operation method of blast furnace
RU2153000C1 (en) Blast furnace operation method
SU870438A1 (en) Method of distributing natural gas between blast furnace tuyeres
RU2190667C1 (en) Blast smelting method
SU1520110A1 (en) Method of regulation of steel blowing with oxygen
JPS63171809A (en) Control method for furnace heat in oxygen blast furnace
JPH0433846B2 (en)
JPS5985841A (en) Manufacture of ferrochromium
JP2897363B2 (en) Hot metal production method
TW202302865A (en) Supply heat quantity estimation method, supply heat quantity estimation device, supply heat quantity estimation program, and blast furnace operation method
JPH01215911A (en) Method for decreasing si in molten iron in blast furnace
JPH11117009A (en) Operation of blast furnace
JPS6157363B2 (en)