JPS60262909A - Operating method of blast furnace - Google Patents

Operating method of blast furnace

Info

Publication number
JPS60262909A
JPS60262909A JP11714284A JP11714284A JPS60262909A JP S60262909 A JPS60262909 A JP S60262909A JP 11714284 A JP11714284 A JP 11714284A JP 11714284 A JP11714284 A JP 11714284A JP S60262909 A JPS60262909 A JP S60262909A
Authority
JP
Japan
Prior art keywords
hot metal
iron oxide
concentration
amount
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11714284A
Other languages
Japanese (ja)
Inventor
Takanobu Inada
隆信 稲田
Yoshimasa Kajiwara
梶原 義雅
Chisato Yamagata
山縣 千里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11714284A priority Critical patent/JPS60262909A/en
Publication of JPS60262909A publication Critical patent/JPS60262909A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process

Abstract

PURPOSE:To keep the Si concn. in the tapped molten iron and the temp. of the molten iron within specified limits by regulating the amt. of iron oxide, fuel, etc. to be blown in accordance with the difference in Si concn. between desired concn. and the Si concn. in molten iron in the dripping zone and the Si concn. in molten iron at every tapping hole. CONSTITUTION:In the operation of a blast furnace 1 wherein iron oxide in a tank 2 is blown in from a blast tuyere 5, the Si concn. in molten iron in a dripping zone above the tuyere 5 level is measured by sampling probes 20 provided at the abdominal part of the blast furnace 1 at every tapping hole 19 in the circumferential direction. The Si concn. in molten iron at every tapping hole 19 is also measured, and the measured value is inputted to arithmeric units 11 and 12 wherein said concn. is compared with a desired Si concn. to obtain the difference. The amt. of iron oxide to be blown in from each blast tuyere 5 is changed at every direction of each tapping hole 19 in accordance with said difference through flow-rate regulating valves 3, 7, and 9 and flowmeters 4, 8, and 10, and the amt. of fuel and steam to be blown in the direction of the corresponding tapping hole is regulated in accordance with said blown-in amt. Consequently, the Si concn. in molten iron tapped from the blast furnace 1 and the temp. of molten iron are kept within specified limits, and the descending of the load is stabilized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸化鉄を送風羽口から高炉内に吹込んで溶銑
中Sl濃度を制御する高炉操業法において、高炉から出
銑される溶銑のSl濃度と共に溶銑温度を的確に制御し
、荷下りの安定化をはかる高炉操業方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a blast furnace operation method in which iron oxide is injected into a blast furnace from a blast tuyere to control the Sl concentration in hot metal. The present invention also relates to a blast furnace operating method that accurately controls hot metal temperature and stabilizes unloading.

従来技術とその問題点 高炉内における溶銑中への51移行は、炉床湯虐部にお
けるスフグーメタル反応よりもむしろSiOガスを媒介
とするがグーメタA/反応が主要な役割を果している。
Prior art and its problems 51 migration into hot metal in a blast furnace is mediated by SiO gas rather than the sulfur metal reaction in the hearth steaming area, but the molten metal A/reaction plays a major role.

SiOガスを媒介とする溶銑中への81の移行は、次の
2つの過程に大別される(鉄と鋼vo1.5F3.19
72219頁)。
The transfer of 81 into hot metal via SiO gas can be roughly divided into the following two processes (iron and steel vol. 1.5F 3.19
72219 pages).

すなわち、■レースウェイ近傍の高温低酸素分圧領域に
おけるコークス中灰分を主源とするSin。
That is, ①Sin whose main source is ash in the coke in the high temperature, low oxygen partial pressure region near the raceway.

とコークス中の固体炭素との反応によるSIOガスの生
成過程、■軟化融着帯以下における上昇ガス流中に含ま
れるSlOガスと滴下している溶銑中の炭素との反応に
よる溶銑中へのSl移行過程であり、この両過程を反応
式で表わすと以下のようになる。
The generation process of SIO gas by the reaction between the solid carbon in the coke and the reaction between the SlO gas contained in the ascending gas flow below the softening cohesive zone and the carbon in the dripping hot metal. This is a transition process, and the reaction equations for both processes are as follows.

■(Sin、 ) + C= 5io(y)+ 00(
f)■5lO(f) + C=ジ+oo (p )ここ
で、()はその化合物がスラグ中に存在することを示す
慣用表記法で多シ、元素名のF−はその成分が溶銑中に
存在することを示す慣用表記法である。また、<y)は
その化合物が気体であることを示す慣用表記法である。
■(Sin, ) + C= 5io(y)+00(
f)■5lO(f) + C=di+oo (p) Here, () is the conventional notation to indicate that the compound is present in the slag, and F- in the element name indicates that the component is present in the hot metal. This is a common notation that indicates the existence of . Furthermore, <y) is a common notation indicating that the compound is a gas.

従って、溶銑中Sl濃度の制御方法としては、SiOガ
ス発生反応の制御と溶銑中への81移行反応の制御とが
ある。
Therefore, methods for controlling the Sl concentration in hot metal include controlling the SiO gas generation reaction and controlling the 81 transfer reaction into the hot metal.

実際の高炉操業において、前者の制御手段としては、コ
ークス中灰分量の制御による羽口前持ち込みSin、量
の制御や羽口1ff/M度制御にょるSiOガス発生速
度の制御等が実施されている。後者の制御手段としては
、装入物分布制御に基づいたコークス比制御による融着
帯レベルの管理や焼4ii!I鉱の被還元性・軟化趨着
性状制御による融着帯レベルの制御等がある(銑と鋼v
o/、68 1982 A129頁)。
In actual blast furnace operation, the former control means include controlling the ash content in the coke to bring Sin in before the tuyere, controlling the amount, and controlling the SiO gas generation rate by controlling the tuyere 1ff/M degrees. There is. The latter control means include cohesive zone level management by coke ratio control based on charge distribution control and calcination 4ii! There is control of the cohesive zone level by controlling the reducibility and softening trend properties of I ore (pig and steel v
o/, 68 1982 A129 page).

溶銑中のSI濃度の制御方法としては、上記の高炉内で
の溶銑中への別移行メカニズムに立脚した制御手段以外
に、送風羽口から酸化鉄を炉内に吹込み、下記■の反応
によって溶銑中Slを酸化させる、いわゆる炉内脱珪手
段が開発されている(特開昭53−87908、特開昭
56−29601、特開昭58−77508)。
As a method of controlling the SI concentration in hot metal, in addition to the above-mentioned control method based on a separate transfer mechanism into the hot metal in the blast furnace, iron oxide is blown into the furnace from the blast tuyeres, and the following reaction A so-called in-furnace desiliconization means for oxidizing Sl in hot metal has been developed (JP-A-53-87908, JP-A-56-29601, JP-A-58-77508).

■SI + 2FeO= (SIO,) + 2Feこ
の制御手段の場合、上記反応が適切に制御されれば、出
銑直前でのSi1度の制御ができ、溶銑中sig度の管
理が容易に実施できる。
■SI + 2FeO = (SIO,) + 2Fe In the case of this control means, if the above reaction is properly controlled, it is possible to control the Si degree immediately before tapping, and the sig degree in the hot metal can be easily managed. .

しかしながら、従来の酸化鉄の吹込みによる溶銑中SI
濃度の制御方法には、次のような欠点があった。
However, conventional SI in hot metal by injection of iron oxide
The concentration control method had the following drawbacks.

まず第1に、酸化鉄の炉内吹込みは単位時間当りの流量
を一定値に維持する方法で実施されているが、実操業に
おいては予知できない装入物の物理的・化学的性状変化
や炉内の装入物降下異常等の外乱因子によって、色白の
ガス流分布、ガス・固体の温度分布が変化して融着帯レ
ベルが変動する結果、炉床に滴下して(る溶銑中5II
lk度が変化するが、各羽口に均等に吹込まれている酸
化鉄によって酸化される溶銑中SI量がほぼ一定である
ので、高炉から排出される溶銑中Sl濃度が変動をきた
すことである。
First of all, iron oxide is injected into the furnace using a method that maintains the flow rate per unit time at a constant value, but in actual operation, there are unpredictable changes in the physical and chemical properties of the charge. Due to disturbance factors such as an abnormality in the fall of the burden in the furnace, the white-skinned gas flow distribution and the temperature distribution of gas and solids change and the cohesive zone level fluctuates.
Although the lk degree changes, the amount of SI in the hot metal oxidized by the iron oxide that is evenly injected into each tuyere is almost constant, so the SI concentration in the hot metal discharged from the blast furnace fluctuates. .

第2の問題点は、酸化鉄の炉内吹込み量を各送風羽口で
管理せず、全吹込み量で管理していることである。すな
わち、通常の酸化鉄吹込み操業において、・ト急吹込み
の場合は、円周方向の等分割となる方位の羽目から等流
量の酸化鉄を吹込み、多量吹込みの場合は全羽口から吹
込むが、各羽口からの吹込み量う工等量となるように配
管設計を行々い、酸化鉄の吹込み流Ik社集合配管の元
で全流量を管理しているにすぎない。しかし、この方法
でけ、高炉炉命末期に耐火物が円周方向に不均一に損耗
したり、円周方向に不均一に付着物が形成したり、ある
いは装入装置の不備のため装入物が偏心して炉内に装入
されていたり、壕だ円周方向に装入物降下速度が不均一
となっているなどの場合、炉床に滴下してくる溶銑中の
5ifi度が円周方向でばらつくという欠点がある。
The second problem is that the amount of iron oxide blown into the furnace is not managed at each blowing tuyere, but is managed based on the total amount blown into the furnace. In other words, in normal iron oxide injection operations, in the case of sudden injection, iron oxide is injected at an equal amount from the tuyeres divided into equal parts in the circumferential direction, and in the case of large-volume injection, iron oxide is injected into all the tuyeres. However, the piping is designed so that the amount of air injected from each tuyere is the same, and the total flow rate is controlled using the iron oxide injection flow Ik company collective piping. do not have. However, with this method, the refractory wears unevenly in the circumferential direction at the end of the life of the blast furnace, deposits are formed unevenly in the circumferential direction, or the charging If the material is eccentrically charged into the furnace or if the rate of descent of the charge is uneven in the circumferential direction of the trench, the 5ifi degree in the hot metal dripping onto the hearth may be The disadvantage is that it varies depending on the direction.

なお、酸化鉄吹込みがない場合の出銑日別Si濃度のば
らつきを緩和する方法として、出銑口方位別の羽目から
の燃料吹込み量を調整する方法が提案されている(特開
昭58−117805)。
In addition, as a method for alleviating the variation in Si concentration by tap day when iron oxide is not injected, a method has been proposed in which the amount of fuel injected from the taphole direction is adjusted (Japanese Patent Application Laid-Open No. 58-117805).

酸化鉄吹込みにかいて、上記のごとく炉床に滴下してく
る溶銑中Sl濃度に円周方向でばらつきがある状況下で
、従来のように円周方向に均等に酸化鉄吹込みを実施す
ると、各出銃口から排出される溶銑中Si濃度にばらつ
きが生じてしまう。
Regarding iron oxide injection, as mentioned above, under the circumstances where the Sl concentration in the hot metal dripping into the hearth varies in the circumferential direction, iron oxide injection was carried out evenly in the circumferential direction as in the past. This causes variations in the Si concentration in the hot metal discharged from each outlet.

また、円周方向別酸化鉄吹込みを実施すると、炉下部円
周方向の熱パフンス・物質バランスが乱れるという関門
がある。すなわち、羽口から吹込まれた酸化鉄は前記■
の反応により溶銑中Slを酸化させる、いわゆる炉内脱
珪作用の役割を果すと同時に1一部は下記■の反応によ
りレースウェイ先端のコークス帯においてコークス中の
固体炭素により直接還元される。
Furthermore, if iron oxide injection is carried out in the circumferential direction, there is a problem in that the heat puff and material balance in the circumferential direction of the lower part of the furnace will be disturbed. In other words, the iron oxide injected from the tuyere is
This reaction oxidizes Sl in the hot metal, which is the so-called in-furnace desiliconization action, and at the same time, a portion of the sulfur is directly reduced by the solid carbon in the coke in the coke zone at the tip of the raceway through the reaction (2) below.

■FeO+ C= Fe + Co(f)上記反応は吸
熱反応であり、特に円周方向での酸化鉄吹込み量偏差を
大きくした場合、炉下部における円周方向の熱パフンス
をくずすことKなり、溶銑温度のばらつきが大きくなる
とともに、熱流比(固体の熱容量流量/ガスの熱容量流
量)を介して円周方向の荷下り状況にも影響をおよぼし
、スリップ、羽口破損発生等の炉況悪化を惹起するおそ
れがある。
■FeO+ C= Fe + Co(f) The above reaction is an endothermic reaction, and especially when the deviation in the amount of iron oxide injected in the circumferential direction is increased, the heat puff in the circumferential direction in the lower part of the furnace will be destroyed. As the dispersion of hot metal temperature increases, it also affects unloading conditions in the circumferential direction through the heat flow ratio (solid heat capacity flow rate/gas heat capacity flow rate), causing deterioration of furnace conditions such as slipping and tuyere breakage. There is a risk of triggering.

発明の目的 この発明は、従来の前記問題を解決するためKなされた
もので、出銑口方位毎に酸化鉄の分割吹込みができるこ
とを活用し、高炉から排出される溶銑中のSl濃度を所
定範囲内に維持すると同時に、溶銑温度のばらつきも軽
減され、荷下りの安定化がはかられる高炉の操業方決を
提案することを目的とするものである。
Purpose of the Invention This invention was made to solve the above-mentioned problems of the prior art, and utilizes the fact that iron oxide can be injected separately for each direction of the taphole to reduce the sl concentration in the hot metal discharged from the blast furnace. The purpose of this paper is to propose a method for operating a blast furnace that maintains the temperature within a predetermined range, reduces variations in hot metal temperature, and stabilizes unloading.

発明の構成・作用 この発明に係る高炉の操業方法は、円周方向各出銃口方
位の羽口レベル以上の炉内滴下帯の溶銑中Sl濃度と、
各出銃日別の溶銑中Sl濃度を実測し、目標SN濃度と
前記羽目レベル以上の溶銑中Sl濃度および出銑日別の
溶銑中St濃度との差圧応じて、送風羽口からの酸化鉄
吹込み量を各出銃口方位別に変更し、さらに前記酸化鉄
吹込み量に応じて当該出銃口方位の燃料吹込み量または
蒸気吹込み量を調整することKより、高炉より出銑され
る溶銑中51濃度と溶銑温度を一定範囲に維持すること
を特徴とするものである。
Structure and operation of the invention The method of operating a blast furnace according to the present invention includes: controlling the concentration of Sl in the hot metal in the dripping zone in the furnace above the level of the tuyere in each circumferential direction of the exit port;
The Sl concentration in the hot metal is actually measured for each tap date, and the oxidation from the blast tuyere is By changing the iron injection amount for each gun outlet direction and further adjusting the fuel injection amount or steam injection amount for the relevant gun outlet direction according to the iron oxide injection amount, iron is tapped from the blast furnace. It is characterized by maintaining the concentration of 51 in the hot metal and the temperature of the hot metal within a certain range.

すなわち、現状の高炉操業においては、外乱因子による
炉内状態の変動および円周方向の炉内状態の不均一は不
可避的に生ずるので、この発明ではその糖果てらる溶銑
中31濃度の変化を、各出銃口方位別に羽口レベル以上
の滴下溶銑を採取・分析することKより把握し、目標S
l濃度との差および、当該出銃口よシ排出される溶銑中
SIa度との差と、現在の当該出銃口方位での酸化鉄吹
込み量から計算される脱珪酸素効率(吹込み酸化鉄中の
酸素量と脱珪に使用された酸素量との比率)を基に1当
該出銑口方位での送風羽目からの酸化鉄吹込み量をフィ
ードバック制御して溶銑中Sl濃度を制御すると同時に
、上記酸化鉄吹込み量に応じ、熱補償として当該円周方
向での燃料吹込み量調整または蒸気吹込み量調整を行な
うことKより出銑日別の溶銑温度のばらつきを抑制する
方法である。
That is, in the current blast furnace operation, fluctuations in the condition inside the furnace due to disturbance factors and non-uniformity in the condition inside the furnace in the circumferential direction inevitably occur. Collect and analyze the dripping hot metal above the tuyere level for each exit direction.
desiliconization oxygen efficiency (injected iron oxide At the same time, the sl concentration in the hot metal is controlled by feedback control of the amount of iron oxide injected from the blowing surface in the taphole direction based on the ratio of the amount of oxygen in the hot metal and the amount of oxygen used for desiliconization. This is a method of suppressing the variation in hot metal temperature depending on the tapping date by adjusting the fuel injection amount or steam injection amount in the circumferential direction as thermal compensation according to the iron oxide injection amount. .

以下、この発明方法を図面に基づいて説明する。The method of this invention will be explained below based on the drawings.

第1図は本発明法を実施するための装置構成を示すもの
で、高炉(1)への酸化鉄吹込みは、酸化鉄貯蔵タンク
(2)より流量制御弁(3)、流量計(4)を通って送
風別口(5)から炉内に吹込まれる。一方、補助燃料貯
蔵タンク(6)Kも、それぞれ流量制御弁(7)、流量
計(8)が設置され、また蒸気開管に′本流量制御弁(
9)、流量計OGが設置されている。なお図示していな
いが、流量制御弁+31(71(9)および流量計(4
) f8)αQは各送風別口に設置されている。酸化鉄
貯蔵タンク(2)は出銑口方位毎に出銑口の数、または
それ以上羽口本数まで、複数個設置されている。
Figure 1 shows the equipment configuration for carrying out the method of the present invention. Iron oxide is injected into the blast furnace (1) from an iron oxide storage tank (2) through a flow control valve (3) and a flow meter (4). ) and is blown into the furnace from a separate air outlet (5). On the other hand, the auxiliary fuel storage tank (6) K is also equipped with a flow control valve (7) and a flow meter (8), and the main flow control valve (
9) A flow meter OG is installed. Although not shown, the flow control valve +31 (71 (9) and the flow meter (4)
) f8) αQ is installed at each ventilation outlet. A plurality of iron oxide storage tanks (2) are installed in each direction of the taphole, corresponding to the number of tapholes or more than the number of tuyeres.

各出銑日別の溶銑中Sl濃度は、各出銑口O1において
各タップ毎に数回溶銑滓を採取し、分析してめる。また
、羽口レベル以上の滴下帯の溶銑中Sl濃度は、各出銃
口方位において溶銑滓サンプリングプローブ■を炉腹部
あるいは朝顔部より炉内に挿入し、羽口レベル以上(望
ましくは羽口直上レベl′v)での溶銑滓を半径方向数
点で採取し、分析してめる。なお、後者の引濃度測定は
、当該方位の出銑タイミングとは無関係に半連続的に実
施される。上記の溶銑中81濃度測定は発光分光分析法
等の迅速分析法が用いられる。
The Sl concentration in the hot metal on each tapping day is determined by sampling and analyzing the hot metal slag several times from each tap at each tap hole O1. In addition, the Sl concentration in the hot metal in the dripping zone above the tuyere level can be determined by inserting a hot metal slag sampling probe ■ into the furnace from the furnace belly or morning glory section at each exit direction. The hot metal slag at 1'v) was sampled at several points in the radial direction and analyzed. Note that the latter measurement of draw concentration is carried out semi-continuously, regardless of the tapping timing in the direction. A rapid analysis method such as emission spectrometry is used to measure the 81 concentration in hot metal.

そして、このよう圧して得られた羽口レベル以上および
出銑口での溶銑中St濃度および当該方位での現在の酸
化鉄吹込み量とを演算器αBに入力し、現在の脱珪酸素
効率を算出し、この値を基に、半連続的に入力される溶
銑滓サンプリングプローブ彌でのSl濃度測定値と目標
5IIs度との差に応じて各出銃口方位について必要な
酸化鉄吹込み量を算出し、現在の吹込み量の実測値を参
考に流量制御弁(3)の開度を調整する。
Then, the St concentration in the hot metal above the tuyere level and at the taphole obtained by this pressure and the current iron oxide injection amount in the relevant direction are input to the calculator αB, and the current desiliconization oxygen efficiency is calculated. Based on this value, the amount of iron oxide injected required for each exit direction is determined according to the difference between the Sl concentration measurement value at the hot metal slag sampling probe, which is input semi-continuously, and the target 5IIs degrees. is calculated, and the opening degree of the flow rate control valve (3) is adjusted with reference to the actual measured value of the current injection amount.

また同時に、酸化鉄吹込み罠対応した熱補償として必要
な燃料吹込み量、または蒸気吹込み量の調整は、演算器
@において、上記酸化鉄吹込み量を基に羽口レベルでの
熱バランス・物質バランス計算を行なうことにより熱補
償に必要な燃料吹込み量または蒸気吹込み量をめ、当該
方位の流量制御弁(7)または(9)の開度を制御する
ことによって行なう。
At the same time, the adjustment of the fuel injection amount or steam injection amount necessary for heat compensation corresponding to the iron oxide injection trap is performed using the calculator @, which calculates the heat balance at the tuyere level based on the above iron oxide injection amount. - Calculates the amount of fuel or steam injected necessary for heat compensation by calculating the material balance, and controls the opening of the flow rate control valve (7) or (9) in the relevant direction.

目標S1濃度は、入力データ設定器(11を介して手動
入力するか、または高炉の排ガスデータ(至)、装入物
データ0滲、送風データ(至)、出銑データaeに基づ
いて、演算器(2)中に内蔵した数式シミュレーVヨン
モデIv(例えば鉄と鋼vo/、68 1982 A1
29頁)で演算して連続的に自動入力することができる
The target S1 concentration can be manually input via the input data setting device (11), or calculated based on the blast furnace exhaust gas data (to), charge data (0), ventilation data (to), and tapping data ae. Mathematical simulation V model IV built into the container (2) (e.g. Tetsu to Hagane VO/, 68 1982 A1
(page 29) and can be automatically input continuously.

次に1酸化鉄吹込みKよる脱珪酸素効率の把握のし方に
ついて説明する。
Next, we will explain how to understand the desiliconization and oxygen efficiency by injecting iron monoxide into K.

脱珪酸素効率とは、炉内に吹込まれた酸化鉄中酸素に対
する脱珪反応■に寄与した酸化鉄中酸素の量との比で表
わされ、その値は次式0により定義される。
The desiliconization oxygen efficiency is expressed as the ratio of the amount of oxygen in the iron oxide that contributed to the desiliconization reaction (1) to the oxygen in the iron oxide blown into the furnace, and its value is defined by the following equation 0.

Wp −ore −y じ(jz−リqi虻イ1*中l
U:脱珪酸素効率 Wplg:当該出前口からの出銑量 Wp−岨1当該出銑ロ方位の羽口からの酸化鉄吹込み量 Xf:二当該出銃口での溶銑中SI濃度y:酸化秩中酸
素分率 mo:酸素の分子量 m、I:珪素の分子量 tap XHi’山 上記0式中のxs、、 の測定は、当該出銑口での出銑
中期から後期にわたって2回縁F行なわれ、各々の計測
値の平均値をとることにより脱珪酸素効率Uをめる。
Wp -ore -y ji(jz-riqi 虻ii1*中l
U: Desilication oxygen efficiency Wplg: Amount of pig iron tapped from the relevant taphole Wp - 岨1 Amount of iron oxide injected from the tuyere in the relevant taphole direction Xf: 2 SI concentration in hot metal at the relevant taphole y: Oxidation Oxygen fraction mo in Chichichi: Molecular weight of oxygen m, I: Molecular weight of silicon tap Then, the desiliconization and oxygen efficiency U is calculated by taking the average value of each measured value.

演算器(社)では、第2図に示すフローチャート忙従っ
て前記した脱珪酸素効率および酸化鉄吹込み調整量が算
出される。すなわち、各出銑口について前記のように測
定された直近タップの溶銑中sl濃度および当該出銑口
方位の羽日直Lレベルで採取された溶銑中の81/!1
度を入力し、前出0式により脱珪酸素効率を算出する。
The computer calculates the desiliconization oxygen efficiency and the iron oxide injection adjustment amount according to the flowchart shown in FIG. 2. That is, the sl concentration in the hot metal of the nearest tap measured as described above for each taphole and the 81/! 1
Input the degree and calculate the silicon removal oxygen efficiency using the above formula 0.

次に、当核脱珪酔素効率を基に、半連続的釦計測される
羽口レベル以上での溶銑中81濃度と目4Si濃度との
差に応じて酸化鉄吹込み量を計算し、現在の酸化鉄吹込
み量を基に酸化鉄吹込み調整量を算出するのである。
Next, based on the silicon removal efficiency of this core, the amount of iron oxide injected is calculated according to the difference between the 81 concentration in the hot metal and the 4Si concentration in the hot metal above the tuyere level, which is measured semi-continuously, The adjusted amount of iron oxide injection is calculated based on the current amount of iron oxide injection.

一方、酸化鉄吹込み量に対応した勢補償釦必要な燃料吹
込み量または蒸気吹込み量は、0式より算出される脱珪
酸素効率および酸化鉄吹込み量を基に1羽口レベルでの
熱バランス・物質パッンス計算を行ない、必要な熱補償
量をめることによって計算される。
On the other hand, the required fuel injection amount or steam injection amount is calculated at the one-tuyere level based on the desiliconization oxygen efficiency and the iron oxide injection amount calculated from the formula 0. It is calculated by calculating the heat balance and material balance of , and calculating the required amount of heat compensation.

第3図は、A高炉(内容積270M)の期間a(50日
)において、前記したこの発明方決により酸化鉄吹込み
量の制御を行ない、これに対応した熱補償として、蒸気
吹込み量を調整したときの溶銑温度の変化を示す。なお
、酸化鉄吹込みに伴なう熱補償手段として燃料吹込み量
を調整した場合も同様に計算できる。この第3図に例示
したような関係は、演算器@に内蔵されており、演算器
圓より算出される酸化鉄吹込み量およびその時の脱珪酸
素効率を入力するととKより、熱補償に必要な燃料吹込
み量あるいは蒸気吹込み量の調整量を算出し、当該出銑
口方位にある流量調整弁(7)あるいは(9)の開度を
制御する。
Figure 3 shows that during period a (50 days) of blast furnace A (inner volume 270M), the amount of iron oxide injected was controlled by the above-mentioned method of the invention, and as a corresponding heat compensation, the amount of steam injected was This shows the change in hot metal temperature when adjusting . Note that calculations can be made in the same way when the amount of fuel injection is adjusted as a heat compensation means accompanying the injection of iron oxide. The relationship illustrated in Fig. 3 is built into the calculator@, and when the iron oxide injection amount calculated from the calculator and the desiliconization oxygen efficiency at that time are input, the thermal compensation is determined by K. The necessary adjustment amount of fuel injection amount or steam injection amount is calculated, and the opening degree of the flow rate adjustment valve (7) or (9) in the relevant taphole direction is controlled.

実 施 例 A高炉(内容積2700rIe)におけるこの発明の実
施結果を第4図および第1表に示す。第4図は当該高炉
のN&2出銑口から排出される溶銑の温度および81濃
度のタップ毎の変化を示したものである。
Example A The results of implementing this invention in a blast furnace (inner volume 2700 rIe) are shown in FIG. 4 and Table 1. FIG. 4 shows changes in the temperature and concentration of hot metal discharged from the N&2 taphole of the blast furnace for each tap.

すなわち、この発明方法適用前(酸化鉄吹込みなし)の
期間すでは、溶銃中のSt濃度が高く、タップ毎のパフ
ツキ(σ鴨も0.16%と大きかった。そこで、期間C
において、全出銑口(NLI〜\3)の平均51濃度レ
ベルを0.10%に下げ、かつ出銑日別の引濃度偏差を
低減させるため当該出銑口での平均SI濃度レしA10
.10%に低下させるべく、送風羽口からの酸化鉄の吹
込みを開始し、同時にこの発明方法にしたがって各出銃
口方位で羽目11[)ニレベルでの滴下溶銑を採取し、
発光分光分析法により溶銑中St濃度を迅速分析し、一
方各出銃口から排出される溶銑中の5lfi度について
も濃淡電池により迅速分析を行ない、演算器lに入力し
、その時の脱珪酸素効率を算出し、この値を基に1羽日
直上レベルにおいて半連続的に計測され入力されてくる
滴下帯溶銑中81濃度の変動挙動を迅速にとらえ、目標
とする81濃度との差に応じて各羽目からの酸化鉄吹込
み量を調整し、同時に熱補償として、各羽目からの蒸気
吹込み量の調整を実施した結果、NL2出銑口における
51!績平均si濃度は0.09%低下し、目標値をほ
ぼ満足し、St@度変動巾(#3i)も0.08%まで
抑えられ、一方溶銑温度の変動− (at¥)ig)も愚化しなかった。
That is, in the period before the application of the method of this invention (without iron oxide injection), the St concentration in the melt gun was high, and the puffiness (σ duck was also large at 0.16%) at each tap.
In order to lower the average 51 concentration level of all the tap holes (NLI~\3) to 0.10% and reduce the drawn concentration deviation by tap date, the average SI concentration level at the relevant tap hole was set to A10.
.. In order to reduce the temperature to 10%, the injection of iron oxide from the blast tuyere was started, and at the same time, according to the method of this invention, the dripping hot metal was collected at the level of the siding 11 [) at each outlet direction,
The St concentration in the hot metal is quickly analyzed by optical emission spectrometry, and the 5lfi degree in the hot metal discharged from each gun port is also quickly analyzed using a concentration battery, which is input into a calculator 1 to calculate the desiliconization and oxygen efficiency at that time. Based on this value, the fluctuation behavior of the 81 concentration in the dripping zone hot metal, which is semi-continuously measured and inputted at a level just above the 1 day level, can be quickly grasped, and the fluctuation behavior of the 81 concentration in the dripping zone hot metal can be determined according to the difference from the target 81 concentration. As a result of adjusting the amount of iron oxide injected from each siding and at the same time adjusting the amount of steam blown from each siding as heat compensation, we found that 51! The average Si concentration decreased by 0.09%, almost meeting the target value, and the St @ degree fluctuation range (#3i) was also suppressed to 0.08%, while the fluctuation in hot metal temperature - (at\)ig) was also suppressed. I didn't get stupid.

また第1表は、第4図に示した時期での出銑日別の溶銑
中St濃度の平均レベルと平均溶銑温度の変化および各
出銃口間の溶銑中81濃度のバブツキ表において、翫2
出銑口における平均引濃度レベルの制御およびSl/1
度変動巾の低減の効果は、鳳1および一3出銑口におい
ても現われており、結果として各出銃口間の溶銑中Sl
濃度のバフツキ(T、H #st Di低減することができた。
In addition, Table 1 shows the changes in the average level of St concentration in hot metal and the average hot metal temperature by tapping date during the period shown in Figure 4, and the bubbly table of 81 concentrations in hot metal between each tapping port.
Control of average concentration level at taphole and Sl/1
The effect of reducing the range of temperature fluctuations is also seen at Otori No. 1 and No. 13 tapholes, and as a result, the Sl in the hot metal between each taphole is
The density buffiness (T, H #st Di) could be reduced.

(以下余白) 発明の効果 上記の実施例からも明らかなごとく、この発明によれば
、出銑日別の溶銑中Si濃度を!!測するとともに、高
炉炉腹部あるいは朝顔部よりサンプリングプローブを挿
入し、羽口レベル以上での滴下帯溶銑中のSI濃度を分
析し、両SI濃度値と目標81濃度とを基に当該出銑口
方位の羽口からの酸化鉄吹込み量を調整し、同時(熱補
償として酸化鉄吹込みtK応じて当該出銑口方位の燃料
吹込み量または蒸気吹込み量を調整することKより、荷
下り安定下で高炉より出銑されるt@銑銑中S製濃度溶
銑温度とを一定範囲内に制御することができるので、炉
況の安定化に大なる効果を奏するものである。
(The following is a blank space) Effects of the Invention As is clear from the above examples, according to the present invention, the Si concentration in hot metal can be calculated by tapping date! ! At the same time, a sampling probe is inserted from the blast furnace belly or morning glory part to analyze the SI concentration in the dripping zone hot metal above the tuyere level, and based on both SI concentration values and the target 81 concentration, Adjust the amount of iron oxide injected from the tuyere in the direction, and at the same time (adjust the amount of fuel or steam injected in the direction of the taphole in accordance with the iron oxide injection tK as thermal compensation). Since the temperature of hot metal tapped from the blast furnace under stable downflow can be controlled within a certain range, it has a great effect on stabilizing the furnace conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明方法を実施するための装置構成を示す
ブロック図、第2図はこの発明方法における酸化鉄吹込
み制御方法を示すフローチャート、第3図は同J:にお
ける酸化鉄吹込み量と蒸気吹込み調整量および出銑温度
との関係を示す図表、第4図社この発明の実施例におけ
る溶銑中St濃度と出銑温度の変化推移を示す図表であ
る。 1・・・・高炉、2・・・・酸化鉄貯蔵タンク、3,7
.9・・・・流量制御弁、4,8.10・・・・流量計
、5・・・・送風羽口、6・・・・補助燃料貯蔵タンク
、11.12・・・・演算器、13・・・・排ガスデー
タ、14・・・・装入物データ、15・・・・送風デー
タ、16・・・・出銑データ、18・・・・入力データ
設定器、19・・・・出銃口、20・・・・溶銑滓サン
プリングプローブ。 第1図 14装人物データ 第2図 第3図 JP14図 期間b ° 期藺C
Fig. 1 is a block diagram showing the configuration of an apparatus for carrying out the method of this invention, Fig. 2 is a flowchart showing a control method for iron oxide injection in the method of this invention, and Fig. 3 is the amount of iron oxide blown in J:. Fig. 4 is a chart showing the relationship between the amount of steam injection and the adjusted amount of steam injection and the tapping temperature, and Fig. 4 is a chart showing the change transition of the St concentration in hot metal and the tapping temperature in an example of the present invention. 1...Blast furnace, 2...Iron oxide storage tank, 3,7
.. 9...Flow rate control valve, 4,8.10...Flow meter, 5...Blow tuyere, 6...Auxiliary fuel storage tank, 11.12...Calculator, 13... Exhaust gas data, 14... Charge data, 15... Air blowing data, 16... Tapping data, 18... Input data setting device, 19... Gun outlet, 20...Hot metal slag sampling probe. Fig. 1 14 Character data Fig. 2 Fig. 3 JP14 Fig. Period b ° Period C

Claims (1)

【特許請求の範囲】[Claims] 酸化鉄を送風羽口から高炉に吹込む高炉操業法において
、円周方向各出銃口方位の羽口Vべp以上の滴下帯の溶
銑中Sl濃度と、各出銃日別の溶銑中5lfi度を実測
し、目標Sl濃度と前記羽目レベル以上の溶銑中S1濃
度および出銑日別の溶銑中Si濃度との差に応じて、送
風羽口からの酸化鉄吹込み量を各出銃口方位別に変更し
、さらに前記酸化鉄吹込み量に応じて当該出銑口方位の
燃料吹込み量または蒸気吹込み量を調整するととくよシ
、高炉より出銑される溶銑中Si濃度と溶銑温度を一定
範囲に維持することを特徴とする高炉の操業方法。
In the blast furnace operation method in which iron oxide is blown into the blast furnace from the blast tuyere, the Sl concentration in the hot metal in the dripping zone above the tuyere Vbep in each circumferential direction of the gun exit direction, and the 5 lfi degree in the hot metal for each gun exit date. was actually measured, and the amount of iron oxide injected from the blast tuyeres was determined for each outlet direction according to the difference between the target Sl concentration and the S1 concentration in the hot metal above the grain level and the Si concentration in the hot metal by tapping date. By changing the amount of iron oxide injected and further adjusting the amount of fuel injected or the amount of steam injected in the taphole direction according to the amount of iron oxide injected, the Si concentration in the hot metal tapped from the blast furnace and the hot metal temperature can be kept within a certain range. A method of operating a blast furnace characterized by maintaining
JP11714284A 1984-06-06 1984-06-06 Operating method of blast furnace Pending JPS60262909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11714284A JPS60262909A (en) 1984-06-06 1984-06-06 Operating method of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11714284A JPS60262909A (en) 1984-06-06 1984-06-06 Operating method of blast furnace

Publications (1)

Publication Number Publication Date
JPS60262909A true JPS60262909A (en) 1985-12-26

Family

ID=14704494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11714284A Pending JPS60262909A (en) 1984-06-06 1984-06-06 Operating method of blast furnace

Country Status (1)

Country Link
JP (1) JPS60262909A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593033A (en) * 2020-12-08 2021-04-02 攀钢集团攀枝花钢铁研究院有限公司 Method for using vanadium-titanium magnetite concentrate in blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593033A (en) * 2020-12-08 2021-04-02 攀钢集团攀枝花钢铁研究院有限公司 Method for using vanadium-titanium magnetite concentrate in blast furnace

Similar Documents

Publication Publication Date Title
WO2022009621A1 (en) Operation guidance method, method for operating blast furnace, method for manufacturing molten iron, operation guidance device
JP5924186B2 (en) Method of decarburizing and refining hot metal in converter
JPS60262909A (en) Operating method of blast furnace
EP3989013B1 (en) Method for controlling process, operation guidance method, method for operating blast furnace, method for producing hot metal, and device for controlling process
US4227921A (en) Method of controlling a blast furnace operation
JP7043949B2 (en) T. Fe estimation method, T.I. Fe control method, converter blow control device, and program
JPS60208405A (en) Operating method of blast furnace
JPH0128803B2 (en)
EP4155421A1 (en) Method for controlling hot metal temperature, operation guidance method, method for operating blast furnace, method for producing hot metal, device for controlling hot metal temperature, and operation guidance device
JP7319538B2 (en) Converter blowing control device, converter blowing control method and program
RU2180923C1 (en) Method of control of melting process in electric furnace
JPS5856723B2 (en) Continuous desiliconization method for hot metal
WO2023276357A1 (en) Supplied heat quantity estimation method, supplied heat quantity estimation device, supplied heat quantity estimation program, and operation method for blast furnace
WO2022168396A1 (en) Supplied heat quantity estimation method, supplied heat quantity estimation device, and operation method for blast furnace
JP2897363B2 (en) Hot metal production method
KR100985238B1 (en) Method for controlling the amount of supplying pulverized coal as to gas using ratio in blast furnace
JPH05339617A (en) Converter blowing method
JPH0433846B2 (en)
JP2837284B2 (en) Method and apparatus for producing hot metal containing chromium
JPH01195217A (en) Operation of melting and reducing furnace
JP2022152721A (en) Operation method of blast furnace
JPH05239522A (en) Production of molten iron
JPS6383210A (en) Pre-reduction smelting apparatus
JPS6342309A (en) Blast furnace operation
JP2001279317A (en) Method for dephosphorizing molten iron