JPS6383210A - Pre-reduction smelting apparatus - Google Patents

Pre-reduction smelting apparatus

Info

Publication number
JPS6383210A
JPS6383210A JP22692586A JP22692586A JPS6383210A JP S6383210 A JPS6383210 A JP S6383210A JP 22692586 A JP22692586 A JP 22692586A JP 22692586 A JP22692586 A JP 22692586A JP S6383210 A JPS6383210 A JP S6383210A
Authority
JP
Japan
Prior art keywords
reduction
raw material
exhaust gas
gas
reduction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22692586A
Other languages
Japanese (ja)
Inventor
Shiro Fujii
史朗 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP22692586A priority Critical patent/JPS6383210A/en
Publication of JPS6383210A publication Critical patent/JPS6383210A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the operation by operating reduction ratio at outlet of a pre- reduction furnace from gas temps. and compositions flowing a high temp. gas supplying tube and an exhaust gas tube, and composition and quantity of supplying raw material to adjust supplying raw material quantity and control the reduction ratio to the prescribed value. CONSTITUTION:The reducing reaction condition measuring means 12, 13 are fitted to the high temp. gas supplying tube 4 and the exhaust gas tube 8 respectively, to meausre the composition and temp. of flowing gas in the pipes, 4, 8. And the raw material condition measuring means 11 is fitted to the raw material supplying tube 4, to measure the composition and temp. of raw material. Further, the flow rate measuring means 14 is fitted to a piping between a heat recovery device 7 and a decarbonic acid device 9, to measure exhaust gas flow rate. The output signal of each measuring means 11-14 is transmitted to an arithmetic unit 17, to calculate the reduction ratio at a part of extracting tube 5 at the outlet part of pre-reduction furnace 1. In accordance with this reduction ratio, the composition and supplying quantity of raw material supplied in the pre-reduction furnace 1 are set up. In this way, as the reduction ratio in the pre-reduction furnace 1 is operated under controlling to the constant value, the stable operation for a smelting reduction furnace 3 is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、予備還元炉に供給する高温ガス等の成分、温
度、流量、圧力を測定して還元率を所定値に制御するこ
とができる予備還元製錬装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is capable of controlling the reduction rate to a predetermined value by measuring the components, temperature, flow rate, and pressure of high-temperature gas supplied to a preliminary reduction furnace. This invention relates to a preliminary reduction smelting device.

[従来の技術] 溶融還元製錬装置として、転炉型のものが知られている
。この装置は、溶融還元を行なう溶融還元炉から発生し
た排ガスを利用して流動層を形成するものである。而し
て、」二記排気ガスを1000〜1200℃に冷却した
ガスで鉄鉱石を予備還元してから溶融還元炉内に投入す
ることにより生産性の向上を図っている。かかる予備還
元製錬装置としては、粗粒、微粒の原料を何ずれも使用
することができる所謂流動層タイプの予備還元製錬装置
が一般に採用されている。
[Prior Art] A converter type device is known as a smelting reduction smelting device. This device forms a fluidized bed using exhaust gas generated from a melt reduction furnace that performs melt reduction. Therefore, productivity is improved by pre-reducing the iron ore with the exhaust gas cooled to 1000 to 1200° C. and then charging it into the smelting reduction furnace. As such a pre-reduction smelting apparatus, a so-called fluidized bed type pre-reduction smelting apparatus, which can use both coarse and fine raw materials, is generally employed.

[発明が解決、しようとする問題点] しかしながら、溶融還元炉から発生する排ガスを利用し
て予備還元するものでは、入口ガスの成分、温度等のば
らつきや、原料成分のばらつき等により予備還元率を一
定にして運転することは極めて難しい。その結果、安定
して溶融還元炉を操業することが困難であった。
[Problems to be solved or attempted by the invention] However, in the case where the preliminary reduction is performed using the exhaust gas generated from the smelting reduction furnace, the preliminary reduction rate may vary due to variations in the composition and temperature of the inlet gas, variations in the raw material composition, etc. It is extremely difficult to drive with a constant value. As a result, it has been difficult to operate the melting reduction furnace stably.

本発明は、かかる点に鑑みてなされたものであり、予備
還元炉の還元率を一定に制御して運転することにより、
安定して溶融還元炉を操業することができる予備還元製
錬装置を提供するものである。
The present invention has been made in view of this point, and by controlling and operating the reduction rate of the pre-reduction furnace at a constant level,
The present invention provides a preliminary reduction smelting device that can stably operate a smelting reduction furnace.

[問題点を解決するための手段] 本発明は、原料供給管から炉床部に所定の原料か投入さ
れる予備還元炉と、該予備還元炉に溶融還元炉から高温
ガスを供給する高温ガス供給管と、該予備還元炉内で発
生した排ガスを熱回収装置に導く排ガス排出管と、該熱
回収装置を出た排ガスを所定のガス源として供給するガ
ス供給管とを具備する予備還元製錬装置において、高温
ガス供給管及び排ガス排出管の夫々に取付けられたこれ
らの管内を流れるガスの成分、温度、流量、圧力を測定
する還元反応条件測定手段を設けると共に、原料供給管
から投入される原料の成分及び供給量を測定する原料条
件測定手段を設け、かつ、該還元反応条件測定手段及び
該原料条件測定手段からの測定信号によって予備還元炉
の出口における還元率を演算する演算部を設け、該演算
部の出力信号に基づいて供給原料の量を増減して該還元
率を所定値に制御する予備還元製錬装置である。
[Means for Solving the Problems] The present invention provides a preliminary reduction furnace in which a predetermined raw material is fed into the hearth from a raw material supply pipe, and a high-temperature gas supply system in which high-temperature gas is supplied from a melting reduction furnace to the preliminary reduction furnace. A pre-reduction product comprising a supply pipe, an exhaust gas discharge pipe that guides the exhaust gas generated in the pre-reduction furnace to the heat recovery device, and a gas supply pipe that supplies the exhaust gas exiting the heat recovery device as a predetermined gas source. In the refining equipment, a means for measuring reduction reaction conditions is installed to measure the components, temperature, flow rate, and pressure of the gas flowing in the high-temperature gas supply pipe and the exhaust gas discharge pipe, respectively. a raw material condition measuring means for measuring the ingredients and supply amount of the raw material, and a calculating section for calculating the reduction rate at the outlet of the preliminary reduction furnace based on the measurement signals from the reduction reaction condition measuring means and the raw material condition measuring means. This is a preliminary reduction smelting device that increases or decreases the amount of feedstock based on the output signal of the calculation section and controls the reduction rate to a predetermined value.

また、上記予備還元製錬装置に、熱回収装置を出た排ガ
スをリサイクルして予備還元炉に供給する戻しガス供給
管と、演算部の出力信号に基づいて前記戻しガス供給管
から前記予備還元炉へ供給する排ガスの成分、温度、流
量を調節する排ガス性状調節手段とを設けても良い。
Further, the preliminary reduction smelting device includes a return gas supply pipe that recycles the exhaust gas exiting the heat recovery device and supplies it to the preliminary reduction furnace; An exhaust gas property adjusting means for adjusting the components, temperature, and flow rate of the exhaust gas supplied to the furnace may also be provided.

[作用] 本発明にかかる予備還元製錬装置によれば、先ず、予備
還元炉に供給する高温ガス及び予備還元炉からの排出ガ
スについて、その成分、温度、流量、圧力を測定する。
[Operation] According to the pre-reduction smelting apparatus according to the present invention, first, the components, temperature, flow rate, and pressure of the high-temperature gas supplied to the pre-reduction furnace and the exhaust gas from the pre-reduction furnace are measured.

次いで、予備還元炉に供給する原料の成分、供給量を測
定する。次に、このようにして得た測定値を演算部に供
給して予備還元炉の出口における還元率を演算する。然
る後、この演算値から供給原料の量を増減して予備還元
炉の還元率を所定値に制御する。このようにして予備還
元炉の還元率を常に一定の値に制御して運転することに
より、安定して溶融還元炉を操業することができる。
Next, the components and supply amount of the raw material to be supplied to the preliminary reduction furnace are measured. Next, the measured values obtained in this manner are supplied to a calculation section to calculate the reduction rate at the outlet of the preliminary reduction furnace. Thereafter, the amount of feedstock is increased or decreased based on this calculated value to control the reduction rate of the preliminary reduction furnace to a predetermined value. By controlling and operating the reduction rate of the preliminary reduction furnace at a constant value in this manner, the melting reduction furnace can be stably operated.

また、戻しガス供給管と排ガス性状調節手段とを付加し
た場合は、先ず、予備還元炉に供給する高温ガス及びリ
サイクルによる排ガスと予備還元炉からの排出ガスにつ
いて、その成分、温度、流量、圧力を測定する。次いで
、予備還元炉に供給する原料の成分、供給量を測定する
。次に、このようにして得た測定値を演算部に供給して
予備還元炉の出口における還元率を演算する。算出した
還元率が目標値に達していない場合は、この演算値に基
づき排ガス性状調節手段によって戻しガス供給管から予
備還元炉へ供給する排ガスの成分、温度、流量を調節し
て予備還元炉の還元率を所定値に制御する。このように
して予備還元炉の還元率を常に一定の値に制御して運転
することにより、安定して溶融還元炉を操業することが
できる。
In addition, when a return gas supply pipe and exhaust gas property adjustment means are added, firstly, the components, temperature, flow rate, and pressure of the high-temperature gas supplied to the pre-reduction furnace, the recycled exhaust gas, and the exhaust gas from the pre-reduction furnace are determined. Measure. Next, the components and supply amount of the raw material to be supplied to the preliminary reduction furnace are measured. Next, the measured values obtained in this manner are supplied to a calculation section to calculate the reduction rate at the outlet of the preliminary reduction furnace. If the calculated reduction rate does not reach the target value, the composition, temperature, and flow rate of the exhaust gas supplied from the return gas supply pipe to the pre-reduction furnace are adjusted by the exhaust gas property control means based on this calculated value. Control the return rate to a predetermined value. By controlling and operating the reduction rate of the preliminary reduction furnace at a constant value in this manner, the melting reduction furnace can be stably operated.

[実施例] 以下、本発明の実施例にって図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例の予備還元製錬装置の概略
構成を示す説明図である。図中1は、予備還元炉である
。予備還元炉1の下側部には、原料の鉄鉱石を炉床部に
投入するための原料供給管2が設けられている。予備還
元炉1の底部には、溶融還元炉3から1000〜120
0 ℃に冷却された溶融還元ガスを炉内へ流入するため
の高温ガス供給管4が設けられている。また、予備還元
炉1の側部には、予備還元された鉄鉱石を溶融還元炉3
へ導くための抜き出し管5が形成されている。
FIG. 1 is an explanatory diagram showing a schematic configuration of a preliminary reduction smelting apparatus according to an embodiment of the present invention. 1 in the figure is a preliminary reduction furnace. A raw material supply pipe 2 is provided on the lower side of the pre-reduction furnace 1 to feed iron ore as a raw material into the hearth. At the bottom of the preliminary reduction furnace 1, 1000 to 120
A high temperature gas supply pipe 4 is provided for flowing the molten reducing gas cooled to 0° C. into the furnace. Further, on the side of the preliminary reduction furnace 1, the preliminary reduced iron ore is placed in the smelting reduction furnace 3.
An extraction pipe 5 is formed for guiding the air to the air.

炉頂部には、予備還元を行なった反応後の排ガスを集塵
機6を経て熱回収装置7へ導く排ガス排出管8が接続さ
れている。熱回収装置7を出た排ガスは、脱炭酸装置9
、ブローク10を順次経て図示しない熱源部に供給され
るようになっている。
An exhaust gas discharge pipe 8 is connected to the top of the furnace for guiding the exhaust gas after the reaction which has undergone preliminary reduction to a heat recovery device 7 via a dust collector 6. The exhaust gas leaving the heat recovery device 7 is sent to the decarbonation device 9.
, and the blower 10 in order, and are supplied to a heat source section (not shown).

原料供給管2には、炉内に供給される原料の成分、供給
量を測定する原料条件測定手段11が取付けられている
。原料の成分手段11aは、例えばサンプリング装置−
滴定分析装置で構成され、原料供給量の成分手段11b
は、例えばコンスタントフィードウニイヤーで構成され
ている。また、高温ガス供給管4には、炉内に供給され
る高温ガスの成分、温度を測定する第1還元反応条件測
定手段12が取付けられている。高温ガスの成分手段1
2aは、例えばガスクロマトグラフィーで構成され、高
温ガスの温度測定手段12bは、例えば白金−白金ロジ
ウム熱電対で構成されている。また、ガス供給管8には
、炉からの排ガス温ガスの成分、温度を測定する第2還
元反応条件測定手段13が取付けられている。排ガスの
成分手段13aは、例えばガスクロマトグラフィーで構
成され、排ガスの温度測定手段13bは、例えばクロメ
ル−アルメル熱雷対で構成されている。また、熱回収装
置7から脱炭酸装置9に至る配管には、熱回収後の排ガ
スの流量を測定する流量手段14が取付けられている。
A raw material condition measuring means 11 is attached to the raw material supply pipe 2 to measure the components and supply amount of the raw material supplied into the furnace. The raw material component means 11a is, for example, a sampling device.
Composed of a titration analyzer, the component means 11b for determining the raw material supply amount
For example, it consists of a constant feed sea urchin ear. Further, a first reduction reaction condition measuring means 12 is attached to the high temperature gas supply pipe 4 to measure the components and temperature of the high temperature gas supplied into the furnace. High temperature gas component means 1
2a is composed of, for example, gas chromatography, and the high-temperature gas temperature measuring means 12b is composed of, for example, a platinum-platinum-rhodium thermocouple. Further, a second reduction reaction condition measuring means 13 is attached to the gas supply pipe 8 to measure the components and temperature of the hot exhaust gas from the furnace. The exhaust gas component means 13a is composed of, for example, gas chromatography, and the exhaust gas temperature measuring means 13b is composed of, for example, a chromel-alumel thermal lightning pair. Furthermore, a flow rate means 14 is attached to the pipe leading from the heat recovery device 7 to the decarbonation device 9 to measure the flow rate of the exhaust gas after heat recovery.

流量手段14、第2還元反応条件測定手段13、第1還
元反応条件測定手段12及び原料条件測定手段11は、
所定の出力信号を演算部17に供給するようになってい
る。演算部17は、これらの測定手段から供給された信
号をもとにして演算処理を行ない、予備還元炉1の出口
部である抜き出し管5の部分での還元率を算出するよう
になっている。演算部17は、算出した還元率に応じた
信号を出力し、原料供給管2から炉内へ供給する原料の
成分及び供給量を所定のものに設定するようになってい
る。
The flow rate means 14, the second reduction reaction condition measurement means 13, the first reduction reaction condition measurement means 12, and the raw material condition measurement means 11,
A predetermined output signal is supplied to the calculation section 17. The calculation unit 17 performs calculation processing based on the signals supplied from these measurement means, and calculates the reduction rate at the extraction pipe 5, which is the outlet of the preliminary reduction furnace 1. . The calculation unit 17 outputs a signal according to the calculated reduction rate, and sets the components and supply amount of the raw material to be supplied from the raw material supply pipe 2 into the furnace to predetermined values.

而して、このように構成された予備還元製錬装置によれ
ば、先ず原料の鉄鉱石を原料供給管2から炉床部に投入
する。次いで、1000〜1200℃に冷却された溶融
還元ガスを溶融還元炉3から高温ガス供給管4を介して
予備還元炉1へ供給して予備還元を行なう。炉内での予
備還元によって発生した排ガスは、炉頂部から排ガス排
出管8を経て集塵機6、熱回収装置7、脱炭酸装置9、
ブローク10に順次供給し、所定のガス源として有効利
用する。一方、所定の予備還元を行なった鉄鉱石は、抜
き出し管5から溶融還元炉3に供給される。このとき抜
き出し管5から排出される鉄鉱石の還元率は、原料条件
測定手段11、第1還元反応条件測定手段12及び第2
還元反応条件測定手段13から所定の出力信号を受けた
演算部17が、これらの信号をもとにして演算処理を行
ない算出する。還元率をは例えば次式によって求められ
る。
According to the preliminary reduction smelting apparatus configured as described above, iron ore as a raw material is first charged into the hearth portion from the raw material supply pipe 2. Next, the molten reducing gas cooled to 1000 to 1200° C. is supplied from the smelting reduction furnace 3 to the preliminary reduction furnace 1 via the high temperature gas supply pipe 4 to perform preliminary reduction. The exhaust gas generated by preliminary reduction in the furnace is passed from the top of the furnace through an exhaust gas discharge pipe 8 to a dust collector 6, a heat recovery device 7, a decarboxylation device 9,
The gas is sequentially supplied to the blower 10 and effectively used as a predetermined gas source. On the other hand, the iron ore that has been subjected to a predetermined preliminary reduction is supplied from the extraction pipe 5 to the smelting reduction furnace 3. At this time, the reduction rate of the iron ore discharged from the extraction pipe 5 is determined by the raw material condition measuring means 11, the first reduction reaction condition measuring means 12, and the second reduction reaction condition measuring means 12.
The calculation section 17 receives predetermined output signals from the reduction reaction condition measuring means 13 and performs calculation processing based on these signals. The reduction rate can be determined, for example, by the following formula.

予備還元率−(ΔPe2 o 3 ) / (Pe2 
o 3 )×100% (ΔPe203):上記11aの測定値−予備還元炉出
口計算値 (Pe  O)  :上記11aの測定値而して、算出
された還元率が所定値にない場合は、演算部17が算出
した還元率に応じた信号を出力して原料供給管2から炉
内へ供給する原料の成分或は供給量を所定のものに設定
する。この場合、必要に応じて演算部17は、流量測定
手段14の出力信号を考慮して還元率を算出する。この
ようして予備還元炉1の還元率を所定値に制御する。そ
の結果、予備還元炉1の還元率を常に一定の値に制御し
て運転きるので、安定した溶融還元炉3の操業を実現す
ることができる。
Preliminary reduction rate - (ΔPe2 o 3 ) / (Pe2
o 3 ) x 100% (ΔPe203): Measured value in 11a above - Calculated value at outlet of preliminary reduction furnace (Pe O): Measured value in 11a above.If the calculated reduction rate is not within the predetermined value, calculate The unit 17 outputs a signal corresponding to the calculated reduction rate, and sets the components or supply amount of the raw material to be supplied from the raw material supply pipe 2 into the furnace to a predetermined value. In this case, the calculation unit 17 calculates the return rate in consideration of the output signal of the flow rate measuring means 14 as necessary. In this way, the reduction rate of the preliminary reduction furnace 1 is controlled to a predetermined value. As a result, the reduction rate of the preliminary reduction furnace 1 can be controlled to a constant value at all times, so that stable operation of the smelting reduction furnace 3 can be realized.

因みに、実施例の予備還元製錬装置を使用して目標還元
率を10%に設定し、下記の運転条件で予備還元を行な
ったところ、演算部17で算出された還元率は9%であ
った。そこで、演算部17から所定の信号を出力し、原
料の供給量を下記のように変化させたところ略目標値の
還元率(10,1%)が得られた。
Incidentally, when the target reduction rate was set to 10% using the preliminary reduction smelting apparatus of the example and preliminary reduction was performed under the following operating conditions, the reduction rate calculated by the calculation unit 17 was 9%. Ta. Therefore, when a predetermined signal was output from the calculation unit 17 and the feed rate of the raw material was changed as shown below, a reduction rate (10.1%) approximately equal to the target value was obtained.

運転条件 原料の成分  鉱石(T−F B7.0%、 Fe05
%)原料の供給量 1874/(g/H,変化後の原料
の供給量 IB87Kg/H。
Operating conditions Raw material components Ore (T-F B7.0%, Fe05
%) Raw material supply amount 1874/(g/H, raw material supply amount after change IB87Kg/H.

高温ガスの成分 H2(4,92%)、H2O(21,42%)。Composition of hot gas H2 (4,92%), H2O (21,42%).

CO(42,08%) 、 Co2(31,3ft%)
CO (42,08%), Co2 (31,3ft%)
.

N 2(0,22%) 流量 1437N m 3 温度 1800℃ 排ガスの成分 H2(7,89%)、H2O(lB、83%)。N2 (0.22%) Flow rate 1437N m3 Temperature 1800℃ Components of exhaust gas H2 (7,89%), H2O (1B, 83%).

C0(38,11%) 、 CO2(37,15%)。C0 (38,11%), CO2 (37,15%).

N 2(0,22%) 流量 2388N m ” 温度 1150℃ 次に本発明の他の実施例にって図面を参照して説明する
N 2 (0.22%) Flow rate: 2388 Nm'' Temperature: 1150° C. Next, other embodiments of the present invention will be described with reference to the drawings.

第2図は、本発明の他の実施例の予備還元製錬装置の概
略構成を示す説明図である。前記実施例と同一部分につ
いては同符号を付している。予備還元炉1の下側部には
、原料の鉄鉱石を炉床部に投入するための原料供給管2
が設けられている。
FIG. 2 is an explanatory diagram showing a schematic configuration of a preliminary reduction smelting apparatus according to another embodiment of the present invention. The same parts as in the previous embodiment are given the same reference numerals. At the lower part of the preliminary reduction furnace 1, there is a raw material supply pipe 2 for feeding iron ore as a raw material into the hearth part.
is provided.

予備還元炉1の底部には、溶融還元炉3から1000〜
1200℃に冷却された溶融還元ガスを炉内へ流入する
ための高温ガス供給管4が設けられている。また、予備
還元炉1の底部には、後述する排ガスがリサイクルガス
として戻しガス供給管21から供給されるようになって
いる。予備還元炉1の側部には、予備還元された鉄鉱石
を溶融還元炉3へ導くための抜き出し管5が形成されて
いる。炉頂部には、予備還元を行なった反応後の排ガス
を集塵機6を経て熱回収装置7へ導く排ガス排出管8が
接続されている。熱回収装置7を出た排ガスは、脱炭酸
装置9、第1ブローワ10を順次経て図示しない下工程
に供給されるようになっている。第1ブローワ10を出
た排ガスの一部は、リサイクルガスとして戻しガス供給
管21によって第2ブロワ−22、排ガス性状調節手段
23を順次経て予備還元炉1へ供給されるようになって
いる。原料供給管2には、炉内に供給される原料の成分
、供給量を測定する原料条件測定手段11が取付けられ
ている。原料の成分測定手段11aは、例えばサンプリ
ング装置−滴定分析装置で構成され、原料供給量の成分
測定手段11bは、例えばコンスタントフィードウニイ
ヤーで構成されている。また、高温ガス供給管4には、
炉内に供給される高温ガスの成分、温度、流量を測定す
る第1還元反応条件測定手段12が取付けられている。
At the bottom of the preliminary reduction furnace 1, 1000~
A high-temperature gas supply pipe 4 is provided for flowing molten reducing gas cooled to 1200° C. into the furnace. Furthermore, exhaust gas, which will be described later, is supplied to the bottom of the preliminary reduction furnace 1 as a recycled gas from a return gas supply pipe 21. An extraction pipe 5 is formed on the side of the preliminary reduction furnace 1 for guiding the preliminary reduced iron ore to the smelting reduction furnace 3. An exhaust gas discharge pipe 8 is connected to the top of the furnace for guiding the exhaust gas after the reaction which has undergone preliminary reduction to a heat recovery device 7 via a dust collector 6. The exhaust gas exiting the heat recovery device 7 passes through a decarboxylation device 9 and a first blower 10 in sequence, and is supplied to a lower process (not shown). A part of the exhaust gas exiting the first blower 10 is supplied as recycle gas to the preliminary reduction furnace 1 through a return gas supply pipe 21 through a second blower 22 and an exhaust gas property adjusting means 23 in sequence. A raw material condition measuring means 11 is attached to the raw material supply pipe 2 to measure the components and supply amount of the raw material supplied into the furnace. The raw material component measuring means 11a is composed of, for example, a sampling device-titration analyzer, and the raw material supply amount component measuring means 11b is composed of, for example, a constant feed unit. In addition, the high temperature gas supply pipe 4 includes
A first reduction reaction condition measuring means 12 is installed to measure the components, temperature, and flow rate of the high-temperature gas supplied into the furnace.

高温ガスの成分測定手段12aは、例えばガスクロマト
グラフィーで構成され、高温ガスの温度測定手段12b
は、例えば白金−白金ロジウム熱雷対で構成され、高温
ガスの流量測定手段12cは、例えばオリフィスで構成
されている。
The high-temperature gas component measuring means 12a is composed of, for example, gas chromatography, and the high-temperature gas temperature measuring means 12b
is composed of, for example, a platinum-platinum-rhodium thermal lightning pair, and the high-temperature gas flow rate measuring means 12c is composed of, for example, an orifice.

また、ガス供給管8には、炉からの排ガスの成分、温度
、流量を測定する第2還元反応条件測定手段13が取付
けられている。排ガスの成分測定手段13aは、例えば
ガスクロマトグラフィーで構成され、排ガスの温度測定
手段13bは、例えばクロメル−アルメル熱電対で構成
され、排ガスの流量測定手段13cは、例えばオリフィ
スで構成されている。第2ブロワ−22と排ガス性状調
節手段23との間には第3還元反応条件測定手段24が
取付けられている。リサイクルされた排ガスの成分測定
手段24aは、例えばガスクロマトグラフィーで構成さ
れ、排ガスの温度測定手段24bは、例えば水銀温度計
で構成され、排ガスの流量測定手段24cは、例えばオ
リフィスで構成されている。排ガス性状調節手段23は
、流量計23aと流量調節バルブ23bとで構成されて
いる。また、熱回収装置7から脱炭酸装置9に至る配管
には、熱回収後の排ガスの流量を測定する流量測定手段
14が取付けられている。流量測定手段14、第3還元
反応条件測定手段24、第2還元反応条件測定手段13
、第1還元反応条件測定手段12及び原料条件測定手段
11は、所定の出力信号を演算部17に供給するように
なっている。
Further, a second reduction reaction condition measuring means 13 is attached to the gas supply pipe 8 to measure the components, temperature, and flow rate of the exhaust gas from the furnace. The exhaust gas component measuring means 13a is composed of, for example, gas chromatography, the exhaust gas temperature measuring means 13b is composed of, for example, a chromel-alumel thermocouple, and the exhaust gas flow rate measuring means 13c is composed of, for example, an orifice. A third reduction reaction condition measuring means 24 is installed between the second blower 22 and the exhaust gas property adjusting means 23. The recycled exhaust gas component measuring means 24a is composed of, for example, gas chromatography, the exhaust gas temperature measuring means 24b is composed of, for example, a mercury thermometer, and the exhaust gas flow rate measuring means 24c is composed of, for example, an orifice. . The exhaust gas property adjusting means 23 is composed of a flow meter 23a and a flow rate regulating valve 23b. Further, a flow rate measuring means 14 for measuring the flow rate of the exhaust gas after heat recovery is attached to the pipe leading from the heat recovery device 7 to the decarbonation device 9. Flow rate measurement means 14, third reduction reaction condition measurement means 24, second reduction reaction condition measurement means 13
, the first reduction reaction condition measuring means 12 and the raw material condition measuring means 11 are adapted to supply predetermined output signals to the calculation unit 17.

演算部17は、これらの測定手段から供給された信号を
もとにして演算処理を行ない、予備還元炉1の出口部で
ある抜き出し管5の部分での還元率を算出するようにな
っている。演算部17は、算出した還元率に応じた信号
を出力し、算出した還元率が目標値に達していない場合
は、この演算値に基づき排ガス性状調節手段によって戻
しガス供給管から予備還元炉へ供給する排ガスの成分、
温度、流量を調節し、予備還元炉の還元率を所定値に制
御するようになっている。
The calculation unit 17 performs calculation processing based on the signals supplied from these measurement means, and calculates the reduction rate at the extraction pipe 5, which is the outlet of the preliminary reduction furnace 1. . The calculation unit 17 outputs a signal according to the calculated reduction rate, and if the calculated reduction rate does not reach the target value, the exhaust gas property adjustment means controls the return gas from the return gas supply pipe to the preliminary reduction furnace based on this calculated value. Components of exhaust gas to be supplied,
The temperature and flow rate are adjusted to control the reduction rate of the preliminary reduction furnace to a predetermined value.

而して、このように構成された予備還元製錬装置によれ
ば、先ず原料の鉄鉱石を原料供給管2から炉床部に投入
する。次いで、1000〜1200℃に冷却された溶融
還元ガスを溶融還元炉3から高温ガス供給管4を介して
予備還元炉1へ供給して予備還元を行なう。炉内での予
備還元によって発生した排ガスは、炉頂部から排ガス排
出管8を経て集塵機6、熱回収装置7、脱炭酸装置9、
第1ブローワ10に順次供給し、所定のガス源として有
効利用する。第1ブローワ10を出た排ガスの一部は、
第2ブロワ−22、排ガス性状調節手段23を順次経て
戻しガス供給管21によって予備還元炉1内ヘリサイク
ルされる。一方、所定の予備還元を行なった鉄鉱石は、
抜き出し管5から溶融還元炉3に供給される。、このと
き抜き出し管5から排出される鉄鉱石の還元率は、原料
条件測定手段11、第1還元反応条件測定手段12、第
2還元反応条件測定手段13及び第3還元反応条件測定
手段24から所定の出力信号を受けた演算部17が、こ
れらの信号をもとにして演算処理を行ない算出する。還
元率は、例えば次式によって求められる。
According to the preliminary reduction smelting apparatus configured as described above, iron ore as a raw material is first charged into the hearth portion from the raw material supply pipe 2. Next, the molten reducing gas cooled to 1000 to 1200° C. is supplied from the smelting reduction furnace 3 to the preliminary reduction furnace 1 via the high temperature gas supply pipe 4 to perform preliminary reduction. The exhaust gas generated by preliminary reduction in the furnace is passed from the top of the furnace through an exhaust gas discharge pipe 8 to a dust collector 6, a heat recovery device 7, a decarboxylation device 9,
The gas is sequentially supplied to the first blower 10 and effectively used as a predetermined gas source. A part of the exhaust gas leaving the first blower 10 is
The gas passes sequentially through the second blower 22 and the exhaust gas property adjusting means 23 and is recycled into the preliminary reduction furnace 1 by the return gas supply pipe 21. On the other hand, iron ore that has undergone the prescribed preliminary reduction is
It is supplied from the extraction pipe 5 to the melting reduction furnace 3. At this time, the reduction rate of the iron ore discharged from the extraction pipe 5 is determined from the raw material condition measurement means 11, the first reduction reaction condition measurement means 12, the second reduction reaction condition measurement means 13, and the third reduction reaction condition measurement means 24. The calculation unit 17 that receives the predetermined output signals performs calculation processing based on these signals. The reduction rate is determined, for example, by the following formula.

予備還元率−(ΔPe  O)/(Po203)×10
0% (ΔPe203) : J:記11aの測定値−予備還
元炉出口計算値 (Pe  O)  :上記11aの測定値而して、算出
された還元率が所定値にない場合は、演算部17が算出
した還元率に応じた信号を流量計23aと流量調節バル
ブ23bに出力して、戻しガス供給管21から炉内ヘリ
サイクルする排ガスの流量、温度を所定のものに変化さ
せる。なお、還元率の算出に際しては必要に応じて流量
側定年段14の出力信号を考慮される。このようして予
備還元炉1の還元率を所定値に制御する。その結果、予
備還元炉1の還元率を常に一定の値に制御して運転きる
ので、安定した溶融還元炉3の操業を実現することがで
きる。
Preliminary reduction rate - (ΔPe O) / (Po203) × 10
0% (ΔPe203): J: Measured value in 11a - Calculated value at outlet of preliminary reduction furnace (Pe O): Measured value in 11a above.If the calculated reduction rate is not within the predetermined value, the calculation unit 17 A signal corresponding to the reduction rate calculated by is outputted to the flow meter 23a and the flow rate adjustment valve 23b to change the flow rate and temperature of the exhaust gas recycled from the return gas supply pipe 21 into the furnace to predetermined values. Note that when calculating the return rate, the output signal of the flow rate side retirement stage 14 is taken into consideration as necessary. In this way, the reduction rate of the preliminary reduction furnace 1 is controlled to a predetermined value. As a result, the reduction rate of the preliminary reduction furnace 1 can be controlled to a constant value at all times, so that stable operation of the smelting reduction furnace 3 can be realized.

因みに、実施例の予備還元製錬装置を使用して目標還元
率を10%に設定し、下記の運転条件で予備還元を行な
ったところ、演算部17で算出された還元率は9.5%
であった。そこで、演算部17から所定の信号を出力し
、リサイクルさせる排ガスの供給量を下記のように変化
させたところ略目標値の還元率(10,1%)が得られ
た。
Incidentally, when the target reduction rate was set to 10% using the preliminary reduction smelting apparatus of the example and preliminary reduction was performed under the following operating conditions, the reduction rate calculated by the calculation unit 17 was 9.5%.
Met. Therefore, when a predetermined signal was output from the calculation section 17 and the supply amount of exhaust gas to be recycled was changed as shown below, a reduction rate (10.1%) approximately equal to the target value was obtained.

運転条件 原料の成分  鉱石(T−P 67.0%、 FeO5
%)原料の供給量 1678/l’g/H。
Operating conditions Raw material components Ore (T-P 67.0%, FeO5
%) Raw material supply amount 1678/l'g/H.

高温ガスの成分 H2(4,92%)、H2O(21,42%)。Composition of hot gas H2 (4,92%), H2O (21,42%).

Co (42,08%) 、 Co2(31,36%)
Co (42,08%), Co2 (31,36%)
.

H2(0,22%) 流量 1437N m 3 温度 1800°C 排ガスの成分 H2(7,89%)、H2O(1[i、83%)。H2 (0,22%) Flow rate 1437N m3 Temperature 1800°C Components of exhaust gas H2 (7,89%), H2O (1[i, 83%).

Co (38,11%) 、  C02(37,15%
)。
Co (38,11%), C02 (37,15%
).

H2(0,22%) 流量 2388N m 3 温度 1150°C リサイクル排ガスの成分 H2< 14g32%) 、H2O(7,39%)。H2 (0,22%) Flow rate 2388N m3 Temperature 1150°C Components of recycled exhaust gas H2<14g32%), H2O (7,39%).

CO(29,65%) 、 C02(48,42%)。CO (29,65%), CO2 (48,42%).

N 2(0,22%) 流量 9[1ONm。N2 (0.22%) Flow rate 9 [1ONm.

変化後のリサイクル排ガスの流量 31Nm3 温度 40℃ [発明の効果] 以上説明した如く、本発明にががる予備還元製錬装置に
よれば、予備還元炉の還元率を常に一定の値に制御して
運転することにより、安定して溶融還元炉を操業するこ
とができるものである。
Flow rate of recycled exhaust gas after change: 31 Nm3 Temperature: 40°C [Effects of the invention] As explained above, according to the pre-reduction smelting apparatus according to the present invention, the reduction rate of the pre-reduction furnace is always controlled to a constant value. By operating the melting reduction furnace in a stable manner, it is possible to operate the melting reduction furnace stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明装置を実施する予備還元炉とその還元
率を所定値に制御する制御システムの一実施例を示す説
明図、第2図は、同制御システムの他の実施例を示す説
明図である。 1・・・予備還元炉、2・・・原料供給管、3・・・溶
融還元炉、4・・・高温ガス供給管、5・・・抜き出し
管、6・・・・・・集塵機、7・・・熱回収装置、8・
・・排ガス排出管、9・・・脱炭酸装置、10・・・ブ
ローワ、11・・・原料条件測定手段、12・・・第1
還元反応条件測定手段、13・・・第2還元反応条件測
定手段、14・・・流量測定手段、17・・・演算部、
21・・・戻しガス供給管、22・・・第2ブロワ−2
23・・・排ガス性状調節手段、24・・・第3還元反
応条件測定手段。
Fig. 1 is an explanatory diagram showing one embodiment of a preliminary reduction furnace implementing the present invention apparatus and a control system for controlling its reduction rate to a predetermined value, and Fig. 2 shows another embodiment of the same control system. It is an explanatory diagram. DESCRIPTION OF SYMBOLS 1... Preliminary reduction furnace, 2... Raw material supply pipe, 3... Melting reduction furnace, 4... High temperature gas supply pipe, 5... Extraction pipe, 6... Dust collector, 7 ...Heat recovery device, 8.
... Exhaust gas discharge pipe, 9 ... Decarboxylation device, 10 ... Blower, 11 ... Raw material condition measuring means, 12 ... First
Reduction reaction condition measuring means, 13... Second reduction reaction condition measuring means, 14... Flow rate measuring means, 17... Arithmetic unit,
21... Return gas supply pipe, 22... Second blower 2
23... Exhaust gas property adjusting means, 24... Third reduction reaction condition measuring means.

Claims (2)

【特許請求の範囲】[Claims] (1)原料供給管から炉床部に所定の原料が投入される
予備還元炉と、該予備還元炉に溶融還元炉から高温ガス
を供給する高温ガス供給管と、該予備還元炉内で発生し
た排ガスを熱回収装置に導く排ガス排出管と、該熱回収
装置を出た排ガスを所定のガス源として供給するガス供
給管とを具備する予備還元製錬装置において、高温ガス
供給管及び排ガス排出管の夫々に取付けられたこれらの
管内を流れるガスの成分、温度、流量、圧力を測定する
還元反応条件測定手段を設けると共に、原料供給管から
投入される原料の成分及び供給量を測定する原料条件測
定手段を設け、かつ、該還元反応条件測定手段及び該原
料条件測定手段からの測定信号によって予備還元炉の出
口における還元率を演算する演算部を設け、該演算部の
出力信号に基づいて供給原料の量を増減して該還元率を
所定値に制御することを特徴とする予備還元製錬装置。
(1) A pre-reduction furnace in which a predetermined raw material is fed into the hearth from a raw material supply pipe, a high-temperature gas supply pipe that supplies high-temperature gas from the melting reduction furnace to the pre-reduction furnace, and generation in the pre-reduction furnace. In a pre-reduction smelting equipment, which is equipped with an exhaust gas exhaust pipe that leads the heated exhaust gas to a heat recovery device, and a gas supply pipe that supplies the exhaust gas exiting the heat recovery device as a predetermined gas source, the high temperature gas supply pipe and the exhaust gas exhaust A reduction reaction condition measuring means is attached to each of the pipes to measure the composition, temperature, flow rate, and pressure of the gas flowing through these pipes, and a raw material supply pipe is used to measure the composition and supply amount of the raw material input from the raw material supply pipe. A condition measuring means is provided, and a calculating section is provided for calculating the reduction rate at the outlet of the preliminary reduction furnace based on the measurement signals from the reduction reaction condition measuring means and the raw material condition measuring means, and based on the output signal of the calculating section. A preliminary reduction smelting device characterized by controlling the reduction rate to a predetermined value by increasing or decreasing the amount of feed material.
(2)熱回収装置を出た排ガスをリサイクルして予備還
元炉に供給する戻しガス供給管と、演算部の出力信号に
基づいて前記戻しガス供給管から前記予備還元炉へ供給
する排ガスの成分、温度、流量を調節する排ガス性状調
節手段とが設けられていることを特徴とする特許請求の
範囲第1項記載の予備還元製錬装置。
(2) A return gas supply pipe that recycles the exhaust gas exiting the heat recovery device and supplies it to the pre-reduction furnace; and a component of the exhaust gas that is supplied from the return gas supply pipe to the pre-reduction furnace based on the output signal of the calculation unit. 2. The preliminary reduction smelting apparatus according to claim 1, further comprising exhaust gas property adjusting means for adjusting temperature and flow rate.
JP22692586A 1986-09-25 1986-09-25 Pre-reduction smelting apparatus Pending JPS6383210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22692586A JPS6383210A (en) 1986-09-25 1986-09-25 Pre-reduction smelting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22692586A JPS6383210A (en) 1986-09-25 1986-09-25 Pre-reduction smelting apparatus

Publications (1)

Publication Number Publication Date
JPS6383210A true JPS6383210A (en) 1988-04-13

Family

ID=16852751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22692586A Pending JPS6383210A (en) 1986-09-25 1986-09-25 Pre-reduction smelting apparatus

Country Status (1)

Country Link
JP (1) JPS6383210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052214A1 (en) * 1999-03-03 2000-09-08 Voest-Alpine Industrieanlagenbau Gmbh Method for optimizing the layout and operation of a reduction method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052214A1 (en) * 1999-03-03 2000-09-08 Voest-Alpine Industrieanlagenbau Gmbh Method for optimizing the layout and operation of a reduction method
JP2002538304A (en) * 1999-03-03 2002-11-12 ヴォエスト・アルピーネ・インデュストリーアンラーゲンバウ・ゲーエムベーハー Method for optimizing the construction and treatment of a reduction process for iron-containing charges
US6669754B1 (en) 1999-03-03 2003-12-30 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Method for optimizing the layout and operation of a reduction method
CN1318610C (en) * 1999-03-03 2007-05-30 沃斯特-阿尔派因工业设备制造有限公司 Method for optimizing layout and operation of reduction method
JP4741084B2 (en) * 1999-03-03 2011-08-03 シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー Methods for optimizing the composition and operation of reduction processes for iron-containing charge materials

Similar Documents

Publication Publication Date Title
PL180334B1 (en) Method of obtaining molten pig iron and apparatus therefor
WO1992002647A1 (en) Process for controlling the product quality in the conversion of reactor feed into iron carbide
JPS6383210A (en) Pre-reduction smelting apparatus
US3314781A (en) Method for the control of blast refining of carbon-containing metal melts
JPS60255911A (en) Method for controlling supply of refining agent in continuous refining
JP2803542B2 (en) Converter operation method
JPS6347312A (en) Smelting, reducing and refining equipment
JPS6347316A (en) Smelting, reducing and refining equipment
JPH01247523A (en) Method for reforming exhaust gas of smelting reduction furnace
JPS6347315A (en) Smelting, reducing and refining equipment
JP3235405B2 (en) Hot metal pretreatment method
JPH11246907A (en) Method for controlling blowing in converter
WO2022168396A1 (en) Supplied heat quantity estimation method, supplied heat quantity estimation device, and operation method for blast furnace
JP2837284B2 (en) Method and apparatus for producing hot metal containing chromium
KR940007362B1 (en) Method and device for desilicon
JPS6360216A (en) Smelting reduction refining equipment
JP2803534B2 (en) Converter blowing control method
JPS61139610A (en) Method for carrying out low silicon operation of blast furnace
JPS60262909A (en) Operating method of blast furnace
JPS60251204A (en) Operating method of blast furnace
JPS6249347B2 (en)
JPS6347314A (en) Smelting, reducing and refining equipment
JP2021031684A (en) Converter blowing control device, statistic model construction device, converter blowing control method, statistic model construction method and program
JPH09125122A (en) Method for controlling oxygen concentration corresponding to molten metal tapping temperature in vertical type quick melting furnace
JPH01195217A (en) Operation of melting and reducing furnace