JPS60255911A - Method for controlling supply of refining agent in continuous refining - Google Patents

Method for controlling supply of refining agent in continuous refining

Info

Publication number
JPS60255911A
JPS60255911A JP11214484A JP11214484A JPS60255911A JP S60255911 A JPS60255911 A JP S60255911A JP 11214484 A JP11214484 A JP 11214484A JP 11214484 A JP11214484 A JP 11214484A JP S60255911 A JPS60255911 A JP S60255911A
Authority
JP
Japan
Prior art keywords
refining
agent
desiliconization
amount
refining agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11214484A
Other languages
Japanese (ja)
Inventor
Kanji Takeda
武田 幹治
Seiji Taguchi
田口 整司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11214484A priority Critical patent/JPS60255911A/en
Publication of JPS60255911A publication Critical patent/JPS60255911A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • C21C5/567Manufacture of steel by other methods operating in a continuous way

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To supply automatically an appropriate amt. of a refining agent and to reduce the consumption of the agent by measuring continuously the inflow rate of an inflowing molten metal and the objective components to be smelted, and controlling the necessary supply rate of the refining agent on the basis of said measured results. CONSTITUTION:In the outlet of a launder 6 of molten iron 4, laser light is emitted from an emitter 28, and irradiated on the surface of molten iron through a pipe 30. The excited and emitted light is again detected by a photodetecting part provided in parallel with the emitter 28, and inputted to a microcomputer 26. The means value of Si concns. is thus obtained. Meanwhile, the weight of a torpedo ladle car 12 is measured by a load cell 36, and inputted to the microcomputer 26 to obtain the means value. Then the amt. of a desiliconizing agent is obtained by a specified equation, and transduced into the current value of a supply feeder 18. The supply feeder 18 is operated with said transduced value, and the appropriate amt. of the desiliconizing agent corresponding to the amt. of molten iron and the silicon concn. both of which change mementarily is supplied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連続精錬における精錬剤供給量の制御方法に係
シ、特に高炉から出銑された溶銑等の溶融金属の連続精
錬において精錬剤を自動的適正量供給できる制御方法に
関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for controlling the amount of refining agent supplied in continuous refining, and in particular, to a method for controlling the amount of refining agent supplied in continuous refining, and in particular to a method for controlling the amount of refining agent supplied in continuous refining of molten metal such as hot metal tapped from a blast furnace. This invention relates to a control method that can automatically supply an appropriate amount.

高炉から出銑された溶銑は、製鋼用として最適な成分と
は限らず、製銑原料の影響や高炉の操業状態によシ溶銑
の各成分にばらつきがある。このため高炉出銑後、脱珪
、脱硫、脱燐等の炉外精錬が行われる。これらの炉外精
錬装置として従来トーピード、取鍋等のバッチ式装置が
主として用いられてきたが、反応効率の向上、温度低下
防止の観点から、最近は連続精錬が採用されている。本
発明はかかる溶融金属の連続精錬における精錬剤供給量
の制御に利用される。
Hot metal tapped from a blast furnace does not necessarily have the optimum composition for steelmaking, and there are variations in each component of the hot metal depending on the influence of the ironmaking raw materials and the operating conditions of the blast furnace. For this reason, after blast furnace tapping, out-of-furnace refining such as desiliconization, desulfurization, and dephosphorization is performed. Conventionally, batch-type devices such as torpedoes and ladles have been mainly used as these outside-furnace refining devices, but continuous refining has recently been adopted from the viewpoint of improving reaction efficiency and preventing temperature drop. The present invention is utilized for controlling the amount of refining agent supplied in such continuous refining of molten metal.

〔従来の技術〕[Conventional technology]

高炉出銑の鋳床脱珪装置の例を第1図によシ説明する。 An example of a cast bed desiliconization apparatus for blast furnace tapping will be explained with reference to FIG.

これは製鋼工程の銑中〔S1〕濃度低下に対するニーズ
として最近開発されたものである、すなわち、鋳床にお
いて樋内に鉄鉱石の如き脱珪剤を投入し、 3 C8i ]+ 2Fe!Oa −+ 384Ch 
+4Feの反応によシ溶銑中の〔81〕濃度を所定値以
下に連続精錬するのである 出銑口2から出銑された溶
銑4は出銑樋6、脱珪樋8、傾斜樋10等を経てトーピ
ードカー12に受銑される。脱珪剤14は脱珪剤ホッパ
ー16、供給フィーダー18、脱珪剤シュート20を経
て出銑樋6、下流の傾斜樋10において溶銑4上に散布
され、脱珪機8において落下エネルギーによ)混合、脱
珪反応が行われている。なお、出銑樋6および脱珪機8
にはそれぞれスキンマー22が設置されている。
This was recently developed in response to the need to reduce the concentration in pig iron [S1] in the steelmaking process.In other words, a desiliconizing agent such as iron ore is introduced into the trough in the casthouse, and 3 C8i ] + 2Fe! Oa −+ 384Ch
The [81] concentration in the hot metal is continuously refined to below a predetermined value by the reaction of +4Fe.The hot metal 4 tapped from the taphole 2 is passed through the tap trough 6, the desiliconization trough 8, the inclined trough 10, etc. The iron is then transferred to the torpedo car 12. The desiliconizing agent 14 passes through the desiliconizing agent hopper 16, the supply feeder 18, and the desiliconizing agent chute 20, and then is sprayed onto the hot metal 4 in the tapping trough 6 and the downstream inclined trough 10, and is then sprayed on the hot metal 4 in the desiliconizing machine 8 by the falling energy). Mixing and desiliconization reactions are carried out. In addition, the tap duct 6 and the desiliconization machine 8
A skinmer 22 is installed at each.

上記め脱珪装置における従来技術は、例えば特開昭56
−217においては出銑される(81)濃度を炉熱制御
モデルから推定した炉内溶銑中の平均珪素量をベースに
してめている。この(sB濃度と目標[ai]濃度の差
から脱珪剤原単位をめ、出銑速度を介して脱珪剤の添加
速度を算出している。しかし、脱珪剤の添加速度を決定
する最も大きな因子は出銑中の(:Si)濃度である。
The conventional technology for the above-mentioned desiliconization equipment is, for example, disclosed in Japanese Patent Application Laid-open No. 56
-217, the tapped (81) concentration is determined based on the average silicon content in the hot metal in the furnace estimated from the furnace heat control model. The basic unit of desiliconization agent is determined from the difference between this (sB concentration and the target [ai] concentration, and the addition rate of desiliconization agent is calculated via the tapping rate. However, the addition rate of desiliconization agent is determined by The biggest factor is the (:Si) concentration during tapping.

炉熱制御モデルから推定した炉内溶銑中の〔別〕濃度は
、それはと精度が無いことも周知の事実である。
It is also a well-known fact that the concentration in the hot metal in the furnace estimated from the furnace thermal control model is not very accurate.

出銑毎の平均(84)濃度においても、その精度は高々
±0,1s前後である。更に1回の出銑時間は平均2時
間前後であるが、この間の(87)濃度変化については
従来の炉熱制御モデルからの予測では知ることができな
い。
Even at the average (84) concentration for each tap, the accuracy is around ±0.1 s at most. Furthermore, although the average time for one tap is around two hours, changes in (87) concentration during this time cannot be known by predictions from conventional furnace heat control models.

このため、従来法においては、脱珪後目標(81)0.
20−に対し、最大o、 o s sの誤差を生じ、変
動値でもσ0.05−程度である。目標(Si) 0.
20チに対してσo、 o s sの変動は脱珪して低
〔Si〕銑として次工程に送るには無視できない数値で
ある。
Therefore, in the conventional method, the target (81) after desiliconization is 0.
20-, a maximum error of o, o s s occurs, and even the fluctuation value is about σ0.05-. Target (Si) 0.
For 20 pieces, the fluctuations in σo and o s s are values that cannot be ignored in order to desiliconize the iron and send it to the next process as low [Si] pig iron.

溶銑の連続精錬による脱珪の具体例について説明したが
、従来連続精錬において流入する溶融金属の量と、その
溶融金属の精錬対象成分は時々刻々に変化するため、精
錬に添加する脱珪剤等の精錬剤の供給量の制御が困難で
あり、その結果として精錬の目標成分の的中率が低く、
かつ精錬剤の損失を招いていた。
We have described a specific example of desiliconization by continuous refining of hot metal, but since the amount of molten metal that flows in conventional continuous refining and the components of the molten metal to be refined change from moment to moment, the desiliconization agent added during refining, etc. It is difficult to control the supply amount of the refining agent, and as a result, the accuracy of the target components of refining is low.
This also led to a loss of refining agent.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記従来技術の問題点を解消し、流入する溶融
金属の流入量と精錬対象成分を連続して測定し、その測
定結果に基づき適量の精錬剤を投入できる精錬剤供給量
の制御方法を提供することを目的としている。
The present invention solves the above-mentioned problems of the conventional technology, and provides a method for controlling the amount of refining agent supplied by continuously measuring the amount of inflowing molten metal and the components to be refined, and injecting an appropriate amount of refining agent based on the measurement results. is intended to provide.

〔発明の構成〕[Structure of the invention]

本発明の要旨とするところは次のとおりである。 The gist of the present invention is as follows.

すなわち、連続的に流入する溶融金属に精錬剤を投入し
て行う連続精錬における精錬剤供給量の制御方法におい
て、前記溶融金属の流入量を測定する段階と、前記溶融
金属の精錬対象成分をレーザー発光分光分析計によシ測
定する段階と、前記流入量および成分の測定値よシ前記
精錬剤の供給量を演算し前記・溶融金属に前記精錬剤を
投入する段階と、を有して成ることを特徴とする連続精
錬における精錬剤供給量の制御方法である。
That is, in a method for controlling the amount of refining agent supplied in continuous refining performed by injecting a refining agent into continuously flowing molten metal, there are a step of measuring the amount of molten metal flowing into the molten metal, and a step of measuring the amount of refining agent in the molten metal that is to be refined. The method comprises the steps of measuring with an emission spectrometer, and calculating the supply amount of the refining agent based on the measured values of the inflow amount and the components, and adding the refining agent to the molten metal. This is a method for controlling the amount of refining agent supplied in continuous refining.

例によシ説明する。まず、本実施例で使用する装置につ
いて説明する。第1図の出銑樋6の出口に第2図に示す
如きレーザー発光分光分析計24およびマイクロコンピ
ュータ−26を設置する。し。
Let me explain with an example. First, the apparatus used in this example will be explained. A laser emission spectrometer 24 and a microcomputer 26 as shown in FIG. 2 are installed at the outlet of the tap trough 6 shown in FIG. 1. death.

−ザー発光分光分析計24は発信器28、パイプ30、
Ntガス配管32から構成されている。
- The laser emission spectrometer 24 includes a transmitter 28, a pipe 30,
It is composed of Nt gas piping 32.

また、受銑しているトピードカー12のレール34の下
部にはロードセル36が設置され、ロードセル36はマ
イクロコンピュータ−zeト配装mで連絡している。な
お流入する溶融金属量の測定はロードセル36に限定さ
れることなく、従来性われている電磁流量計、せき流量
計、トレーサ一方式流量計等を使用することもできる。
Further, a load cell 36 is installed at the bottom of the rail 34 of the torpedo car 12 receiving pig iron, and the load cell 36 is communicated with a microcomputer. Note that the measurement of the amount of molten metal flowing in is not limited to the load cell 36, and conventional electromagnetic flowmeters, weir flowmeters, tracer one-type flowmeters, etc. can also be used.

次に上記の装置を使用した脱珪剤供給量の制御方法につ
いて説明する。レーザーは発信器28から放射されパイ
プ30内を通って浴銑面に照射され、レーザーにより励
起され発光した光は再びパイプ30内を通り発信器28
と並列に設置された受光部で受光され、分光器を通って
電流信号に変換されてマイクロコンピュータ−26に入
力される レーザー発光分光分析計24により30秒毎
に分析された〔Si3濃度は10分毎に平均値を算出す
る。すなわち、各分析値〔Sす1の最大値および最小値
を除き18個のデータにより平均濃度(S i )aを
める。
Next, a method of controlling the amount of desiliconizing agent supplied using the above-mentioned apparatus will be explained. The laser is emitted from the transmitter 28, passes through the pipe 30, and is irradiated onto the bath iron surface.The light excited by the laser and emitted light passes through the pipe 30 again and reaches the transmitter
The light is received by a light receiving section installed in parallel with the 100% Si concentration, is converted into a current signal through a spectrometer, and is input to the microcomputer 26.The laser emission spectrometer 24 analyzes the signal every 30 seconds [Si3 concentration is 10 Calculate the average value every minute. That is, the average concentration (S i )a is calculated using 18 pieces of data excluding the maximum and minimum values of each analysis value [S i ).

一方、ロードセル36は、トーピードカー12の重量W
iを30秒毎に測定しマイクロコンピュータ−26に入
力される。マイクロコンピーユ−タ−26は過去10分
間の測定値の最大値、最小値を除いた値によシ10分間
の移動平均Wlをめる。W’lは30秒毎に計算される
が、その値を10分毎に平均し、平均重量WaLをめる
。・所要の脱珪剤量Dsio!は[Si:la、Wai
を用いて次式でめることができる。
On the other hand, the load cell 36 measures the weight W of the torpedo car 12.
i is measured every 30 seconds and input into the microcomputer 26. The microcomputer 26 calculates a 10-minute moving average Wl based on the value excluding the maximum and minimum values of the measured values for the past 10 minutes. W'l is calculated every 30 seconds, but the values are averaged every 10 minutes to calculate the average weight WaL.・Required amount of desiliconization agent Dsio! is [Si:la, Wai
It can be determined by the following formula using .

Di io、 −((Si)a −(st JT)X 
(Wal−Wai−1)Xo、0IX0.1×且×(脱
珪剤中の有効酸素分率) xF ((s;)T)8 ここで(81)Tは目標とする精錬後の溶銑中の別濃度
であシ、F((S’)T)は脱珪装置の脱珪効率に応じ
た係数であシ、実験的に鉱石毎にめられる。
Di io, −((Si)a −(st JT)X
(Wal-Wai-1) F((S')T) is a coefficient depending on the desiliconization efficiency of the desiliconization device, and is determined experimentally for each ore.

第3図に2種の鉄鉱石A、Bの脱珪効率と脱珪後の目標
S1濃度(81)Tとの関係を示した。
FIG. 3 shows the relationship between the desiliconization efficiency of two types of iron ores A and B and the target S1 concentration (81)T after desiliconization.

計算によ請求められた所要の脱珪剤量Dslo2を脱珪
剤供給装置の供給フィーダー18の電流値に変換し、こ
の変換値によシ供給フィーダー18を運転することによ
シ脱珪剤を溶銑4に投入した。
The required amount of desiliconization agent Dslo2 requested by calculation is converted into the current value of the supply feeder 18 of the desiliconization agent supply device, and the supply feeder 18 is operated according to this converted value to remove the desiliconization agent. was put into hot metal 4.

すなわち、刻々と変化する溶銑量と〔S1〕 濃度に応
じた適正量の脱珪剤を供給することができた。
That is, it was possible to supply an appropriate amount of desiliconizing agent according to the ever-changing amount of hot metal and [S1] concentration.

脱珪連続精錬実施例における結果を第4〜7図に示した
。第4図は出銑の〔Sり濃度、第5図は出銑速度、第6
図脱珪剤供給量であるが、出銑直後の10分間は出銑量
に関する正確な値がないので、一定値100 Kf/m
inの供給量を設定している。
The results of continuous desiliconization refining examples are shown in FIGS. 4 to 7. Figure 4 shows the concentration of S in the tapping, Figure 5 shows the tapping speed, and Figure 6 shows the tapping speed.
The figure shows the amount of desiliconizing agent supplied, but since there is no accurate value for the amount of iron tapped for 10 minutes immediately after tapping, a constant value of 100 Kf/m is used.
The supply amount of in is set.

第7図は脱珪樋8出口でサンプリングした脱珪後の溶銑
(81)濃度の変化を示したものであり、出銑中(si
)濃度が急激に変化した時期には多少増加しているが、
その他は目標濃度(8j、]T O,15%にほぼ制御
されていることがわかる。
Figure 7 shows the change in the concentration of hot metal (81) after desiliconization sampled at the outlet of desiliconization sluice 8, and shows the change in the concentration of hot metal (81) after desiliconization.
) It increases somewhat during periods when the concentration changes rapidly, but
It can be seen that the other concentrations are almost controlled to the target concentration (8j, ]T O, 15%.

脱珪後の溶銑中の〔S1〕濃度を目標濃度(S l )
Tが0.20チと0.15 %の場合について、本実施
例および炉熱制御モデルを使用した従来例について集計
してその頻度を第8図(A)、(B)に示した。囚は実
施例を、0は従来例を示している。なお、その統計値を
第1表Kまとめて示した。
The [S1] concentration in hot metal after desiliconization is the target concentration (S l )
When T is 0.20 inches and 0.15%, the frequencies are shown in FIGS. 8(A) and 8(B) for this embodiment and the conventional example using the furnace heat control model. 0 indicates an example, and 0 indicates a conventional example. The statistical values are summarized in Table 1K.

第8図(ホ)、@および第1表から明らかな初く、実施
例は従来例に比較してYでは0.021低く、σも著し
く小さくなっている。伊は実施例、従来例とも、目標(
si)t 6度が低いほど高くなっている。
As is clear from FIG. 8(e), @, and Table 1, Y is 0.021 lower in the embodiment than in the conventional example, and σ is also significantly smaller. In Italy, the target (
si)t The lower the 6 degrees, the higher it is.

本発明法においては出銑中の(81)濃度を正確に測定
できるので、脱珪後(81)濃度の変動に影響する因子
は脱珪効率F((Si)t)の誤差のみである。しかし
、この脱珪効率は同一装置においてめられているのでそ
の哄差は少なく、脱珪後の〔S1〕濃度の精度は極めて
良好であシ、平均値は目標値とおシであり、かつσも0
.01〜0.02−の範囲でらり実用上は全く差支えの
ない程度であって、脱珪剤供給量を精度よく制御するこ
とができた。
In the method of the present invention, the (81) concentration during tapping can be accurately measured, so the only factor that affects the fluctuation of the (81) concentration after desiliconization is the error in the desiliconization efficiency F((Si)t). However, since this desiliconization efficiency was measured in the same device, there is little difference between them, and the accuracy of the [S1] concentration after desiliconization is extremely good, the average value is the same as the target value, and σ Also 0
.. The range of 0.01 to 0.02 was sufficient for practical use, and the amount of desiliconizing agent supplied could be controlled with high accuracy.

本発明を高炉鋳床脱珪について主として説明したが、本
発明法は連続的な溶融金属の精錬反応例えば脱硫反応、
脱燐反応あるいは合金成分添加操作等の精錬剤供給に広
く適用できる。
Although the present invention has been mainly explained with respect to desiliconization in a blast furnace cast bed, the method of the present invention also includes a continuous refining reaction of molten metal, such as a desulfurization reaction,
It can be widely applied to supplying refining agents for dephosphorization reactions or alloy component addition operations.

〔発明の効果〕〔Effect of the invention〕

本発明は連続精錬において、溶融金属の流入量およびレ
ーザー発光分光分析計による溶融金属の精錬対象成分を
連続測定し、それらの測定値に基づき必要とする精錬剤
供給量を管理することによシ、目標成分とおシの連続精
錬を可能にし、更に精錬剤の使用量を低減する効果をあ
げることができだ。
In continuous refining, the present invention continuously measures the inflow amount of molten metal and the components to be refined in the molten metal using a laser emission spectrometer, and controls the required amount of refining agent to be supplied based on these measured values. This enables continuous refining of target ingredients and rice, and further reduces the amount of refining agents used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例を示す高炉鋳床脱珪装置配置図、
第2図は本発明実施例のレーザー発光分光分析計の設置
状況を示す正面図、第3図は脱珪効率と脱珪後(8i)
濃度との関係を示す線図、第4〜7図は本発明実施例に
おけるそれぞれ出銑(:Si)濃度、出銑速度、脱珪剤
供給量、脱珪後の溶銑の(Si)濃度の経時変化を示す
線図、第8図(ト)、(Blはいずれも脱珪後の溶銑の
[S]]濃度の頻度を示す線図で、(ト)は本発明実施
例、(ハ)は従来例を示している。 4・・・溶銑 6・・・出銑樋 18・・・供給フィーダー 24・レーザー発光分光分析計 26・・・マイクロコンピュータ− 36・・・ロードセル 代理人 弁理士 中 路 武 雄 寸Φ へ rorQ 第2図 第3図 00、+ 0.20,30.4 Q50,60.70.
8成珪饋 (Si)製法(%) 第8図 (A) 0、+0 0.20 0.30 説珪l麦の導(先(S i )μ(%)成王l嫁η溶銚
(Sl)濃度(%)
FIG. 1 is a layout diagram of a blast furnace casthouse desiliconization device showing an embodiment of the present invention;
Fig. 2 is a front view showing the installation status of the laser emission spectrometer according to the embodiment of the present invention, and Fig. 3 shows the desiliconization efficiency and after desiliconization (8i).
Diagrams 4 to 7 show the relationship between the tapping (Si) concentration, tapping speed, desiliconization agent supply amount, and (Si) concentration of the hot metal after desiliconization in the examples of the present invention, respectively. Diagrams showing changes over time, FIG. indicates a conventional example. 4...Hot metal 6...Tapping trough 18...Supply feeder 24/Laser emission spectrometer 26...Microcomputer- 36...Load cell agent Patent attorney Medium To Takeshi Φ rorQ Figure 2 Figure 3 00, + 0.20, 30.4 Q50, 60.70.
8Silicon (Si) manufacturing method (%) Fig. 8 (A) 0, +0 0.20 0.30 Theory of silicon barley (S i ) μ (%) Sl) concentration (%)

Claims (1)

【特許請求の範囲】[Claims] U)連続的に流入する溶融金属に精錬剤を投入して行う
連続精錬における精練剤供給量の制御方法において、前
記溶融金属の流入量を測定する段階と、前記溶融金属の
精練対象成分をレーザー発光分光分析計によシ測定する
段階と、前記流入量および成分の測定値よシ前記精錬剤
の供給量を演算し前記溶融金属に前記精錬剤を投入する
段階と、を有して成ることを特徴とする連続精錬におけ
る精錬剤供給量の制御方法。
U) A method for controlling the supply amount of a refining agent in continuous refining performed by injecting a refining agent into continuously flowing molten metal, which includes a step of measuring the amount of inflow of the molten metal, and a step of measuring the scouring target component of the molten metal with a laser. The method comprises the steps of measuring with an emission spectrometer, and calculating the supply amount of the refining agent based on the measured values of the inflow amount and the components, and adding the refining agent to the molten metal. A method for controlling the amount of refining agent supplied in continuous refining, characterized by:
JP11214484A 1984-05-31 1984-05-31 Method for controlling supply of refining agent in continuous refining Pending JPS60255911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11214484A JPS60255911A (en) 1984-05-31 1984-05-31 Method for controlling supply of refining agent in continuous refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11214484A JPS60255911A (en) 1984-05-31 1984-05-31 Method for controlling supply of refining agent in continuous refining

Publications (1)

Publication Number Publication Date
JPS60255911A true JPS60255911A (en) 1985-12-17

Family

ID=14579320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11214484A Pending JPS60255911A (en) 1984-05-31 1984-05-31 Method for controlling supply of refining agent in continuous refining

Country Status (1)

Country Link
JP (1) JPS60255911A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082044A (en) * 1989-08-04 1992-01-21 Hickman, Williams & Company Method and apparatus for controlling the composition of a molten metal bath
US5125963A (en) * 1987-08-20 1992-06-30 Scandinavian Emission Technology Aktiebolag Metallurgical controlling method
JPH0578725A (en) * 1991-09-20 1993-03-30 Nkk Corp Method for automatically controlling desulfurizing treatment on casting floor in blast furnace and device therefor
KR20030004823A (en) * 2001-07-06 2003-01-15 주식회사 포스코 Hot metal control system of iron and steel works
KR100399227B1 (en) * 1999-10-30 2003-09-22 주식회사 포스코 Controlling method of weighting machine in tlc for transporting molten material discharged from blast furnace
KR100805710B1 (en) * 2001-09-27 2008-02-21 주식회사 포스코 Desilicon throwing system of runner liquid steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125963A (en) * 1987-08-20 1992-06-30 Scandinavian Emission Technology Aktiebolag Metallurgical controlling method
US5082044A (en) * 1989-08-04 1992-01-21 Hickman, Williams & Company Method and apparatus for controlling the composition of a molten metal bath
JPH0578725A (en) * 1991-09-20 1993-03-30 Nkk Corp Method for automatically controlling desulfurizing treatment on casting floor in blast furnace and device therefor
KR100399227B1 (en) * 1999-10-30 2003-09-22 주식회사 포스코 Controlling method of weighting machine in tlc for transporting molten material discharged from blast furnace
KR20030004823A (en) * 2001-07-06 2003-01-15 주식회사 포스코 Hot metal control system of iron and steel works
KR100805710B1 (en) * 2001-09-27 2008-02-21 주식회사 포스코 Desilicon throwing system of runner liquid steel

Similar Documents

Publication Publication Date Title
JPS60255911A (en) Method for controlling supply of refining agent in continuous refining
JP2012136767A (en) Method for estimating phosphorus concentration in converter
EP0996749B1 (en) Method for controlling a smelting reduction process
JPS5856723B2 (en) Continuous desiliconization method for hot metal
JPS62158810A (en) Method for determining main material charging quantity in converter operation
JPS61238905A (en) Method for predicting tapping speed of blast furnace
JPS60208405A (en) Operating method of blast furnace
JPS60103107A (en) Operating method of refining furnace in steel making
CA1045823A (en) Static method of controlling the refining reactions of pig iron for steel making purposes in an oxygen top blowing converter
JPS5827912A (en) Controlling method for concentration of si in pig iron
JPH01184215A (en) Method for melting furrugineous cold charge
JPS61149412A (en) Method for estimating si value in molten iron
Johansson et al. Model-based estimation of metal analysis in the steel converter: Linear versus nonlinear approach
JPS6383210A (en) Pre-reduction smelting apparatus
JPH093518A (en) Method for controlling end point of blowing in converter
JPH01195217A (en) Operation of melting and reducing furnace
Sun et al. Numerical analysis of reactions in a cupola melting furnace
JPH03158408A (en) Method for estimating remaining slag quantity in steelmaking furnace
JPS61157607A (en) Production of molten iron for casting and molten iron for steel making
Middleton A Mathematical Model of the LD Steelmaking Process
Iwahashi et al. Compact control systems in steelmaking processes
JPH0416532B2 (en)
JPS6318009A (en) Method and apparatus for pretreatment of molten iron
JPH05171244A (en) Method for estimating lowest blending ratio of molten iron in converter
JPS59107015A (en) Method for controlling oxygen in continuous manufacture of steel