JPS61157607A - Production of molten iron for casting and molten iron for steel making - Google Patents

Production of molten iron for casting and molten iron for steel making

Info

Publication number
JPS61157607A
JPS61157607A JP27971684A JP27971684A JPS61157607A JP S61157607 A JPS61157607 A JP S61157607A JP 27971684 A JP27971684 A JP 27971684A JP 27971684 A JP27971684 A JP 27971684A JP S61157607 A JPS61157607 A JP S61157607A
Authority
JP
Japan
Prior art keywords
hot metal
blast furnace
value
production
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27971684A
Other languages
Japanese (ja)
Other versions
JPH0154406B2 (en
Inventor
Makoto Aoki
誠 青木
Mitsuru Obara
小原 充
Toshiyuki Higuchi
敏之 樋口
Seiichi Yamamoto
誠一 山本
Susumu Oota
太田 奨
Shigenori Uno
宇野 成紀
Fumio Naito
文雄 内藤
Tomomichi Nakagome
倫路 中込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27971684A priority Critical patent/JPS61157607A/en
Publication of JPS61157607A publication Critical patent/JPS61157607A/en
Publication of JPH0154406B2 publication Critical patent/JPH0154406B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron

Abstract

PURPOSE:To produce consistently both molten iron for the castings and molten iron for the steel making in high degree of accuracy of Si in the same blast furnace by setting the objective Si value of each molten iron, blowing the molten iron and performing the silicifying or desilicifying treatment in accordance with the directed parts. CONSTITUTION:In the molten iron blown into a blast furnace 1, the objective value of Si is preset between the various representative Si values for the castings and the seel manufacture. The silicifying quantity or the desilicifying quantity is indicated in accordance with the directed parts of pig iron for the castings or for the steel manufacture from a blast furnace process computer 15 and a silicifying agent or a desilicifying agent is automatically discharged from a hopper 4 or 5. The measured value of the introducing quantity is inputted from a temp. measurement sampling device 7 and the introduction velocity is controlled on the basis of the objective specification. The pig iron for the castings after the pig iron receipt is slagged off in a slag off device via a stirrer 11 and directed to a pig casting machine 10. The pig iron for steel making desilicified is slagged off in a slag off device 12 and sent to a converter works. Thereby the pig iron for the steel making and the pig iron for the castings can be stably produced in the same blast furnace in the minimum cost such as the energy balance of a factory.

Description

【発明の詳細な説明】 (産業上の利用分野] 本発明は鋳物用溶銑、製鋼用溶銑の製造に関するもので
あり、特に本発明は同一高炉で鋳物用溶銑、製鋼用溶銑
を後工程の生産情報に基づくフレギシビリテイゲもち、
また安価に製造できるようにした点で従来法とは区別で
きる製造方法を提供するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to the production of hot metal for foundries and hot metal for steelmaking, and in particular, the present invention relates to the production of hot metal for foundries and hot metal for steelmaking in the same blast furnace in subsequent processes. Information-based flexibility,
Furthermore, the present invention provides a manufacturing method that can be distinguished from conventional methods in that it can be manufactured at low cost.

C従来の技術とその問題点) 鋳物用溶銑、製鋼用溶銑はJIS 、入STMなど各国
の規格、各社の規格に基づき製造するが、特に鋳物用溶
銑は銑種が多く、溶銑連中率がその銑種の生産構成(在
庫ll)を左右することは既知である。
C) Conventional technology and its problems) Hot metal for casting and hot metal for steelmaking are manufactured based on the standards of each country and the standards of each company, such as JIS and STM. It is known that the production composition (inventory) of pig iron species is affected.

而して、これら鋳物用溶銑、製鋼用溶銑の製造は、 弼 夫夫専用の高炉で吹製して製造する。Therefore, the production of hot metal for casting and hot metal for steelmaking is 弼 Produced by blowing in a blast furnace dedicated to the husband.

(イ)高炉で吹製した製鋼用溶銑に力V仕材、列えばF
e−84合金を添加して鋳物用溶銑を製造する(特公昭
46−30925号公報J1等の方法があることも既知
でおる。
(a) If the hot metal for steelmaking blown in a blast furnace is lined with force V material, then F
It is also known that there is a method of producing hot metal for casting by adding e-84 alloy (such as Japanese Patent Publication No. 46-30925 J1).

(7)の製造法は、我国近代製鉄誕生以来百年を迎える
今日でも継承されている最も安定した製造法ではあるが
、高炉を専用化することが絶対条件なるが故、に、設備
費が巨額となるばかりか労務費、原料費、燃料費、その
他が嵩む問題がある。従つマノ■の製造法は生産量が高
炉及びその付帯設備の設計仕様の損益分岐点以上でなけ
れば生産コストを低廉化できないため、需要動向(生産
構造]次第では高炉を休止することで対処しなければな
らない致命的問題がある。
The manufacturing method (7) is the most stable manufacturing method that has been inherited even today, 100 years since the birth of modern steelmaking in Japan, but it requires a dedicated blast furnace, so the equipment costs are huge. Not only that, but labor costs, raw material costs, fuel costs, and other costs also increase. Accordingly, with the production method of Mano ■, production costs cannot be reduced unless the production volume exceeds the break-even point of the design specifications of the blast furnace and its ancillary equipment, so depending on demand trends (production structure), it may be possible to stop the blast furnace. There is a critical issue that must be resolved.

一方、(イ)の製造法は(7)の製造法の問題を解決で
きる利点がある反面、加珪材の添加歩留次第で加珪コス
トや溶銑[Sil値のバラツキが左右される難点がある
。すなわち(イ)の製造法は高炉から出銑する製鋼溶銑
を使用するが、該溶銑の(8i)値は第3図のグラフて
示すとおり日、月で変動するのが常である。従って斯様
に(8i)が変動する溶銑金そのまま使用するため、加
珪材の添加条件はその都度質り、かつ低(Si)から高
(Si)迄添加溶解するので(Sil値も変動傾向を示
すことは回避できず歩留りも低下する。従って溶銑その
ものの[St]値の変動、加珪材温力lJ後の〔SL〕
値の適中率等が要因となって意図する鋳物用溶銑を安定
して多量に製造することはできない。
On the other hand, the production method (A) has the advantage of solving the problem of the production method (7), but has the disadvantage that the siliconization cost and the variation in the hot metal [Sil] value depend on the addition yield of the siliconization material. be. That is, the production method (a) uses hot metal for steel production tapped from a blast furnace, but the (8i) value of the hot metal usually fluctuates daily and monthly as shown in the graph of FIG. Therefore, since hot pig metal whose (8i) varies in this way is used as it is, the conditions for adding silicon material are of high quality each time, and since it is added and dissolved from low (Si) to high (Si) (Sil value also tends to fluctuate). This cannot be avoided and the yield decreases. Therefore, the fluctuation of the [St] value of the hot metal itself, and the [SL] after the silicon material temperature lJ
It is not possible to stably produce a large quantity of the intended foundry hot metal due to factors such as the accuracy rate of the value.

またこれら(7)、(イ)の製造工程には後工程での生
産情報に対応できるフレキシビリティ−をもった生産を
行う思考は皆無である。
Furthermore, in the manufacturing processes (7) and (a), there is no consideration for production with flexibility that can respond to production information in subsequent processes.

従って、上記技術では小ロツト多品種のニーズが強い今
日の動向には対応しきれない問題をかかえており、新規
な生産方式の出現が待望されていた。
Therefore, the above-mentioned technology has the problem of not being able to cope with today's trend of strong needs for small lots and a wide variety of products, and the emergence of a new production system has been eagerly awaited.

本発明者等は斯かる現状に鑑み多くの試みを重ねた結果
、工業的規模で小ロツト多品種生産に操業(作業]、要
員、品質、需給、その他の生産要素が7レキシビリテイ
ーをもって対応できる新規な鋳物用溶銑、製鋼用溶銑の
製造法を発明した。換言すると本発明は、 中 同一高炉で常時鋳物用溶銑と製鋼用溶銑と一貫製鉄
所の生産コストミニマムで製造できる、 −生産調整に対応できる操業ができ、鋳物用溶銑(8i
)適中率の向上が図れる、 中 生産要員を列えば鋳物用溶銑の製造のみに限って勤
務できるようにする等、生産要員を生産に対する調整が
できること、 傘[Si〕調整による出銑量、 BFG発生量の変動が
なく、炉内状況が安定し、炉壁破損減少を図れる、 中 工業的規模で小ロツト多品種生産が容易にできる、 等の技術的課題を解決できるようにしたものである。
In view of the current situation, the inventors of the present invention have made numerous attempts and have found that operations (work), personnel, quality, supply and demand, and other production factors can be handled with 7 flexibilities for small-lot, multi-product production on an industrial scale. We have invented a new method for producing hot metal for foundries and hot metal for steelmaking.In other words, the present invention enables the production of hot metal for castings and hot metal for steelmaking in the same blast furnace at all times at the minimum production cost of an integrated steelworks. The operation is capable of handling hot metal for foundry (8i
) It is possible to improve the accuracy rate, Medium It is possible to adjust production personnel to production, such as by arranging production personnel so that they can work only for the production of hot metal for castings, the amount of iron tapped by adjusting the umbrella [Si], BFG It is designed to solve technical problems such as no fluctuation in the amount generated, stable conditions inside the furnace, reduced damage to the furnace wall, and easy production of a wide variety of products in small lots on a medium-to-industrial scale. .

(問題点を解決するための手段] すなわち本発明は、同一高炉により鋳物用溶銑製鋼用溶
銑を常時製造するに際し、上記各溶銑の夫夫の代表(S
i)値の間に少くとも生産構成比率に基づいて目標(S
i)値を設定して溶銑を吹製し、該溶銑を高炉および少
くとも後工程の生産情報に基づき設定する振り分け(8
i)値に基づいて向け先を振り分け、その向け先に応じ
て加珪または脱珪処理することを特徴とする鋳物用溶銑
、製鋼用溶銑の製造方法であるつ ここで上記本発明の要件限定の理由を述べる。
(Means for Solving the Problems) In other words, the present invention provides that when hot metal for casting and hot metal for steel making are constantly produced in the same blast furnace, the representative (S
i) target (S) based on at least the production mix between the values;
i) blowing hot metal by setting a value, and distributing the hot metal to blast furnace and at least a distribution set based on the production information of the post-process
i) A method for producing hot metal for casting and hot metal for steelmaking, which is characterized by assigning destinations based on values and performing siliconization or desiliconization treatment depending on the destination. State the reason.

〔同一高炉について〕[About the same blast furnace]

本発明は、鋳物用溶銑と製鋼用溶銑を同一高炉で吹製す
ることが前提である。鋳物用溶銑と製鋼用溶銑を夫夫専
用の高炉で吹製したのでは、生産コスト、生産性に限度
があり、また生産計画、管理あるいは要員等に7レキシ
ビリテイーをもたせるためにも同一高炉で吹製すること
が必要である。
The premise of the present invention is that hot metal for casting and hot metal for steelmaking are blown in the same blast furnace. Blowing hot metal for foundries and hot metal for steelmaking in a blast furnace exclusively for the husband and husband has limits on production costs and productivity. It is necessary to blow it.

さらには、投資コストのてんでも、別々に専用高炉を設
けて生産するよりも有利である。
Furthermore, even in terms of investment costs, it is more advantageous than producing by separately installing a dedicated blast furnace.

これらはいずれも、溶銑を一貫製鉄所のエネルギーコス
ト、高炉吹製コスト、その他の生産コスト等の合計値を
最小にするためにも必須の条件である。
All of these are essential conditions for minimizing the total value of the energy cost, blast furnace blowing cost, and other production costs of molten pig iron in an integrated steelworks.

〔鋳物用溶銑、製鋼用溶銑の夫夫の代表〔SI〕値の間
に少くとも生産構成比率に基づいて目標〔S1〕値を設
定して溶銑を吹製することについて〕代表(sB値とは
、製鋼用溶銑の代表(8i)値は製鋼吹線上望ましく、
かつ高炉操業可能な[Sil値であり、鋳物用溶銑の代
表[8i)値は、銑種規格毎に設定されている(8i:
l値の生産量による加重平均値を意味する。
[About blowing hot metal by setting a target [S1] value based on at least the production composition ratio between the representative [SI] values of hot metal for casting and hot metal for steelmaking] Representative (sB value and The representative (8i) value of hot metal for steelmaking is desirable on the steelmaking blow line,
The [Sil value, which is representative of hot metal for foundry [8i] and enables blast furnace operation, is set for each pig iron type standard (8i:
It means the weighted average value of l value according to production volume.

上記各溶銑の夫夫の代表(Si)値は、裏鋼用溶銑の場
合、製鋼吹線上望ましい溶銑品質を熱量の面、スラグ量
の面、高炉操業可能な(sB範囲の面から決定し、鋳物
用溶銑の場合、吹製する銑種毎に定められている(8i
)規格と各々の規格毎の生産量とから、加重平均(8i
)値によって決める。
In the case of hot metal for back steel, the representative (Si) value of each of the above hot metals is determined by determining the desired quality of hot metal on the steel blowing line from the aspects of heat quantity, slag amount, and blast furnace operation (sB range), In the case of hot metal for foundries, it is determined for each type of pig iron to be blown (8i
) standard and the production amount for each standard, the weighted average (8i
) determined by the value.

目標[Si]値は、鋳物用溶銑代表[:8i〕値と製鋼
用溶銑代表[8i]値との間で、各々の生産構成比率、
生産コスト等を考慮して設定する高炉操業目標(St)
値である。
The target [Si] value is calculated based on the production composition ratio between the representative [:8i] value of hot metal for casting and the representative [8i] value of hot metal for steelmaking,
Blast furnace operation target (St) set considering production costs, etc.
It is a value.

本発明では、生産コストミニマムで鋳物用溶銑。In the present invention, hot metal for casting can be produced with minimum production cost.

製鋼用溶銑を製造することが前提条件であり、このため
上記の溶銑(Si)値が鋳物用溶銑と製鋼用溶銑の夫夫
の(8i)値の範囲で吹製するだけでは生産コストミニ
マムとならないので目的は達成できない。上記各溶銑の
夫夫の代表(Si)値の範囲で生産コストミニマムとす
る前提条件が必要であるから目標(8i:]値を設定す
る必要がある。
The prerequisite is to produce hot metal for steelmaking, and for this reason, it is not possible to minimize the production cost by simply performing blowing with the above-mentioned hot metal (Si) value within the (8i) value range of hot metal for casting and hot metal for steelmaking. If this is not the case, the purpose cannot be achieved. It is necessary to set a target (8i:) value because it is necessary to have a precondition for minimizing the production cost within the range of the representative (Si) value of each hot metal.

この目標(8i)値は、少くとも鋳物用溶銑と製鋼用溶
銑の生産構成比率に基づき設定する。この設定に際して
は、生産構成比率の他に次の要件により設定することも
本発明の対象となる。
This target (8i) value is set based on at least the production composition ratio of hot metal for casting and hot metal for steelmaking. In this setting, setting based on the following requirements in addition to the production composition ratio is also a subject of the present invention.

即ち、溶銑目標(Si)値の設定は、第6図に示すとお
り、高炉吹製コスト及び所内エネルギーコスト34.転
炉吹錬コスト35.加珪コスト36゜脱珪コスト37.
これらの合計38に基づいて決定される。
That is, the setting of the hot metal target (Si) value is based on the blast furnace blowing cost and the in-house energy cost, as shown in FIG. Converter blowing cost 35. Addition cost: 36° De-siliconization cost: 37.
It is determined based on a total of 38 of these.

ここで、高炉吹製コストは燃料原単位、送風原単位、熱
風炉熱量原単位、高炉ガス発生原単位に基づいて計算さ
れ、転炉吹錬コストは酸素原単位。
Here, the blast furnace blowing cost is calculated based on the fuel unit, air blowing unit, hot blast furnace heat unit, and blast furnace gas generation unit, and the converter blowing cost is the oxygen unit.

副材原単位、炉材原単位、転炉ガス発生原単位に基づい
て計算され、所内エネルギーコストは高炉ガス発生原単
位、転炉ガス発生原単位、コークス炉ガス発生原単位、
加熱炉、熱風炉等のガス使用原単位、各工場の電力原単
位、余剰ガスによる発xi、重油9石炭及び電力等の購
入エネルギー原単位に基づいて計算される。
It is calculated based on the basic unit of auxiliary materials, the basic unit of furnace material, and the basic unit of converter gas generation, and the in-house energy cost is based on the basic unit of blast furnace gas generation, the basic unit of converter gas generation, the basic unit of coke oven gas generation,
It is calculated based on the unit consumption of gas such as heating furnaces and hot blast stoves, the unit electricity consumption of each factory, the xi generated by surplus gas, and the unit consumption of purchased energy such as heavy oil, coal, and electricity.

一般的に高炉溶銑(Si)値は、例えば特公昭57−4
7725号公報に示されるように融着帯板の高さ、スラ
グ中SiO2活量、溶銑温U、COガス分圧、出銑比、
炉高換算指数により決定される。
Generally speaking, the blast furnace hot metal (Si) value is, for example,
As shown in Publication No. 7725, the height of the cohesive band plate, the SiO2 activity in the slag, the hot metal temperature U, the partial pressure of CO gas, the pig iron output ratio,
Determined by the furnace height conversion index.

融着帯板の高さは、燃料比の設定に基づく炉内熱流比に
よって決定される。
The height of the cohesive strip is determined by the in-furnace heat flow ratio based on the fuel ratio setting.

したがって、本発明の溶銑目標(St)値は燃料比に関
係し、所内ガスバランス等を含め、コスト最小の点に設
定する。
Therefore, the hot metal target (St) value of the present invention is related to the fuel ratio, and is set at the point that minimizes the cost, including the in-plant gas balance.

〔溶銑を高炉および少くても後工程の生産情報に基づき設定する振り分け(St)値に基づいて向け先を振り分けるととくついて〕[The hot metal is distributed to destinations based on the distribution (St) value, which is set based on the production information of the blast furnace and at least the post-process.]

後工程の生産情報とは溶銑を必要とする鋳銑工場、製鋼
工場等での生産計画、処理タイミングあるいは設備、操
業のトラブル等の情報を意味する。
Post-process production information refers to information on production plans, processing timing, equipment, operational troubles, etc. in iron casting factories, steel factories, etc. that require hot metal.

高炉操業に於て〔Si3の変動は不可避である。In blast furnace operation, fluctuations in Si3 are inevitable.

(sB値は目標(Sill付近に分布し、通常の操業状
態では標準回差0.1チ程度の分布をする。
(The sB value is distributed near the target (Sill), and under normal operating conditions, the standard deviation is about 0.1 inch.

第5図に示すように振り分け(St)値40とは、(8
i)値39に基づいて吹製された高炉溶銑(St:]値
のバラツキと鋳物用溶銑、製鋼用溶銑の生産構成比率を
考慮した鋳物用溶銑向〔Si〕値の下限値(=製鋼用溶
銑向(8i)値の上限値)のことである。
As shown in FIG. 5, the distribution (St) value 40 is (8
i) The lower limit of the [Si] value for foundry hot metal (Si) considering the variation in the blast furnace hot metal (St:) value blown based on value 39 and the production composition ratio of foundry hot metal and steelmaking hot metal (= steelmaking hot metal This refers to the upper limit of the hot metal direction (8i) value).

振り分け〔81〕値の決定は操業方法、生産、経済環境
によって異なり、また高炉の操業状態の違いによっても
異る。
The determination of the distribution [81] value varies depending on the operating method, production, and economic environment, and also varies depending on the operating status of the blast furnace.

即ち、高炉操業が安定し、高炉から出銑される(8i)
の平均値とバラツキが日々変化しないケースではこの振
り分け(Si)値は一定値でよい。しかし、高炉操業が
不安定で高炉から出銑される(St)の平均値とバラツ
キが日々異なる場合、その日の分布に応じて振り分け(
8i)値を変化させる、 振り分け(si)値を設けることにより [Si:I値
の高い溶銑を鋳物用溶銑に、(Si)値の低い溶銑を製
鋼用溶銑に振り分けることができ、加脱珪量を減少でき
、コストを低下させることができる。
In other words, the blast furnace operation is stabilized and iron is tapped from the blast furnace (8i)
In a case where the average value and the variation of , do not change from day to day, this distribution (Si) value may be a constant value. However, if the blast furnace operation is unstable and the average value and dispersion of iron tapped from the blast furnace (St) differs from day to day, the distribution (St) will be distributed according to the distribution on that day.
8i) By setting a distribution (si) value that changes the value, hot metal with a high Si:I value can be distributed to hot metal for casting, and hot metal with a low Si value can be distributed to hot metal for steelmaking. The amount can be reduced and the cost can be lowered.

〔振り分け(8i)値により振向け先を決定することに
ついて〕 振り分け(811値によシ、振り向け先を決定するとは
、高炉から出銑する溶銑を鋳物用溶銑とするか、製鋼用
溶銑とするかを決定することを意味する。
[Determining the destination based on the distribution (8i) value] Determining the destination based on the distribution (811 value) means whether the hot metal tapped from the blast furnace is to be used for casting or for steelmaking. means to decide.

また統計的手法で予測する方法、例えば高炉操業データ
と(Si)値との関係を過労数十〜数百時間に亘り統計
的回帰法にもとづいて関係式の係数を決定し、出銑(S
i)値を予測する方法で行なうこともできる。
In addition, statistical methods can be used to predict the relationship between blast furnace operation data and (Si) values over several tens to hundreds of hours of overwork, and the coefficients of the relational equation are determined based on statistical regression methods.
i) It can also be done by a method of predicting the value.

さらに溶銑を実測、即ち高炉溶銑樋でサンプリングし、
  (Si)を分析する方法、あるいは出銑される溶銑
成分を連続的に測定する方法によっても良いう この時理論的予測、統計的手法で予測、実測することは
、それが単独でも良く、または理論的予測と実測、統計
的手法と実測の組合わせ、あるいは理論的予測統計的予
測及び実測の組合せで振υ分けSi’値により振向け先
を決定することもできる。
Furthermore, the hot metal was actually measured, that is, sampled in the blast furnace hot metal gutter,
(Si), or by continuously measuring the components of hot metal that is tapped.In this case, theoretical predictions, predictions using statistical methods, and actual measurements may be performed alone, or The destination can also be determined based on the distribution υ Si' value by a combination of theoretical prediction and actual measurement, a statistical method and actual measurement, or a combination of theoretical prediction, statistical prediction, and actual measurement.

〔向け先に応じて加珪又は脱珪処理すること九ついて〕[Depending on the destination, siliconization or desiliconization treatment is required.]

加珪とは溶銑に対して〔S1〕値を増加させることであ
り、加珪材としては列えばFe−8i合金、81−Mn
合金等を使用する。また脱珪とは溶銑の(S;)値を減
少させることであり、脱珪材としては、例えばスケール
、焼結鉱、銑鉱石、ダスト等を使用する。
Refining means increasing the [S1] value with respect to hot metal, and examples of refining materials include Fe-8i alloy and 81-Mn.
Use alloys, etc. Moreover, desiliconization means to reduce the (S;) value of hot metal, and examples of the desiliconizing material include scale, sintered ore, pig iron ore, and dust.

この場合、後工程の生産情報の程度次第では。In this case, it depends on the level of production information in the post-process.

列えは鋳物用溶銑に脱珪材を添加して、製鋼用溶銑とす
ること、また鋳物用溶銑に加珪材を添加して高珪素鋳物
用溶銑とすること、あるいは製鋼用溶銑に脱珪材を添加
して低珪素製鋼用溶銑とすること、さらに製鋼用溶銑に
加珪材を添加して鋳物用溶銑とすること等の処理を行う
つ 而して、加珪処理、脱珪処理は先行する各種の処理技術
を活用すればよい。
In order to make hot metal for steelmaking, add a silicone-reducing material to hot metal for casting, or add silicone-retaining material to hot metal for casting to make hot metal for high-silicon casting, or add silicone-removal to hot metal for steelmaking. Silicification treatment and desiliconization treatment are carried out by adding materials to make hot metal for low-silicon steelmaking, and further adding silica materials to hot metal for steelmaking to make hot metal for casting. It is sufficient to utilize various advanced processing technologies.

(作用] 以下、本発明と図面に示す一実施ツリに基づき説明する
(Function) The present invention will be described below based on an implementation diagram shown in the drawings.

第1図は本発明を実施する鉄鋼−貫製鉄所の主要工程を
示す説明図である。
FIG. 1 is an explanatory diagram showing the main processes of a steel mill that implements the present invention.

図中、1は高炉、2は大樋、3は枝樋、4は加珪剤ホッ
パー、5は脱珪剤ホッパー、6は投入シュート、7は測
温サンプリング装置、8は溶銑鍋。
In the figure, 1 is a blast furnace, 2 is a large gutter, 3 is a branch gutter, 4 is a siliconizing agent hopper, 5 is a desiliconizing agent hopper, 6 is a charging chute, 7 is a temperature measurement sampling device, and 8 is a hot metal ladle.

9は秤量機、10は鋳銑機、11は攪拌装置。9 is a weighing machine, 10 is an iron casting machine, and 11 is a stirring device.

12は排滓装置、13は転炉、14は生産管理用コンピ
ューター、15は高炉プロコーン、16は電気接続回路
を示す。
12 is a slag removal device, 13 is a converter, 14 is a production control computer, 15 is a blast furnace procorn, and 16 is an electrical connection circuit.

第2図は第1図に示すシステムの主要部分を拡大してブ
ロックで示す説明図であり、これによって第1図の製造
工程の生産管理と操業との関係がわかる。
FIG. 2 is an explanatory diagram showing the main parts of the system shown in FIG. 1 in enlarged blocks, and the relationship between production control and operation of the manufacturing process shown in FIG. 1 can be understood from this diagram.

即ち第1図、第2図によシ木兄明法に係る一例を説明す
ると、高炉1は同一の高炉で溶銑(Si)値が鋳物用溶
銑、製噺用溶銑の各々の代表〔置〕値の間で吹製する。
That is, to explain an example of the Sikinai Mei method with reference to FIGS. 1 and 2, the blast furnace 1 is the same blast furnace, and the hot metal (Si) value is representative of hot metal for casting and hot metal for whitening. Blowing between values.

このときの高炉1の操業技術は、周知のものである。The operating technology of the blast furnace 1 at this time is well known.

生産管理計画は生産管理用コンピューター14から各生
産工程の端末機へ伝えられる。この情報に基づいて高炉
1の吹製する溶銑(8i〕値は鋳物用溶銑、製鋼用溶銑
の各々の代表(Si〕値の間で[Si〕目標値を設定す
る。この〔S1〕目標値の設定は、−貫製鉄所のエネル
ギーコスト、例えば製鉄所内での使用及び発生熱源(固
体、液体、気体燃料、電力)また前記エネルギーコスt
t−除く高炉及び転炉吹製コスト、加珪及び脱珪コスト
、の合計値が最小になるように設定する。この設定に当
って高炉1の操業は主としてコークス比及び吹込燃料比
、更に操業条件を変化させ、−貫製鉄所のエネルギーバ
ランスがとれると同時にコストミニマムとなる様操業を
行なう。
The production control plan is transmitted from the production control computer 14 to the terminals of each production process. Based on this information, the [Si] target value for the hot metal (8i) to be blown in the blast furnace 1 is set between the representative (Si) values for foundry hot metal and steelmaking hot metal.This [S1] target value - The energy cost of the steelworks, for example, the heat sources used and generated in the steelworks (solid, liquid, gaseous fuel, electricity) and the energy cost t
Set so that the total value of the blast furnace and converter blowing costs excluding t-, and the siliconization and desiliconization costs is minimized. In this setting, the blast furnace 1 is operated mainly by changing the coke ratio and the blown fuel ratio, as well as the operating conditions, so as to maintain the energy balance of the steel mill and to minimize costs at the same time.

而して、高炉1で吹製された溶銑は大樋2を通って出銑
され、枝樋3を通り溶銑鍋8に入れられる。出銑面接に
溶銑の振シ向け先を振り分け(Si)値に基づいて鋳物
銑、製鋼銑に向ける場合、高炉プロコン15を使って炉
内の(8i)予測を理論的方法を用いるか、もしくは統
計的方法を用いて決定してもよく、マたサンプリングし
て迅速分析するかあるいは直接分析を行ないこの操業に
よってもよい。勿論出銑前に生産管理用コンピューター
14で次のタップの溶銑の振り向け先の量が当該日の注
文条件、生産条件に基づいて予め決定され、APプロコ
ン15に入力されている。
Thus, the hot metal blown in the blast furnace 1 is tapped through the large gutter 2, and is introduced into the hot metal ladle 8 through the branch gutter 3. If you want to direct the hot metal to casting pig or steelmaking piglet based on the distribution (Si) value during the taping interview, you can use the theoretical method to predict (8i) inside the furnace using blast furnace procon 15, or It may be determined using statistical methods, mass sampling and rapid analysis, or direct analysis and this operation. Of course, before tapping, the amount of hot metal to which the next tap is to be directed is determined in advance by the production control computer 14 based on the order conditions and production conditions for that day, and is input into the AP processor 15.

5 ここで第2図に基づいてコンピュータの生産にかか
わる内容について詳説する。製品の注文は概ねロット単
位で生産管理用コンピュータ14に入力される。更にこ
れを月次計画システム18を使って月次計画に組み込む
。この中で製品製作スケジュールと鋳物銑、裂鋼銑量と
の関係が大略決定されるが、更に日次計画システム19
で直近の生産注文情報を使ってブレークダウンし、生産
管理者24に提示する一生産管理者24はチェックを行
ない、最終命令が工程調整センター22に提示され、そ
の時々の生産情報をもとに更に一部調整を行ない、高炉
プロコン15に情報伝達される。
5 Here, we will explain in detail the contents related to computer production based on Figure 2. Product orders are generally entered into the production management computer 14 in lot units. Furthermore, this is incorporated into the monthly plan using the monthly planning system 18. In this, the relationship between the product production schedule and the amount of casting pig iron and cracked steel pig iron is roughly determined, but in addition, the daily planning system 19
The most recent production order information is used to break it down and presented to the production manager 24.The production manager 24 checks it and presents the final order to the process adjustment center 22, based on the production information at the time. Further, some adjustments are made and the information is transmitted to the blast furnace process controller 15.

高炉プロコン15の処理内容は第2図に示す通シ2日内
の生産命令を受けとったのち、タップ別所要受銑量の受
信26.鍋別Si一温度の予測27(理論的もしくは統
計的)ないしは実測データ。
The processing contents of the blast furnace process controller 15 are shown in FIG. 2. After receiving the production order within two days, receiving the required amount of pig iron received by tap 26. Prediction 27 (theoretical or statistical) or actual measurement data of Si temperature by pot.

調料鋳物用銑・製鋼用銑作り分は決定28.鋳物銑規格
決定29.加脱珪菫計算30.加脱珪作業指示31 、
 (Sr〕実績値受信32.加脱珪量修正計算・指示3
3を行なう。
Production of pig iron for preparatory casting and steelmaking is determined 28. Casting iron standard determination 29. Addition and removal siliceous calculation 30. Addition silicon work instructions 31,
(Sr) Actual value reception 32. Addition/removal silica correction calculation/instruction 3
Do step 3.

こうして高炉プロコン15より調料に鋳物銑もしくは製
鋼銑の向け先と各々に応じて加珪量、脱珪量の指示が出
され、これらの指示に基づいて自動的に加珪剤ホッパー
4もしくは脱珪剤ホッパー5から自動的に加脱珪剤が切
り出される。この際、秤縫機9の出力に応じ加脱珪効率
が最高となるよう加脱珪剤の投入速度が制(財)される
。また実測値が測温サンプリング装置7より入力され次
第遂次投入速度が目標規格に基づいて制御される。
In this way, the blast furnace program controller 15 issues instructions for the destination of the casting pig or steelmaking pig and the amount of siliconization and desiliconization depending on each destination, and based on these instructions, the process is automatically carried out to the silica agent hopper 4 or the desiliconization amount. Added and removed silica is automatically cut out from the agent hopper 5. At this time, the charging speed of the addition/removal silicon agent is controlled according to the output of the scale stitching machine 9 so that the silicon removal efficiency is maximized. Further, as soon as the actual measurement value is inputted from the temperature measurement sampling device 7, the successive feeding speed is controlled based on the target standard.

こうして受銑終了した鍋は鋳物銑の場合は攪拌装置11
を通り均一混合された後、排滓装置でブラフアイトラ排
滓し、鋳銑機10に向けられる。
In the case of casting pig iron, the pot which has finished receiving pig iron in this way is stirred by the stirring device 11.
After passing through the bluff and being mixed uniformly, the sludge is removed from the bluff by a slag removal device and sent to the iron casting machine 10.

一方、脱珪された製鋼銑の場合は排滓装置12で脱珪量
を排滓し、転炉工場に送られる。
On the other hand, in the case of desiliconized steelmaking pig iron, the desiliconized pig iron is removed by a slag removal device 12 and sent to a converter factory.

こうして同一高炉で製鋼銑、鋳物銑を常時安定的に各工
場の要求に応じかつ高炉操業諸元の大巾な変更もなく、
所内のエネルギーバランス等のコストミニマムで生産す
る。また小ロツト多品種生産の需要計画(生産計画)を
達成する。
In this way, the same blast furnace can constantly and stably produce steelmaking pig iron and foundry pig iron in response to the demands of each factory, without making any major changes to the operating specifications of the blast furnace.
Produce at minimum cost by maintaining energy balance within the plant. In addition, we will achieve the demand plan (production plan) for small-lot, high-mix production.

(実施列) 本発明方法は、以上のとおりであるが、これらをさらに
実施列により具体的に説明する。
(Execution sequence) The method of the present invention is as described above, and these will be further specifically explained using an implementation sequence.

この実施列の条件は第1表に示す通りである。The conditions for this implementation row are as shown in Table 1.

第  1  表 (実施列1) この実施列1では、[8i:]目標値の近傍で高炉吹線
上のバラツキを利用し、後工程の需要とこのバラツキを
考慮して高Si溶銑を鋳物用溶銑に、また低8i溶銑を
製鋼用銑に振り分けた。1150m’の高炉で、月産6
0,000 tの出銑を行ない、このうち18,000
 tを鋳物銑に、42,000 tを製鋼銑にする計画
で生産を行なった。鋳物銑の銑種構成は第2表に示す通
りである。
Table 1 (Implementation Column 1) In this execution column 1, using the variation in the blast furnace blowing line near the [8i:] target value, and taking into account the demands of the post-process and this variation, high-Si hot metal is converted into foundry hot metal. In addition, low 8i hot metal was distributed to steelmaking pig iron. 1150m' blast furnace with monthly production of 6
0,000 tons of iron was tapped, of which 18,000 tons
Production was planned to produce 42,000 tons of iron for casting and 42,000 tons of iron for steelmaking. The pig iron type composition of foundry pig iron is as shown in Table 2.

第  2  表 この表から鋳物銑の代表(SL)値は、1.57%と決
めた。一方、製鋼銑の代表(Si)値は、製釧工場の操
業面から0.60%と決めた。
Table 2 From this table, the representative (SL) value of foundry pig iron was determined to be 1.57%. On the other hand, the representative (Si) value of steelmaking pig iron was determined to be 0.60% from the operational standpoint of the Tsubame factory.

次に溶銑[Si]目標値を求めるため製鉄所のエネルギ
ーコストを考慮して、高炉吹製コストを算出し、転炉吹
錬コスト及び加脱珪コス蹄も各々プロットして、更圧こ
れらの合計値をプロットしたところ第7図のようになり
、溶銑目標(Si)値を100俤に設定した。高炉の操
業結果を第3表に示す。第3表から高炉(Si)値の標
準(2)差0.13チであることを考慮し、鋳物銑の生
産比率30チ、製鋼銑の生産比率70%から撮り分け[
Si]値を10.7 %に設定した。この振り分け(S
i:]値に応じ、出銑(:8i)を溶銑鍋8単位(受銑
量50t/鍋)に(Si)が1.07を超えるものは鋳
物銑に、1.07チ以下は製鋼銑に撮り分けた。撮り分
けは、出銑後1鍋目は炉内装入物条件、送風条件、炉頂
ガス組成、溶銑温度、成分、炉内反応等を用いた理論予
測(8i)推定値に基づいて実施し、2鍋目以降は、サ
ンプリング装置7による実測(8i)値を用いた。
Next, in order to obtain the hot metal [Si] target value, the energy cost of the steelworks is considered, the blast furnace blowing cost is calculated, the converter blowing cost and the silica cost are plotted, and the additional pressure is calculated. When the total value was plotted, the result was as shown in FIG. 7, and the hot metal target (Si) value was set to 100 进. Table 3 shows the operating results of the blast furnace. From Table 3, taking into account that the standard (2) difference in blast furnace (Si) value is 0.13 cm, the production ratio of casting pig iron is 30 cm, and the production ratio of steelmaking pig iron is 70%.
Si] value was set at 10.7%. This distribution (S
i:] Depending on the value, tap iron (:8i) is converted into 8 units of hot metal ladle (receiving pig iron amount 50t/ladle).If (Si) exceeds 1.07, it is used as casting pig iron, and if it is less than 1.07 inch, it is used as steelmaking pig iron. I took pictures separately. For the first pot after tapping, the shooting is carried out based on the theoretical prediction (8i) estimated value using the furnace loading conditions, air blowing conditions, furnace top gas composition, hot metal temperature, components, furnace reaction, etc. From the second pot onwards, the actually measured (8i) value by the sampling device 7 was used.

第3表 この撮り分は及び加脱珪調整した列を第4表に示す。Table 3 Table 4 shows the column for this photographic amount and the adjustment for addition/removal.

第4表 使用したスケールとFe−8iの組成を第5表に示す。Table 4 Table 5 shows the scale used and the composition of Fe-8i.

本実施列のケースでは、目標8i値と高炉吹製結果の8
1値とが一致し、 Siの標準扁差も0.13 %と日
々一定値となっているので振り分けSt値設定にあたり
高炉操業変動による目標値との偏寄を考慮する必要がな
く、鋳物用溶銑と製鋼用溶銃の生産構成比率にもとづい
て、正規分布表より設定する方法で生産が可能だった。
In the case of this implementation series, the target 8i value and the 8i value of the blast furnace blowing result are
1 value, and the standard deviation of Si is 0.13%, which is a constant value every day, so there is no need to consider deviation from the target value due to fluctuations in blast furnace operation when setting the distributed St value. Production was possible using a method set from a normal distribution table based on the production composition ratio of hot metal and steelmaking guns.

転炉以降の工程では、連続して高炉生産速度以上の製鋼
用銑を必安とすることがあり、従来通り、排滓装[12
と転炉13の間に混銑炉(容量200ton )を設け
て操業を行なった。
In the process after the converter, there are cases where steelmaking pig iron is required continuously at a rate higher than the blast furnace production rate, and as before, the slag removal system [12
A mixed pig iron furnace (capacity 200 tons) was installed between the converter 13 and the converter 13 for operation.

この結果、高炉−基で鋳物用銑、製鋼用銑を安定して、
常時供給でき、第6表及び第7表に示すように高炉の集
約ができ、かつ生産量および品質とも2本高炉の場合と
同一であり、固定費の削減、労働生産性の向上があった
。また、第8表に示すように、高炉吹製と製鋼銑からの
加珪、本発明を鋳物銑吹製適中率について比較すると、
本発明では約15%向上することがわかる。更に鋳物銑
の在庫削減を図ることができた。更に製造された成分の
比較を第7表に示すが、従来法と何ら遜色なく、従来法
では見られない生産操業とその効果があった。
As a result, the blast furnace base can stably produce foundry pig and steelmaking pig.
It can be supplied at all times, the blast furnaces can be consolidated as shown in Tables 6 and 7, and the production volume and quality are the same as in the case of two blast furnaces, reducing fixed costs and improving labor productivity. . In addition, as shown in Table 8, when comparing blast furnace blowing, refining from steelmaking pig iron, and the present invention in terms of the accuracy rate of cast iron blowing,
It can be seen that the present invention improves by about 15%. Furthermore, we were able to reduce the inventory of casting pig iron. Furthermore, Table 7 shows a comparison of the components produced, and there is no inferiority to the conventional method, and there were production operations and effects that were not seen in the conventional method.

第7表 (実施列−2) この実施ダ1では、時間帯により生産する銑種を、鋳物
銑もしくは製鋼銑に集中させた。時間帯に応じて振分は
先を変化させた。
Table 7 (Implementation Column-2) In this implementation stage 1, the types of pig iron produced were concentrated on casting pig or steelmaking pig depending on the time of day. The distribution changed depending on the time of day.

元来、鋳物銑高炉は、製鉄所に於て、高炉ガス発生量は
多いが、消費工程は、鋳銑機のみというアンバランスな
工程であった。したがってこの発生ガスは主として発電
用に供されていた。一方鋳物銑高炉をもっていた際には
、高炉操業安定上、時間単位での送風量の大巾増減によ
る生産調整はできなかった。しかし、本発明法によれば
、高炉生産量は一定で日内で振υ向け先を調整するだけ
で自由1柱に購入電力量を調整できた。
Originally, foundry pig iron blast furnaces were an unbalanced process in ironworks, where the amount of blast furnace gas generated was large, but the only consuming process was the iron casting machine. Therefore, this generated gas was mainly used for power generation. On the other hand, when the company had a cast iron blast furnace, it was not possible to adjust production by drastically increasing or decreasing the amount of air blown on an hourly basis to ensure stable blast furnace operation. However, according to the method of the present invention, the amount of electric power purchased could be freely adjusted to one pillar by simply adjusting the destination of the blast furnace within a day while the production volume of the blast furnace was constant.

本出願人らは、第9表に示すような電力バランスの製鉄
所に於て、夏場の尖頭時間帯(3Hr)、昼間帯(11
Hr)において、振シ分けh値の設定を止め、高炉から
出銑される溶銑をすべて鋳物用溶銑として、生産を鋳物
用溶銑に集中させ、特に。
Applicants have proposed that in a steelworks with a power balance as shown in Table 9, peak hours in the summer (3 hours), daytime hours (11 hours),
In Hr), the setting of the distribution h value is stopped, all the hot metal tapped from the blast furnace is used as hot metal for foundries, and production is concentrated on hot metal for foundries, especially.

尖頭時間帯では転炉、分塊工程を休止させた。この結果
、生産量60000t/Mの時期に、購入電力量平均1
7000 Kwh/)Trに対し、5000 Kwh/
Hrの購入電力量の節減が可能となり、コストダウン及
び、電力需給に多大の貢献ができた、一方、この生産方
式に応じ、所内の生産要員を、尖頭時間帯をまたがる8
時間を鋳銑機稼動として確保し、転炉分塊以降の工程は
それ以外の時間帯に当てる変則要員配置とした。
The converter and blooming processes were suspended during peak hours. As a result, when the production volume was 60,000t/M, the average amount of electricity purchased was 1
7000 Kwh/) Tr, 5000 Kwh/
This made it possible to reduce the amount of electricity purchased per hour, contributing greatly to cost reductions and to electricity supply and demand.At the same time, depending on this production method, production personnel within the plant could be reduced to 8 hours across peak hours.
An irregular staffing arrangement was adopted in which hours were set aside for the operation of the pig iron casting machine, and processes after the converter blooming were carried out during other hours.

第9表 この結果、所内要員の増加もなく、尖頭時間帯の購入電
力量を節減でき、かつ、鋳物用銑、梨鋼用銑の生産を安
定的に行なうことができた。
Table 9 As a result, we were able to reduce the amount of purchased electricity during peak hours without increasing the number of on-site personnel, and we were able to stably produce foundry pig iron and pear steel pig iron.

(実施し03] この実施列では、高炉操業が不安定で目標S1が日々変
動をもつのに対応した。
(Execution 03) This implementation series corresponded to the fact that the blast furnace operation was unstable and the target S1 fluctuated daily.

即ち、第4,5図の列ではいずれも実施列1と同じく目
標Siを定め、第4図は実施列1の高炉吹製Siの[F
llであり、時系列的にも目標値の付近に集中し、各日
のStの頻度グラフをとっても分布が変わらないケース
であるが、第5図は目標5i39に対し高炉吹製Siが
操業不調のため、高Si側に聞薔した列であり、第5図
のような列を実施例3の対象とする。
That is, in the rows in FIGS. 4 and 5, the target Si is determined in the same way as in the first row, and in FIG.
This is a case in which the frequency of St is concentrated around the target value in time series, and the distribution does not change even if the frequency graph of St is drawn for each day.However, Fig. 5 shows that the blast furnace blown Si is in poor operation with respect to the target of 5i39. Therefore, the rows are shifted toward the high Si side, and the rows shown in FIG. 5 are targeted for the third embodiment.

振分け〔S1〕値は、高炉(Si)値の変動に応じ、自
動的に決定する必要があるが、これは過去のデータから
統計的に予測することにより可能であった。即ち、過去
の変動傾向を鍋毎、に10日間集計し、その〔8I〕分
布を該当日生産構成比率で按分し、振分け81値を決定
した。
The distribution [S1] value needs to be automatically determined according to fluctuations in the blast furnace (Si) value, but this has been possible by statistically predicting it from past data. That is, the past fluctuation trends were aggregated for each pot for 10 days, and the [8I] distribution was apportioned according to the production composition ratio of the day to determine the distribution 81 value.

一列を示すと、第10表に示すように1高炉平均Si値
は目標Si値1.00%に対し、1.10%になってい
て、標準圓差は0.13%であった。また、生産構成比
率は、鋳物用溶銑30チ、製鋼用溶銑70%であった。
As shown in Table 10, the average Si value for one blast furnace was 1.10% with respect to the target Si value of 1.00%, and the standard round difference was 0.13%. The production composition ratio was 30% hot metal for casting and 70% hot metal for steelmaking.

したがって、実施列1のように振分けSi値を1.07
%のままだしておくと、正規分布表より1.07 %以
下の製鋼用溶銑は41L%となp、1.07チ以上の鋳
物用溶銑は69%となり、生産構成比率に合わない。し
たがって、目標Si値に対する高炉平均Si値のずれ分
を修正する必要があり、高炉平均8i値と標準扁差と生
産構成比率とから本実施列のケースでは、振り分けSi
値を1.18%に設定した。
Therefore, as in implementation column 1, the distributed Si value is 1.07
If the percentage is left unchanged, according to the normal distribution table, hot metal for steelmaking with a content of 1.07% or less will be 41L%, and hot metal for castings with a content of 1.07% or more will be 69%, which does not match the production composition ratio. Therefore, it is necessary to correct the deviation of the blast furnace average Si value from the target Si value, and in the case of this implementation series, the distribution Si
The value was set to 1.18%.

第10表 第7図に示すような炉況不調で[Si、:lが高目に推
移した時期に本方法を適用した結果を第11表に示す。
Table 10 Table 11 shows the results of applying this method to a period when [Si,:l] was high due to poor furnace conditions as shown in Figure 7.

その結果、計画通り製鋼銑70%、鋳物銑30チの割合
で振り分けられることがわかる。
As a result, it was found that 70% of the steelmaking pig iron and 30% of the casting pig were distributed as planned.

このよつに、炉況が不安定なケースでも本方法は適用が
可能であり、製鋼銑の供給も安定て実施でき、また適中
率は既に述べた第2表に示すように同様の効果があり、
労働生産性の向上、在庫削減も図れ、従来法では見られ
ない生産操業とその効果があった。
In this way, this method can be applied even in cases where the furnace conditions are unstable, the steelmaking pig iron can be supplied stably, and the accuracy rate has the same effect as shown in Table 2 already mentioned. can be,
It improved labor productivity and reduced inventory, producing production operations and effects not seen with conventional methods.

(発明の効果) 本発明は以上のとおりであるから、次のとおりの効果が
あり、所期の目的を達成する。
(Effects of the Invention) As described above, the present invention has the following effects and achieves the intended purpose.

−同一高炉で常時鋳物用溶銑と製鋼用溶銑を一貫製鐵所
の生産コストミニマムで製造できる、 中 生産調整に対応できる操業ができ、鋳物用溶銑の〔
S1〕適中率の向上が図れる、中 生産要員を列えは鋳
物用銑の製造のみに限って勤務できるようにする等、生
産要員の生産に対応する調整ができる。
- The same blast furnace can constantly produce hot metal for foundries and hot metal for steelmaking at the minimum production cost of an integrated steelworks.
S1] It is possible to improve the accuracy rate, medium It is possible to make adjustments to accommodate the production of production personnel, such as lining up production personnel so that they can only work in the production of foundry pig iron.

1  (81)調整による出銑量、 EIFG発生量の
変動がなく炉内状況が安定し、炉壁破損減少を図れる、 申 夏場、尖頭時間帯の生産調整による電力使用量の削
減が可能で、電力調整ができる、串 高炉の固定費が削
減でき、設備投資額が軽減できる。
1 (81) Due to adjustment, there is no change in the amount of tapped iron or EIFG generation, the situation inside the furnace is stable, and damage to the furnace wall can be reduced.It is possible to reduce power consumption by adjusting production during peak hours in the summer. , the power can be adjusted, the fixed cost of the skewer blast furnace can be reduced, and the amount of capital investment can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する工程を示す説明図、第2図は
第1図のシステムの主要部を説明するブロック図、 第3図は高炉出銑[Si:]の変化の〔S1〕変動の少
ない例を示す図、 第4図は高炉出銑[St:]の変化の(Si)変動の多
い列を示す図、 第5図は本発明の目標〔Si〕値と撮り分け(Si)値
の説明図、 第6図はコストミニマムとなる(Si)目標値の設定方
法の説明図、 第7図は炉況の悪化した場合の[Si]変動の列を示す
図である。 1・・・高炉、2・・・大樋、3・・・技研、4・・・
加珪剤ホッパー、5・・・脱珪剤ホッパー、6・・・投
入シュート、7・・・側温サンプリング装置、!3・・
・溶銑鍋、9・・・秤量機、10・・・鋳銑機、11・
・・攪拌装置、12・・・排滓装置、13・・・転炉、
14・・・生産管理用コンピューター、15・・・高炉
プロコン、16・・・電気接続回路、18・・・月次計
画システム、19・・・日次計画システム、20・・・
製作指令システム、21・・・計算機ガイド(OELT
)、22・・・工程調整センター、24・・・生産管理
者、25・・・転炉プロコン、26・・・タップ別所要
溶銑醍の受信、27・・・調料Si一温度予測、28・
・・調料鋳物用銑製鋼用銑作υ分は決定、29・・・鋳
物銑対象規格決定、30・・・加脱珪量計算、31・・
・加脱珪作業指示、32・・・(81)実績値受信、3
3・・・加脱珪量修正計算・指示、34・・・高炉吹製
コスト及び所内エネルギーコスト、35・・・転炉吹錬
:ffス)%36・・・加珪コスト、37・・・脱珪コ
スト、38・・・34〜37のコストの合計、39・・
・目標〔Si〕値、40・・・振分け[st)値。 代理人 弁理士  秋 沢 政 光 他2名 茎蔓 f躾 76図 1日 オフ図 自発手続補正書 昭和60年2月6日
Fig. 1 is an explanatory diagram showing the process of carrying out the present invention, Fig. 2 is a block diagram explaining the main parts of the system shown in Fig. 1, and Fig. 3 is a diagram showing changes in blast furnace tapped iron [Si:] [S1]. Figure 4 is a diagram showing an example of a change in blast furnace tapped iron [St:] with a large variation in (Si); Figure 5 is a diagram showing an example of a change in blast furnace tapped iron [St:] with a large variation in (Si); ) value, FIG. 6 is an explanatory diagram of a method for setting the (Si) target value that minimizes cost, and FIG. 7 is a diagram showing a sequence of [Si] fluctuations when the furnace condition deteriorates. 1... blast furnace, 2... gutter, 3... Giken, 4...
Silica additive hopper, 5... Silica removal hopper, 6... Input chute, 7... Side temperature sampling device! 3...
・Hot metal pot, 9... Weighing machine, 10... Casting machine, 11.
... Stirring device, 12... Slag removal device, 13... Converter,
14... Production control computer, 15... Blast furnace processor, 16... Electrical connection circuit, 18... Monthly planning system, 19... Daily planning system, 20...
Production command system, 21... Computer guide (OELT)
), 22... Process adjustment center, 24... Production manager, 25... Converter processing controller, 26... Reception of required hot metal molten iron by tap, 27... Preparation Si-temperature prediction, 28.
... Pig production υ for preparing and casting iron is determined, 29 ... Standards for casting pig iron are determined, 30 ... Silica weight calculation, 31 ...
・Additional silicon work instructions, 32...(81) Actual value reception, 3
3... Calculation and instruction for correction of silica content, 34... Blast furnace blowing cost and in-house energy cost, 35... Converter blowing: ffs)% 36... Addition silicon cost, 37...・Siliconization cost, 38...Total cost of 34 to 37, 39...
- Target [Si] value, 40...distribution [st] value. Agent: Patent Attorney Masamitsu Aki Sawa and 2 other persons. 76 Figure 1 Day Off Figure Voluntary Procedure Amendment Letter February 6, 1985

Claims (1)

【特許請求の範囲】[Claims] (1)同一高炉により、鋳物用溶銑、製鋼用溶銑を常時
製造するに際し、 上記各溶銑の夫夫の代表〔Si〕値の間に少なくとも生
産構成比率に基づいて目標〔Si〕値を設定して溶銑を
吹製し、 該溶銑を高炉および少くとも後工程の生産情報に基づき
設定する振り分け〔Si〕値に基づいて向け先を振り分
け、 その向け先に応じて加珪または脱珪処理することを特徴
とする鋳物用溶銑、製鋼用溶銑の製造方法。
(1) When constantly producing hot metal for casting and hot metal for steelmaking in the same blast furnace, set a target [Si] value between the representative [Si] values of each hot metal husband and husband, based on at least the production composition ratio. blowing hot metal, sorting the hot metal to destinations based on the distribution [Si] value set based on the production information of the blast furnace and at least the post-process, and subjecting it to siliconization or desiliconization depending on the destination. A method for producing hot metal for casting and hot metal for steelmaking, characterized by:
JP27971684A 1984-12-28 1984-12-28 Production of molten iron for casting and molten iron for steel making Granted JPS61157607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27971684A JPS61157607A (en) 1984-12-28 1984-12-28 Production of molten iron for casting and molten iron for steel making

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27971684A JPS61157607A (en) 1984-12-28 1984-12-28 Production of molten iron for casting and molten iron for steel making

Publications (2)

Publication Number Publication Date
JPS61157607A true JPS61157607A (en) 1986-07-17
JPH0154406B2 JPH0154406B2 (en) 1989-11-17

Family

ID=17614883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27971684A Granted JPS61157607A (en) 1984-12-28 1984-12-28 Production of molten iron for casting and molten iron for steel making

Country Status (1)

Country Link
JP (1) JPS61157607A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217967A (en) * 2006-02-17 2007-08-30 Shin Nikkei Co Ltd Prefabricated roof
JP2014088590A (en) * 2012-10-29 2014-05-15 Jfe Steel Corp Blow control method and blow control apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217967A (en) * 2006-02-17 2007-08-30 Shin Nikkei Co Ltd Prefabricated roof
JP2014088590A (en) * 2012-10-29 2014-05-15 Jfe Steel Corp Blow control method and blow control apparatus

Also Published As

Publication number Publication date
JPH0154406B2 (en) 1989-11-17

Similar Documents

Publication Publication Date Title
CN104004876B (en) A kind of converter charging autocontrol method and system
EP0262706A1 (en) Plant to convert a metallic charge into semifinished products, and connected smelting and casting method
CN113961865A (en) Method for accurately controlling addition amount of temperature regulator in TSC (thyristor switched capacitor) stage of large converter
JPS61157607A (en) Production of molten iron for casting and molten iron for steel making
JP4807895B2 (en) Converter main raw material blending method
CN114959149A (en) Method for automatically controlling adding amount of lump materials processed by blast furnace main channel
US4432790A (en) Blast furnace control method
US20110074073A1 (en) Method of producing cast iron
JPS60255911A (en) Method for controlling supply of refining agent in continuous refining
CN112280925B (en) Titanium element control method for silicon steel steelmaking smelting
CA1237583A (en) System and method for producing steel in a top-blown vessel
CN116574865A (en) LF refining process control method and system
JP2843604B2 (en) Production method of molten iron by combined smelting reduction and scrap melting method
CA1216156A (en) Blast furnace control method
JPH0227404B2 (en) ITSUKANSEITETSUSHONIOKERUTAMOKUTEKYOSENNOSEISANKANRIHOHO
CN114891945A (en) Treatment method for reducing iron and steel material consumption and iron consumption final slag oxidizability of converter
KR100376479B1 (en) A method and an apparatus for producing low silicon iron of blast furnace
Liu et al. To Stable Furnace Temperature
CN114908210A (en) Automatic ladle matching method for converter ladle
BEng Computer control applications in electric arc steelmaking
JPH01225743A (en) Manufacture of low-carbon ferrochrome
JPS6310202B2 (en)
JPS6167707A (en) Method for regulating amount of molten steel discharged
SU821491A1 (en) Charge of blast furnage for producing casting synthetic cast iron
CN115185250A (en) Method for controlling fuel ratio in production process of ferrous metallurgy blast furnace