JPS6249347B2 - - Google Patents

Info

Publication number
JPS6249347B2
JPS6249347B2 JP1172283A JP1172283A JPS6249347B2 JP S6249347 B2 JPS6249347 B2 JP S6249347B2 JP 1172283 A JP1172283 A JP 1172283A JP 1172283 A JP1172283 A JP 1172283A JP S6249347 B2 JPS6249347 B2 JP S6249347B2
Authority
JP
Japan
Prior art keywords
smelting
chromium
temperature
blowing
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1172283A
Other languages
Japanese (ja)
Other versions
JPS59140350A (en
Inventor
Hiroyuki Katayama
Masatoshi Kuwabara
Hideki Ishikawa
Tsutomu Saito
Noryuki Inoe
Masaki Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1172283A priority Critical patent/JPS59140350A/en
Publication of JPS59140350A publication Critical patent/JPS59140350A/en
Publication of JPS6249347B2 publication Critical patent/JPS6249347B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は金属あるいは合金、特にフエロクロム
のような高クロム合金を、電力に依存しない溶融
還元法で安価にかつ歩留高く製造するための方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing metals or alloys, particularly high chromium alloys such as ferrochrome, at low cost and with high yield by a smelting reduction method that does not depend on electric power.

従来、高クロム合金、例えばCrを50%以上含
有するフエロクロムは、電気炉においてクロム鉱
石あるいはその半還元物を加熱、溶融、還元して
製造されてきた。もし、このエネルギー源を電力
よりも安価な一次エネルギー(特に石炭、コーク
スなどの石炭系固体炭素質−以下では固体炭素質
あるいは炭材と言う−の燃焼エネルギー)に置換
できれば、その経済的な有利性は非常に大きい。
Conventionally, high chromium alloys, such as ferrochrome containing 50% or more of Cr, have been produced by heating, melting, and reducing chromium ore or its semi-reduced product in an electric furnace. If this energy source can be replaced with primary energy that is cheaper than electricity (especially the combustion energy of coal-based solid carbon materials such as coal and coke, hereinafter referred to as solid carbon materials or carbon materials), it would be economically advantageous. Gender is huge.

高クロム合金を電力を用いないで、炭材の燃焼
熱を利用して製造する(これを、溶融還元法と呼
ぶ)には、 (i) 効率的発熱のための炭材酸化条件と、クロム
酸化物を還元するための条件の相克、 (ii) 生成スラグ量がきわめて多いという条件下
で、通常はきわめて遅い反応であるクロム酸化
物の還元をどのように促進するか、 など種々の問題があるが、それを解決するための
反応容器方式として、上底吹転炉型がある。その
設備の概略を第1図に示す。1はクロム鉱石粉と
コークスなどの炭材粉を混合・成型したもの(ペ
レツトなど)を、加熱及び固相還元するのに用い
られるロータリーキルンである。2は予備還元さ
れたペレツトの供給を受けて、それを溶融すると
ともに残留しているクロム、鉄の酸化物の還元を
進めるための転炉状の溶融還元炉であり、底部か
ら酸素を含むガスの吹込みを行うための羽口3
(複数個のことがありうる)と、上方から酸素を
炉内に吹込むためのランス4が付属している。な
お図において5はフード、6は炭材、石灰用ホツ
パー、7は溶融メタル、8は溶融スラグ、9はク
ロムペレツト、10は炭材、11は気泡、12は
ペレツト供給量調整槽、13は原料供給量制御装
置である。
In order to produce high chromium alloys using the combustion heat of carbonaceous materials without using electricity (this is called the smelting reduction method), (i) carbonaceous material oxidation conditions for efficient heat generation and chromium (ii) How to accelerate the reduction of chromium oxide, which is normally an extremely slow reaction, under conditions where the amount of slag produced is extremely large. However, a top-bottom blowing converter type is available as a reaction vessel method to solve this problem. Figure 1 shows an outline of the equipment. 1 is a rotary kiln used for heating and solid phase reduction of a mixture (such as pellets) of chromium ore powder and carbonaceous powder such as coke. 2 is a converter-like smelting reduction furnace that receives the pre-reduced pellets and melts them while reducing the remaining chromium and iron oxides. Tuyere 3 for blowing
(There may be more than one) and a lance 4 for blowing oxygen into the furnace from above. In the figure, 5 is a hood, 6 is a charcoal material, a hopper for lime, 7 is a molten metal, 8 is a molten slag, 9 is a chromium pellet, 10 is a carbon material, 11 is a bubble, 12 is a pellet supply amount adjustment tank, and 13 is a raw material. It is a supply amount control device.

炉内に溶融合金を残留させて、その上にロータ
リーキルンから原料(半還元クロムペレツト、炭
材)などを供給しつつ、吹酸を行つて、炭材の一
部を燃焼させ、そのエネルギーにより原料の溶融
と還元を進め、溶融合金量をふやしてゆく。この
場合、溶湯中に底吹羽口3から酸素を含むガス
(例えば羽口を二重管とし、外側の管からプロパ
ンガス、Arなどの羽口保護ガス、内側の管から
酸素ガスを供給する)を吹込むが、この底吹ガス
の効果は、 (i) メタル及び生成するスラグ層を強撹拌してク
ロム酸化物の還元反応速度を大にすること、 (ii) メタル中の炭素を燃焼してメタル浴を加熱
し、メタルを適度の温度(凝固点より20℃以
上、100℃以下高い温度)に維持すること、 の2つである。後者については、もし、酸素を含
むガスの吹込みがなければ、フエロクロム製錬の
ようにスラグが多い場合には、溶融還元炉内での
発熱は上吹ランス4から供給される酸素によるス
ラグ中の炭材、あるいは生成したCOガスのCO2
への燃焼反応に依存することになり、メタルへの
熱供給はスラグを通して行われることになり、ス
ラグ温度をメタル温度よりも高くすることが必要
になる。このことはスラグ温度が高いことにより
耐火物負荷が大になるので好ましくない。
The molten alloy is left in the furnace, and raw materials (semi-reduced chromium pellets, carbonaceous materials) are supplied from the rotary kiln, while blowing acid is applied to burn some of the carbonaceous materials, and the energy is used to convert the raw materials. Proceed with melting and reduction to increase the amount of molten alloy. In this case, a gas containing oxygen (for example, the tuyere is made of a double pipe, and the tuyere protective gas such as propane gas or Ar is supplied from the outer pipe, and oxygen gas is supplied from the inner pipe) into the molten metal from the bottom blowing tuyere 3. ), but the effects of this bottom blowing gas are: (i) Strongly stirring the metal and the generated slag layer to increase the reduction reaction rate of chromium oxide; (ii) Burning the carbon in the metal. The two methods are to heat the metal bath and maintain the metal at an appropriate temperature (20°C or more and 100°C or less higher than the freezing point). Regarding the latter, if there is no injection of oxygen-containing gas and there is a lot of slag, such as in ferrochrome smelting, the heat generated in the smelting reduction furnace will be caused by the oxygen supplied from the top blowing lance 4 in the slag. CO 2 from carbonaceous materials or generated CO gas
Since heat is supplied to the metal through the slag, it is necessary to make the slag temperature higher than the metal temperature. This is undesirable because the high slag temperature increases the load on the refractories.

上吹ランス4からの酸素供給は、コークスなど
の炭材を燃焼して発熱するためのものであり、こ
の製錬法での主な熱発生源である。製錬反応速度
を大にするためには、特に上吹酸素による炭材の
燃焼速度を大にして熱発生速度を大にする対策が
とられる。
The oxygen supply from the top blowing lance 4 is for burning carbonaceous materials such as coke to generate heat, and is the main source of heat generation in this smelting method. In order to increase the smelting reaction rate, measures are taken to increase the combustion rate of the carbon material by top-blown oxygen, thereby increasing the heat generation rate.

上底吹転炉型が他の方式に比して適している理
由は次の通りである。
The reason why the top-bottom blowing converter type is more suitable than other types is as follows.

(i) 底吹なしの場合…撹拌が不十分なためスラグ
中のクロム還元速度が小さい。また、メタル浴
を直接、加熱できないので、相対的にスラグ温
度が高くなり、処理時間の延長とあいまつて耐
火物に著しく負荷を及ぼす。
(i) Without bottom blowing...The rate of chromium reduction in the slag is slow due to insufficient stirring. Furthermore, since the metal bath cannot be directly heated, the slag temperature becomes relatively high, which, together with the extension of the treatment time, places a significant load on the refractories.

(ii) 底吹だけの場合…多重の酸素を吹込むための
羽口数がふえて、設備管理が面倒になる。ま
た、炭材の燃焼を全てメタル相成分(炭素の場
合はメタル中にとけたC分)の酸化を介して行
わなければならないので、スラグ量がふえると
炭材の溶融金属への溶け込みが遅れ、溶融金属
の再酸化がおこりやすくなる。
(ii) In the case of only bottom blowing...The number of tuyeres for blowing multiple oxygen increases, making equipment management troublesome. In addition, since the combustion of carbonaceous materials must be carried out entirely through the oxidation of the metal phase components (in the case of carbon, the C dissolved in the metal), if the amount of slag increases, the dissolution of the carbonaceous materials into the molten metal will be delayed. , re-oxidation of the molten metal is likely to occur.

以上のようにフエロクロムの溶融還元製錬にお
いて上底吹転炉型は最も有利な炉型式であるが、
前述のように半連続式で操業を行つてゆく場合、
次の2つが重要である。
As mentioned above, the top-bottom blown converter type is the most advantageous furnace type in smelting reduction smelting of ferrochrome.
When operating semi-continuously as mentioned above,
The following two points are important.

(i) 耐火物、底吹羽口の損傷を抑制するために溶
融合金温度は過度に上昇させることは好ましく
ない。
(i) It is not preferable to raise the temperature of the molten alloy excessively in order to prevent damage to the refractories and bottom blowing tuyeres.

(ii) 一方、溶融合金温度が低くなりすぎると(ク
ロム酸化物を含む原料を投入すると、その昇
温、溶融及び酸化物の環元がおこり、その結
果、溶融合金温度が低下する)、底吹羽口の近
傍で溶融合金の凝固あるいはクロム酸化物の生
成(温度が低くなると脱炭に比してクロム酸化
がおこりやすくなる)のために羽口が閉塞する
という問題を生ずる。底吹羽口が閉塞すると以
後の操業に著しい悪影響を及ぼすので回避しな
ければならない。
(ii) On the other hand, if the molten alloy temperature becomes too low (when a raw material containing chromium oxide is introduced, its temperature increases, melting and ring formation of the oxide occur, and as a result, the molten alloy temperature decreases). A problem arises in that the tuyere becomes clogged due to solidification of the molten alloy or the formation of chromium oxide (chromium oxidation is more likely to occur than decarburization when the temperature is low) near the blowing tuyere. If the bottom blowing tuyeres become clogged, this will have a significant negative impact on subsequent operations and must be avoided.

以上の二つの条件を満足するためには、溶融合
金相の温度を検出し、それを指針として原料(ク
ロムペレツト、炭材など)の供給速度、および吹
酸速度などをコントロールできることが望まし
い。
In order to satisfy the above two conditions, it is desirable to be able to detect the temperature of the molten alloy phase and use it as a guideline to control the feed rate of raw materials (chromium pellets, carbonaceous materials, etc.), the blowing acid rate, etc.

しかるに、フエロクロム製錬のように生成する
スラグ量が多い場合(クロム鉱石中の脈石分、石
炭やコークスなどの炭材中の脈石分、およびそれ
を滓化するために加える石灰などのフラツクスに
より、フエロクロム1t製造するのに約950Kgとい
う多量のスラグを生成する)、溶融合金相の温度
を従来法(イマージヨン式熱電対、光高温計な
ど)で測定することは困難である。また、たと
え、イマージヨン式熱電対で測定できたにして
も、多数回の測定を行うことはコスト的にも問題
があり、実用的ではない。
However, when a large amount of slag is produced, such as in ferrochrome smelting (gangue content in chromium ore, gangue content in carbonaceous materials such as coal and coke, and fluxes such as lime added to turn it into slag). Therefore, it is difficult to measure the temperature of the molten alloy phase using conventional methods (immersion thermocouples, optical pyrometers, etc.). Moreover, even if measurements can be made with an immersion thermocouple, it is not practical to carry out measurements many times in terms of cost.

本発明は以上のような観点より種々検討の結果
得られたもので、その要旨とするところは、上底
吹転炉型溶融環元炉を用い、クロム原料および炭
材を供給しつつ底吹吹酸を行つて前記クロム原料
を溶融還元する製錬第1期と、次いでクロム原料
の供給を止めて吹酸および浴の撹拌を行う製錬第
2期の溶融還元過程とからなるプロセスにおい
て、底吹羽口管内の圧力を連続的に測定し、該底
吹羽口管内の圧力と溶融還元炉内の溶融合金の温
度の相関関係を用いて前記圧力の測定値から前記
溶融合金の温度を推定し、その推定結果に基づい
て、製錬第1期にあつては、クロム原料の供給速
度および/または吹酸速度を制御し、製錬第2期
にあつては、少なくとも吹酸速度を制御すること
を特徴とする溶融還元炉の操業方法にある。
The present invention was obtained as a result of various studies from the above-mentioned viewpoints, and its gist is to use a top-bottom blowing converter type melting ring furnace and to supply chromium raw material and carbonaceous material while bottom-blowing. In a process consisting of a first stage of smelting, in which the chromium raw material is melted and reduced by blowing acid, and a second stage of smelting, in which the supply of the chromium raw material is stopped and the blowing acid and bath are stirred, Continuously measure the pressure in the bottom blowing tuyere pipe, and using the correlation between the pressure in the bottom blowing tuyere pipe and the temperature of the molten alloy in the smelting reduction furnace, calculate the temperature of the molten alloy from the measured pressure value. Based on the estimation results, in the first stage of smelting, the supply rate of chromium raw material and/or the rate of blowing acid is controlled, and in the second stage of smelting, at least the blowing acid rate is controlled. A method of operating a smelting reduction furnace characterized by controlling the smelting reduction furnace.

以下、具体的な実施例によつて詳細に説明す
る。
Hereinafter, a detailed explanation will be given using specific examples.

本発明の特色は第2図に示すように溶融還元炉
底部21の底吹羽口22の内管23(酸素を吹込
むのに用いる)あるいは外管(羽口の消耗を防止
するための不活性ガスあるいは炭化水素ガスを吹
込むのに用いられる)のいずれかの圧力を検出す
る装置を取り付けたことである。図において24
は圧力変換素子、25はストレインアンプ、26
は記録計、27はリード線である。この方法によ
り全操業期間を通して、底吹羽口管内の圧力を連
続的に検出することが可能になる。
The feature of the present invention is that, as shown in FIG. This means that a device is installed to detect the pressure of either active gas or hydrocarbon gas (used to inject active gas or hydrocarbon gas). 24 in the figure
is a pressure conversion element, 25 is a strain amplifier, 26
is a recorder, and 27 is a lead wire. This method makes it possible to continuously detect the pressure in the bottom blow tuyere pipe during the entire operating period.

第3図は溶融還元処理時の底吹羽口管内の圧力
変動の1例を示す。圧力の増加は羽口先の付着物
(マツシユルームと呼ばれる。)の量が増加して抵
抗が大になることを意味し、また圧力が急激に低
下することは、マツシユルームが減少、あるいは
消滅することを意味する。前者の程度が進むと羽
口閉塞のおそれがあり、後者の状態が進むと羽口
がマツシユルームによつて保護されないため羽口
の異常溶損がおこり消耗速度が大になつて好まし
くない。これらの結果はすでに製鋼で知られてい
る現象であるが、本発明のように高炭素高クロム
溶湯を処理する場合には、第4図に示すように圧
力と溶融合金相の温度の間に密接な相関があるこ
とを見出した。
FIG. 3 shows an example of pressure fluctuations in the bottom blowing tuyere pipe during melt reduction treatment. An increase in pressure means that the amount of deposits at the tip of the tuyere (called pine loom) increases and resistance increases, and a sudden drop in pressure means that pine loom decreases or disappears. means. If the former condition progresses, there is a risk of tuyere clogging, and if the latter condition progresses, the tuyere will not be protected by the pine room, causing abnormal melting of the tuyere and increasing the rate of wear, which is undesirable. These results are already known phenomena in steelmaking, but when processing high-carbon, high-chromium molten metal as in the present invention, there is a difference between the pressure and the temperature of the molten alloy phase, as shown in Figure 4. We found that there is a close correlation.

第4図においてフエロクロム溶融還元の場合の
底吹条件は、羽口(内管径):20mm、吹酸速度:
800Nm3/本である。
In Figure 4, the bottom blowing conditions for ferrochrome melting reduction are: tuyere (inner pipe diameter): 20 mm, blowing acid speed:
800Nm 3 /piece.

製鋼の場合には圧力の変動は限界温度の前後で
急激におこる(その理由は付着物が主として金属
であるためである)ので、圧力変動から限界温度
以外の情報を得ることは困難である。これに対し
て高炭素高クロム浴に酸素を底吹きする場合に
は、吹込まれた酸素は一旦溶湯中のクロム分を酸
化して酸化物を作り、これが溶融合金相中の炭素
によつて還元されるという過程が連続しておこ
り、二つの過程の速度の差として堆積する酸化物
量(これが羽口先の付着物となる)、すなわち底
吹羽口管内の圧力を決定する。酸化物の生成量は
吹込まれる酸素量によつて一義的に決定されるの
に対し、酸化物の溶融合金中の炭素による還元速
度は主として溶融合金相の温度によつて決定され
る。けだし製鋼工程とは異なり溶融合金中の炭素
はほぼ飽和値に近い値に保たれるからである。し
たがつて、製鋼工程とは異なり広い温度範囲にわ
たつて底吹羽口管内圧力と溶融合金相の温度の間
には安定して明瞭な関係が得られるのである。本
発明ではこのような関係を利用して溶融還元工程
を制御する。すなわち、各操業条件(すなわち、
底吹吹酸量、溶融合金層のクロム含有量)に応じ
て第4図のような関係図を作成し、これを用いて
圧力の測定結果から溶融金属温度を推定し、溶融
合金温度が設定範囲より低すぎると溶融還元炉2
に装入される半還元クロムペレツトの供給量を減
少させるか、あるいは上吹吹酸量を増加させる。
溶融合金温度が設定値より高すぎると、それぞれ
逆の操作を行う。溶融還元炉2への半還元クロム
ペレツト供給量を制御するには、例えば、第1図
に示す如くロータリーキルン1と溶融還元炉2の
間に中間槽(ペレツト供給量調整槽12)を設け
てそれからの切出し量を例えば原料供給量制御装
置により制御すればよい。このような操作を行う
ことにより、底吹羽口の閉塞などのトラブルなし
に、最大限の速度で半還元クロムペレツトの供給
を行い、同時に溶融還元炉炉体や羽口の損傷を最
小限にとどめることが可能になる。
In the case of steelmaking, pressure fluctuations occur rapidly around the critical temperature (this is because the deposits are mainly metal), so it is difficult to obtain information other than the critical temperature from pressure fluctuations. On the other hand, when oxygen is bottom-blown into a high-carbon, high-chromium bath, the blown oxygen first oxidizes the chromium in the molten metal to form oxides, which are then reduced by the carbon in the molten alloy phase. The difference in speed between the two processes determines the amount of oxide deposited (this becomes deposits on the tuyere tip), that is, the pressure inside the bottom blowing tuyere tube. The amount of oxide produced is primarily determined by the amount of oxygen blown in, whereas the rate of reduction of the oxide by carbon in the molten alloy is primarily determined by the temperature of the molten alloy phase. This is because, unlike the steelmaking process, carbon in the molten alloy is maintained at a value close to the saturated value. Therefore, unlike the steelmaking process, a stable and clear relationship can be obtained between the pressure inside the bottom blowing tuyere pipe and the temperature of the molten alloy phase over a wide temperature range. In the present invention, such a relationship is utilized to control the melt reduction process. That is, each operating condition (i.e.
A relationship diagram as shown in Figure 4 is created according to the amount of blown acid and the chromium content in the molten alloy layer, and this is used to estimate the molten metal temperature from the pressure measurement results, and the molten alloy temperature is set. If it is too low than the range, melting reduction furnace 2
Either reduce the amount of semi-reduced chromium pellets charged into the tank, or increase the amount of top-blown acid.
If the molten alloy temperature is too high than the set value, perform the opposite operation. In order to control the amount of semi-reduced chromium pellets supplied to the smelting reduction furnace 2, for example, as shown in FIG. The cutting amount may be controlled by, for example, a raw material supply amount control device. By performing this operation, semi-reduced chromium pellets can be fed at the maximum speed without any problems such as blockage of the bottom blowing tuyeres, and at the same time damage to the smelting reduction furnace body and tuyeres can be minimized. becomes possible.

実施例 定格溶融金属量(出湯直前の溶湯量)50tの上
底吹転炉(上吹ランス1本、ノズル7mmφ×7
孔、底吹羽口4本、内管径20mmφの二重管構造
で、内管はO2、外管はプロパンガスを保護ガス
として流す)を反応容器として用い、中間排滓を
1回行い、生成した溶融合金は33t出湯し、17t残
すという方式で半連続的に操業を行う。底吹羽口
の管内の圧力は第2図に示したような測定系によ
り行い、4本の羽口の各内管の圧力を測定し、そ
の平均値を炉制御の指針にする。
Example Rated molten metal amount (molten metal amount just before tapping) 50t top-bottom blowing converter (1 top-blowing lance, nozzle 7mmφ x 7
A double-tube structure with holes, 4 bottom blowing tuyeres, and an inner tube diameter of 20 mmφ, with O 2 flowing through the inner tube and propane gas flowing through the outer tube as a protective gas) was used as the reaction vessel, and intermediate drainage was performed once. , 33 tons of the generated molten alloy is tapped out, and 17 tons remain, resulting in semi-continuous operation. The pressure inside the tubes of the bottom blowing tuyeres is measured using a measurement system as shown in Figure 2.The pressure in each inner tube of the four tuyeres is measured, and the average value is used as a guideline for furnace control.

溶融還元の主原料であるクロム鉱石は、コーク
スとともに混合粉砕後、造粒してペレツトにし、
乾燥後、ロータリーキルンに装入し、溶融還元炉
から出る高温ガスを加熱源として、予備還元・予
熱を行つた。溶融還元炉に供給される炭材の約80
%は、ロータリーキルンに外装炭として装入し、
半還元クロムペレツトの還元率向上と、溶融還元
炉に供給する炭材の予熱を行う。ロータリーキル
ン1と溶融還元炉2の中間には第1図に示す如く
原料供給量制御装置13があり、前述の圧力測定
値に応じて、溶融還元炉への原料の供給量を制御
できる。溶融還元炉に供給される半還元クロムペ
レツトの平均成分、温度は次の通りである:T.
Cr:36%,T.Fe:18%、クロム分還元率:66
%、鉄分還元率:92%,MgO:10%,Al2O3:10
%,SiO2:9%、温度:約1000℃。
Chromium ore, the main raw material for melt reduction, is mixed with coke and crushed, then granulated into pellets.
After drying, it was charged into a rotary kiln and pre-reduced and preheated using the high-temperature gas coming out of the melting reduction furnace as a heating source. Approximately 80% of the carbonaceous material supplied to the smelting reduction furnace
% is charged into the rotary kiln as exterior charcoal,
Improve the reduction rate of semi-reduced chromium pellets and preheat the carbon material to be fed to the smelting reduction furnace. As shown in FIG. 1, there is a raw material supply amount control device 13 located between the rotary kiln 1 and the smelting reduction furnace 2, and the amount of raw material supplied to the smelting reduction furnace can be controlled in accordance with the above-mentioned pressure measurement value. The average composition and temperature of the semi-reduced chromium pellets fed to the smelting reduction furnace are as follows: T.
Cr: 36%, T.Fe: 18%, chromium content reduction rate: 66
%, iron reduction rate: 92%, MgO: 10%, Al 2 O 3 : 10
%, SiO 2 : 9%, temperature: approximately 1000°C.

溶融還元製錬第1期:残し湯17tに酸素を含む
ガスを上底吹しながら、半還元クロムペレツト、
炭材、石灰を装入する。炭材の一部及び石灰は第
1図のホツパー6(炭材、石灰、別々に設けられ
ている)から供給する。吹酸速度は上吹:
13000Nm3/hr、底吹:800Nm3/hr×4と一定に
保つ。前述の羽口内圧力が5〜8Kg/cm2の間に保
たれるように(溶融合金温度は1580〜1630℃の範
囲に対応する。)、予備還元ペレツトの装入速度を
調整する。60分でペレツト32t、石灰3.5tを装入
する。この時期の終りのスラグ中のCrは7.5%で
あつた。
First phase of smelting reduction smelting: Semi-reduced chromium pellets,
Charcoal and lime are charged. A portion of the carbonaceous material and lime are supplied from the hopper 6 (separately provided for the carbonaceous material and lime) shown in FIG. The acid blowing speed is upward blowing:
Keep constant at 13000Nm 3 /hr, bottom blow: 800Nm 3 /hr x 4. The charging rate of the pre-reduced pellets is adjusted so that the pressure in the tuyeres mentioned above is maintained between 5 and 8 kg/cm 2 (corresponding to the molten alloy temperature in the range of 1580 to 1630° C.). Charge 32 tons of pellets and 3.5 tons of lime in 60 minutes. The Cr content in the slag at the end of this period was 7.5%.

溶融還元製錬第2期:半還元クロムペレツトの
供給をとめ、炭材だけを溶融還元炉に装入し、底
吹吹酸速度を一定に保ちながら前述の羽口内圧力
が5〜8Kg/cm2の間に保たれるように上吹吹酸速
度を制御しつつ(上吹吹酸速度が大であると、溶
融合金温度が高くなり、その結果として羽口先圧
力が減少する。なお、羽口先圧力と溶融金属温度
の関係(第4図)は設備、操業条件:例えば底吹
羽口の径、底吹吹酸量など:によつて変化す
る)、15分間スラグ中のCr%を低下させる。最終
のスラグ成分は、CaO19%,SiO220%,MgO24
%,Al2O322%,T.Cr0.9%,T.Fe0.7%であつ
た。
Second stage of smelting reduction smelting: The supply of semi-reduced chromium pellets is stopped, only the carbonaceous material is charged into the smelting reduction furnace, and while the bottom blowing acid rate is kept constant, the pressure inside the tuyere is increased to 5 to 8 Kg/cm 2 (The higher the top blown acid rate, the higher the molten alloy temperature, which in turn reduces the tuyere tip pressure. The relationship between pressure and molten metal temperature (Figure 4) varies depending on the equipment, operating conditions (e.g. diameter of bottom blowing tuyere, amount of bottom blowing acid, etc.), and reducing Cr% in slag for 15 minutes. . The final slag components are CaO19%, SiO2 20%, MgO24
%, Al 2 O 3 22%, T.Cr 0.9%, and T.Fe 0.7%.

次いで生成したスラグの約90%を中間排滓し、
前述の溶融還元製錬第1期、第2期の操作を繰り
返す。その後、出滓につづいて生成した溶融金属
の2/3を出湯する。以後は同一のサイクルを繰り
返す。出湯された金属の成分、温度は次の通りで
ある。Cr:53%,Fe:37%,C:8.5%,Si:0.5
%,S:0.015%,P:0.035%、温度1650℃。
Approximately 90% of the generated slag is then subjected to intermediate slag,
The operations of the first and second stages of melting reduction smelting described above are repeated. After that, 2/3 of the molten metal produced following the tap slag is tapped. After that, the same cycle is repeated. The components and temperature of the tapped metal are as follows. Cr: 53%, Fe: 37%, C: 8.5%, Si: 0.5
%, S: 0.015%, P: 0.035%, temperature 1650°C.

なお、本発明のような圧力検出により溶融合金
温度を推定する方法を用いて操業を行うことによ
り、これを用いない場合に比して耐火物原単位を
30%減少し、かつ羽口閉塞トラブル頻度を1/5に
減少できた。
In addition, by conducting operations using the method of estimating the molten alloy temperature by pressure detection as in the present invention, the refractory unit consumption can be reduced compared to the case where this method is not used.
30% reduction, and the frequency of tuyere blockage problems was reduced to 1/5.

以上のように、本発明は、金属あるいは合金、
特に難還元性で、かつ生成スラグ量の多いフエロ
クロムのような高クロム合金の製錬を電力に依存
せず、溶融還元法で行う場合、操業を円滑に行う
ための手段を提供するものであり、ステンレス鋼
などの高クロム鋼の主合金材であるフエロクロム
を安価に製造することを可能ならしめることか
ら、経済的な効果が大きい。
As described above, the present invention provides metals or alloys,
In particular, when smelting high chromium alloys such as ferrochrome, which is difficult to reduce and produces a large amount of slag, without relying on electricity, it provides a means for smooth operation. This method has great economic effects because it makes it possible to manufacture ferrochrome, which is the main alloy material of high chromium steels such as stainless steel, at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するのに用いる設備の1
例を示す説明図、第2図は本発明の特色である、
底吹羽口管内の圧力測定装置の系統図の1例を示
す図、第3図は溶融還元処理時の底吹羽口管内の
圧力変動の1例を示す図、第4図は底吹羽口管内
の圧力と、溶融合金相の温度の関係の1例を示す
図である。 1:ロータリーキルン、2:溶融還元炉、3:
底吹羽口、4:ランス、5:フード、6:炭材、
石灰用ホツパー、7:溶融メタル、8:溶融スラ
グ、9:クロムペレツト、10:炭材、11:気
泡、12:ペレツト供給量調整槽、13:原料供
給制御装置、21:溶融還元炉底部、22:底吹
羽口、23:内管、24:圧力変換素子、25:
ストレインアンプ、26:記録計、27:リード
線。
Figure 1 shows one of the facilities used to carry out the present invention.
An explanatory diagram showing an example, FIG. 2 is a feature of the present invention,
A diagram showing an example of a system diagram of a pressure measuring device in the bottom blowing tuyere pipe, Fig. 3 is a diagram showing an example of pressure fluctuation in the bottom blowing tuyere pipe during melting and reduction processing, and Fig. 4 shows an example of the pressure fluctuation in the bottom blowing tuyere pipe. It is a figure which shows an example of the relationship between the pressure in a mouth pipe, and the temperature of a molten alloy phase. 1: Rotary kiln, 2: Melting reduction furnace, 3:
Bottom blowing tuyere, 4: Lance, 5: Hood, 6: Charcoal material,
hopper for lime, 7: molten metal, 8: molten slag, 9: chrome pellets, 10: carbonaceous material, 11: bubbles, 12: pellet supply amount adjustment tank, 13: raw material supply control device, 21: bottom of smelting reduction furnace, 22 : Bottom blowing tuyere, 23: Inner pipe, 24: Pressure conversion element, 25:
Strain amplifier, 26: Recorder, 27: Lead wire.

Claims (1)

【特許請求の範囲】[Claims] 1 上底吹転炉型溶融環元炉を用い、クロム原料
および炭材を供給しつつ底吹吹酸を行つて前記ク
ロム原料を溶融還元する製錬第1期と、次いでク
ロム原料の供給を止めて吹酸および浴の撹拌を行
う製錬第2期の溶融還元過程とからなるプロセス
において、底吹羽口管内の圧力を連続的に測定
し、該底吹羽口管内の圧力と溶融還元炉内の溶融
合金の温度の相関関係を用いて前記圧力の測定値
から前記溶融合金の温度を推定し、その推定結果
に基づいて、製錬第1期にあつては、クロム原料
の供給速度および/または吹酸速度を制御し、製
錬第2期にあつては、少なくとも吹酸速度を制御
することを特徴とする溶融還元炉の操業方法。
1 A first stage of smelting in which a top-bottom blown converter-type melting ring furnace is used to supply chromium raw materials and carbonaceous materials while bottom-blowing acid is performed to melt and reduce the chromium raw materials, and then the chromium raw materials are supplied. In the process consisting of the melting reduction process in the second stage of smelting, in which the blowing acid is stopped and the bath is stirred, the pressure inside the bottom blowing tuyere pipe is continuously measured, and the pressure inside the bottom blowing tuyere pipe and the melting reduction process are continuously measured. The temperature of the molten alloy is estimated from the measured value of the pressure using the correlation of the temperature of the molten alloy in the furnace, and based on the estimation result, the supply rate of the chromium raw material is determined in the first stage of smelting. and/or a method for operating a smelting reduction furnace, which comprises controlling at least the blowing acid rate in the second stage of smelting.
JP1172283A 1983-01-27 1983-01-27 Method for operating melting and reducing furnace Granted JPS59140350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1172283A JPS59140350A (en) 1983-01-27 1983-01-27 Method for operating melting and reducing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1172283A JPS59140350A (en) 1983-01-27 1983-01-27 Method for operating melting and reducing furnace

Publications (2)

Publication Number Publication Date
JPS59140350A JPS59140350A (en) 1984-08-11
JPS6249347B2 true JPS6249347B2 (en) 1987-10-19

Family

ID=11785929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1172283A Granted JPS59140350A (en) 1983-01-27 1983-01-27 Method for operating melting and reducing furnace

Country Status (1)

Country Link
JP (1) JPS59140350A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238349A (en) * 1986-04-08 1987-10-19 Sumitomo Metal Ind Ltd Manufacture of chromium-containing molten iron metal
US4927457A (en) * 1987-02-02 1990-05-22 Nippon Kokan Kabushiki Kaisha Method of manufacturing low carbon ferro-chromium

Also Published As

Publication number Publication date
JPS59140350A (en) 1984-08-11

Similar Documents

Publication Publication Date Title
US3323907A (en) Production of chromium steels
CN106755709A (en) Chromium method is matched somebody with somebody in a kind of converter of low-carbon (LC) containing Cr steel alloys
JPS6249347B2 (en)
JPS6250545B2 (en)
JPS58130216A (en) Refining method of high alloy steel and stainless steel
JPS609815A (en) Production of high chromium alloy by melt production
JPS6036613A (en) Production of raw molten nickel-containing stainless steel
JPH0471965B2 (en)
JP4114346B2 (en) Manufacturing method of high Cr molten steel
JPH01215912A (en) Manufacture of molten chromium-containing pig iron
JPS6169944A (en) Manufacture by melting and reducing of ferrochrome
JPS61279608A (en) Production of high-chromium alloy by melt reduction
JPH0435529B2 (en)
JP2713795B2 (en) Stainless steel smelting method
JP3788392B2 (en) Method for producing high Cr molten steel
JPS6152208B2 (en)
JPS61272346A (en) Melting-reducing refining method for high manganese ferrous alloy
JPS609814A (en) Production of high chromium alloy unsaturated with carbon by melt reduction
Works Steelmaking at Chiba
CN117683962A (en) Method for predicting FeO content of converter final slag
JPS59113159A (en) Method for refining high chromium alloy by melting and reduction
JPH07310109A (en) Production of stainless steel
JP3173325B2 (en) How to make stainless steel
JPS59140348A (en) Method for operating melting and reducing furnace
JPS58100656A (en) Melting and reducing method for ferroalloy