JPS59221583A - Method of monitoring internal state of vertical type furnace - Google Patents

Method of monitoring internal state of vertical type furnace

Info

Publication number
JPS59221583A
JPS59221583A JP9680683A JP9680683A JPS59221583A JP S59221583 A JPS59221583 A JP S59221583A JP 9680683 A JP9680683 A JP 9680683A JP 9680683 A JP9680683 A JP 9680683A JP S59221583 A JPS59221583 A JP S59221583A
Authority
JP
Japan
Prior art keywords
temperature
furnace
wall
vertical type
type furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9680683A
Other languages
Japanese (ja)
Other versions
JPS6122234B2 (en
Inventor
西田 功
上原 輝久
高野 成
堀内 健文
川手 剛雄
信幸 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9680683A priority Critical patent/JPS59221583A/en
Publication of JPS59221583A publication Critical patent/JPS59221583A/en
Publication of JPS6122234B2 publication Critical patent/JPS6122234B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は竪型炉の内壁表面部近傍に現われる温度変化を
差分法で把握することによって該表面部近傍の炉内状況
を判断する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining the internal state of a vertical furnace near the surface of the inner wall of the furnace by using a differential method to determine the temperature change that appears near the surface of the inner wall of the furnace.

製銑用の高炉は竪型炉の一種であるが、該高炉の頂部か
ら装入される諸原料(鉄鉱石やコークス等)は、炉内を
上昇する還元性高温ガスと遭遇しつつ降下し、その過程
において鉄鉱石の還元反応が段階的に進行する。高炉に
おける鉄鉱石の還元反応は色々なファクターの相乗的影
響を受けるものであって、操業管理に当っては多数のデ
ータを駆使して総合的な判断を加えなければならず、余
シ単純化することはできないが、装入原料の降下状況或
は還元ガスの上昇状況等は幾つかのノくターンに分類し
て把握することが極めて有効であシ、特にこれらの状況
が適正操業範囲内であるか否かの判断、或は該範囲を越
える頻度が多いか否かの判断等については、上記パター
ン分類による把握は、高炉の安全操業を確保する上で極
めて重要な管理項目となシ得る。
A blast furnace for iron making is a type of vertical furnace, and the raw materials (iron ore, coke, etc.) charged from the top of the blast furnace descend while encountering reducing high temperature gas rising inside the furnace. During this process, the reduction reaction of iron ore progresses in stages. The reduction reaction of iron ore in a blast furnace is influenced synergistically by various factors, and when managing operations, it is necessary to make comprehensive judgments using a large amount of data. However, it is extremely effective to classify and understand the descending status of charged raw materials or the rising status of reducing gas, etc. into several nodes, especially if these conditions are within the proper operating range. For determining whether or not the above range is exceeded, or whether or not the range is frequently exceeded, understanding using the above pattern classification is an extremely important management item to ensure the safe operation of blast furnaces. obtain.

本発明はこの様な状況に着目してなされたものであって
、特に竪型炉の内壁面近傍における炉内の物理的現象を
簡単に監視することのできる方法を提供しようとするも
のである。
The present invention has been made with attention to such a situation, and it is an object of the present invention to provide a method that can easily monitor physical phenomena inside a vertical furnace, especially near the inner wall surface of the furnace. .

上記目的を達成することに成功した本発明の監視法とは
、竪型炉の内壁表面部近傍の温度を測定し、経時的な温
度変化を差分法で表わすと共に、該差分法によって表現
される温度変化情報によって炉内状況を判断する点に要
旨が存在するものである。
The monitoring method of the present invention that has succeeded in achieving the above object is to measure the temperature near the inner wall surface of a vertical furnace, express the temperature change over time by the difference method, and express the temperature change by the difference method. The gist of this is that the situation inside the furnace is determined based on temperature change information.

前記高炉の操業状況を更に概観してみると、鉄鉱石とコ
ークスははソ定間隔を置いて交互に装入されておシ、高
炉操業の状況に応じた速度で徐々に降下しながら鉄鉱石
の還元が進行する。即ち鉄鉱石層とコークス層が炉高方
向に交互に積層された状態をほぼ維持しながら降下して
いるが、この間に進行する還元反応は半径方向に不均一
であって、一般的には炉芯側において早く進行し鉄鉱石
層の軟化溶融が炉脚部段階で進行するが、炉壁側では還
元の進行が遅く鉄鉱石層とコークス層の交互配列は朝顔
部におけるレースウェイのほぼ直上部まで維持されると
言われている。従って炉壁側では炉胞部から朝顔部にか
けて鉄鉱石層とコークス層が略定ピツチで且つほぼ整然
と降下し、他方レースウェイで生成された還元性ガスは
コークス粒子間や鉄鉱石層の融着帯と融着帯の間等の通
気、        抵抗の低い部分を通過して上昇し
ているが、この様な還元性ガスの上昇状態或は装入物の
降下状態は、高炉操業中宮に安定している訳ではない。
A further overview of the operational status of the blast furnace shows that iron ore and coke are charged alternately at regular intervals, and the iron ore is gradually lowered at a rate depending on the operating conditions of the blast furnace. reduction is progressing. In other words, the iron ore layer and the coke layer descend while maintaining a state of alternating layers in the direction of the furnace height, but the reduction reaction that progresses during this period is uneven in the radial direction, and generally On the core side, softening and melting of the iron ore layer progresses at the furnace foot stage, but on the furnace wall side, reduction progresses slowly and the alternating arrangement of iron ore and coke layers occurs almost directly above the raceway in the morning glory section. It is said that it will be maintained until Therefore, on the furnace wall side, the iron ore layer and the coke layer descend in an almost uniform manner from the furnace chamber to the morning glory, and on the other hand, the reducing gas generated in the raceway fuses between the coke particles and the iron ore layer. The gas rises through ventilation and low resistance areas such as between the belt and the cohesive zone, but this rising state of reducing gas or falling state of the charge is stable during blast furnace operation. It's not that I'm doing it.

即ち炉壁内部に停滞層や付着物が形成されたシ炉壁内面
に耐火物等の脱落部が生じた場合、或はレースウェイの
形状変化や炉芯コークスの変動等が発生した場合には、
装入物の停滞、或は逆に急激な荷下シを招くことがあシ
、又炉内における融着帯形状の変化が原因になって上昇
ガスの流れに異常(吹き抜は現象)を生じることもある
。勿論この様な異常は炉内全域において発生するもので
あるが、炉芯側における異常は言わばブラックボックス
であうで発見し難い。しかし炉壁側については色々なセ
ンサーを埋設して種々の情報を得ることが検討されてお
シ、本発明者等はこれらの情報の内温度情報を巧みに利
用する仁とによって炉壁の内表面部近傍における炉内状
況を判断しようと考え前記構成に到達したものである。
In other words, if a stagnant layer or deposits are formed inside the furnace wall, if refractory material falls off from the inner surface of the furnace wall, or if the shape of the raceway changes or the core coke fluctuates, ,
This may lead to stagnation of the charge or, conversely, rapid unloading, or abnormalities in the flow of rising gas (a blowout phenomenon) may occur due to changes in the shape of the cohesive zone in the furnace. It may occur. Of course, such abnormalities occur throughout the furnace, but abnormalities on the furnace core side are so to speak a black box and are difficult to discover. However, consideration has been given to embedding various types of sensors to obtain various information on the furnace wall side, and the present inventors have developed a method to obtain various information on the inside of the furnace wall by skillfully utilizing the temperature information inside the furnace wall. The above configuration was arrived at with the intention of determining the situation inside the furnace near the surface area.

炉壁の内表面部近傍の温度を測定するという意味は広義
に解釈されるべきであ)、内壁表面における壁自身の温
度を測定する場合及び該壁面に直近する炉内の温度を測
定する場合を含むのは当然として、これらの近傍は係る
壁内部や炉内側の温度を測定する場合も包含する。
The meaning of measuring the temperature near the inner surface of the furnace wall should be interpreted in a broad sense), when measuring the temperature of the wall itself on the inner wall surface and when measuring the temperature inside the furnace adjacent to the wall surface. Of course, these areas also include the case where the temperature inside the wall or inside the furnace is measured.

温度測定の手段乃至測温機器については、本発明を実施
する者が自由に選択すれば良いが、本出願人の創案に係
る温度分布検知センサー(実開昭55−1.05140
、同57−81531、特願昭56−197559)を
利用することが推奨される。− 第1図は本発明に使用する測温センサーに推奨されるセ
ンサーの一例を示す一部断面見取図で、第2図は第1図
のit −n線断面の要部を示す。図中2は温度分布検
知センサー(以下「感温機構部材」と称する) ゛を示
すものである。
The temperature measurement means or temperature measuring device may be freely selected by the person implementing the present invention, but the temperature distribution detection sensor invented by the present applicant (Utility Model Application No. 55-1.05140)
, No. 57-81531, Japanese Patent Application No. 56-197559) is recommended. - Fig. 1 is a partial cross-sectional diagram showing an example of a sensor recommended as a temperature sensor used in the present invention, and Fig. 2 shows the main part of the cross section taken along the IT-N line in Fig. 1. Reference numeral 2 in the figure indicates a temperature distribution detection sensor (hereinafter referred to as "temperature sensing mechanism member").

この感温機構部材2内に構成されている感温部3a+3
b+・・・・・・の位置に対応する様に円盤状フィン4
a 、 4b・・・・・・が感温機構部材2に外接直交
して久々設けられておシ、且つこれらの円盤状フィン4
 a r 4 b・・・・・・は、位置決め手段6a+
 、6a216a3+6a4 j6b、 +、6b2r
 ”””を介して保護外管5に固定されている。従って
この円盤状フィン4a+4b・・・・・・によシ測温応
答感度は著しく向上する。
Temperature sensing part 3a+3 configured in this temperature sensing mechanism member 2
Disc-shaped fin 4 corresponding to the position of b+...
a, 4b... have been provided for the first time in a long time to be circumscribed orthogonal to the temperature sensing mechanism member 2, and these disc-shaped fins 4
a r 4 b... is the positioning means 6a+
, 6a216a3+6a4 j6b, +, 6b2r
It is fixed to the protective outer tube 5 via """. Therefore, the temperature measurement response sensitivity is significantly improved by the disc-shaped fins 4a+4b.

更に感温機構部材22円盤状フィン4at4b・・・・
・・及び保護外管5で区切られた夫々の空間部には絶縁
材7が充填され、感温機構部材2の耐久性が確保される
と共に長さ方向の熱分散を遮断し、測温精度を高めるこ
とができる。これらのセンサーは長さ方向に複数の感温
部を設定したものであシ、例えばこれを壁厚方向に埋設
した場合は該厚さ方向の温度分布が測定できるものであ
るから、常に内壁表面部近傍(又は炉内側)から温度情
報を得ることができるという利点があシ本発明の実施に
は打ってつりのセンサーということができる。
Furthermore, the temperature sensing mechanism member 22 disc-shaped fin 4at4b...
...and the respective spaces separated by the protective outer tube 5 are filled with an insulating material 7, which ensures the durability of the temperature sensing mechanism member 2, blocks heat dispersion in the length direction, and improves temperature measurement accuracy. can be increased. These sensors have multiple temperature-sensing parts set in the length direction.For example, if they are buried in the wall thickness direction, the temperature distribution in the thickness direction can be measured, so the inner wall surface is always measured. This sensor has the advantage of being able to obtain temperature information from the vicinity of the furnace (or inside the furnace), making it an ideal sensor for implementing the present invention.

第3図は前記の様なセンサーを高炉壁に埋設した状態を
示す概念的説明図であって、高炉壁4は鉄皮1.スタン
プ2及び耐火壁3で構成されておシ、温度センサー5が
高炉壁4の壁厚方向に埋設されている。6は内壁表面部
の感温点であり、図例では装入物(鉄鉱石層7及びコー
クス層8)中へ突出するタイプのセンサー5を用いてい
るが、該感温点6が耐火壁3内に止まっているものであ
っても差支えない。鉄鉱石層7とコークス層8は交互に
形成され高炉操業度に応じた速度で降下すると共に、還
元性ガスが上昇しているので感温点6は上から降りてく
る冷固体による冷却の影響と下から昇ってぐる熱ガスに
よる加熱還元反応等の影響を受けており、それらの影響
度合いに応じた温度を検知することができる。この検知
温度の時間的変化情況をつぶさに観察してみると、見掛
上は千差刀別であるが、これらの現象を整理すれば次の
4ケースに分類できることが分かつた。
FIG. 3 is a conceptual explanatory diagram showing a state in which the above-mentioned sensor is embedded in the blast furnace wall, and the blast furnace wall 4 is connected to the iron shell 1. It is composed of a stamp 2 and a fireproof wall 3, and a temperature sensor 5 is embedded in the wall thickness direction of the blast furnace wall 4. Reference numeral 6 indicates a temperature-sensitive point on the surface of the inner wall, and in the illustrated example, a type of sensor 5 that protrudes into the charge (iron ore layer 7 and coke layer 8) is used, but the temperature-sensitive point 6 is located on the refractory wall. There is no problem even if it stays within 3. Iron ore layers 7 and coke layers 8 are formed alternately and fall at a rate depending on the operating rate of the blast furnace, while reducing gas is rising, so the temperature sensitive point 6 is affected by the cooling effect of cold solids coming down from above. It is affected by thermal reduction reactions caused by hot gas rising from below, and the temperature can be detected according to the degree of these influences. When we closely observed the changes in the detected temperature over time, we found that, although they appear to be very different, if we sort out these phenomena, we can classify them into the following four cases.

(1)温度変化が少ない。(1) Little temperature change.

(2)温度の変化ピッチが炉頂での鉄鉱石やコークスの
装入ピッチに略対応している。
(2) The pitch of temperature change approximately corresponds to the charging pitch of iron ore and coke at the top of the furnace.

(3)温度が8.激に上昇する。(3) The temperature is 8. rise sharply.

(4)温度が急激に低下する。(4) The temperature drops rapidly.

一方炉内状況の推察結果を上記(1)〜(4)の観察結
果に対応させてみると、 (5)装入物の降下がとどこおるか或は感温点6のまわ
りに停滞層や付着物が形成されている場合で温度の変化
が検知されない。−(11(B>装入物が定常速度で降
下している場合で、炉頂からの装入物が一定時間後はぼ
正確に感温点6に至る結果、装入ピッチに対応した温度
変化が検知される。−(2) (C)耐火壁側に沿うガス流の増大いわゆる周辺流の形
成)が生じた場合で、ガスの熱により温度が急上昇する
。−(3) (至)装入物の荷下)速度が上る場合で、冷却効果によ
シ温度が急降下する。−(4) 以上述べた様に(1)〜(4)の検知結果はほぼ(5)
〜(D)の現象に対応する、ということが分かったが、
現実の操業炉に適用して長期間に亘る測定を行なってみ
たところ、前述の相関が常に定性的に成立することが判
明した。しかしながら、これらの関係を定量的に把握し
高炉操業にフィードバックすることは困難であった。そ
こでこれらの温度情報について別の利用法を探究した。
On the other hand, when we compare the inferred results of the situation inside the reactor with the observation results of (1) to (4) above, we find that (5) whether the descent of the charge has stopped or whether there is a stagnation layer or a layer around the temperature sensing point 6; Temperature changes are not detected when deposits are formed. - (11 (B>) When the charge is descending at a steady speed, the charge from the top of the furnace reaches temperature sensing point 6 almost exactly after a certain period of time, resulting in a temperature corresponding to the charging pitch. A change is detected.-(2) (C) Increase in gas flow along the refractory wall (formation of so-called peripheral flow) occurs, and the temperature rises rapidly due to the heat of the gas.-(3) (To) When the unloading speed of the charge increases, the temperature drops rapidly due to the cooling effect. -(4) As mentioned above, the detection results of (1) to (4) are almost (5)
It turns out that it corresponds to the phenomenon of ~(D),
When we applied this method to an actual operating furnace and performed long-term measurements, we found that the above-mentioned correlation always holds true qualitatively. However, it has been difficult to quantitatively understand these relationships and provide feedback to blast furnace operations. Therefore, we explored other ways to use this temperature information.

その結果上記温度情報を刻々と入力する一方、短周期毎
にどの様に変化していくかということを調べ、温度の差
分値として把握することを考えた。即ち例えば30秒程
度(このましくは、アナログ量であるが高炉のような大
型熱的装置の場合には、30秒程度で充分である。しか
し30秒に限定されるべきものでもない)の短周期毎に
測温結果を入力する。一方測温センザ〜5によって検知
される温度は装入物が降下するにつれて、さらには炉内
を上昇する高温ガスによって時々刻々変化し、時間の関
数’I’−f(t)として与えられる。T=f(t)な
る関数において時間tの値としてtoからh 、 2h
 、 3h 、・・・・・・というように等間隔の増加
を与えたときの温度Tの値をそれぞれTo、T、 、T
2.・・・・・・にて表わす。そして各々の差分値T、
〜TO−へ(邑To 7Δt)。
As a result, while inputting the above-mentioned temperature information moment by moment, we investigated how it changes in each short period, and thought of grasping it as a temperature difference value. That is, for example, about 30 seconds (preferably, it is an analog quantity, but in the case of large thermal equipment such as a blast furnace, about 30 seconds is sufficient. However, it should not be limited to 30 seconds). Input temperature measurement results every short cycle. On the other hand, the temperature detected by the temperature sensor ~5 changes moment by moment as the charge falls and furthermore due to the high temperature gas rising in the furnace, and is given as a function of time 'I'-f(t). In the function T=f(t), as the value of time t, from to to h, 2h
, 3h , . . . The values of temperature T when given equal intervals of increase are To, T, , T, respectively.
2. It is represented by... And each difference value T,
~TO- (To 7Δt).

T2−T、−Δ、(ひT、 /Δt ) + T3 T
2鶴(よ2ハ1)+・・・・・・を求める。この差分値
を温度変化情報として利用することに着目して完成され
たのが本発明である。ちなみに第4図0)、(ロ)、(
ハ)、に)は温度検知センサーによって30秒毎に得た
生の温度情報を直接縦軸にとって表現したグラフであシ
、第5図(イ)、(ロ)、(ハ)、に)は上記生データ
を差分法によって整理することによシ差分値を得、この
差分値を縦軸にとって表現したグラフであシ、いずれも
横軸は時間の経過を示している。尚第4図(イ)〜に)
において(1)〜包)の各記号を付して説明している温
度観察結果は、前記(1)〜(4)で示した各分類の温
度変化状態に対応するものであり、又第5図ビ)〜に)
に示された現象のうち「ガス吹抜」とは炉内ガスが耐火
壁3の内周面に沿って急激に大量通過した現象を言い、
「スリップ」とは鉄鉱石等の装入物が耐火壁3の内周面
に沿って急激に荷下シした現象を言う。rO/Cの降下
」とは前記装入物が炉頂の装入ピッチとほぼ同一周期で
荷下シしている正常状態を表現するものである。更に「
停滞層」とは付着物層を含む何らかの不動層を表現する
ものである。第4図(イ)〜に)を見た場合、温度の変
化曲線は一般になだらかである為、変化の有無或は程度
の把握が不正確になる場合もあシ得るが、第5図(イ)
〜に)では縦軸を差分値としている為、変化の有無或は
程度の把握が正確である。尚第5図(イ)〜に)は、差
分値をCRT画面に表示したものであシ、炉内状況を逐
次監視することによって直ちに操業県外の調整等へフィ
ードバックすることができる。
T2-T, -Δ, (HiT, /Δt) + T3 T
Find 2 cranes (yo 2 ha 1) +... The present invention was completed by focusing on the use of this difference value as temperature change information. By the way, Figure 4 0), (b), (
Figure 5 (a), (b), (c), and (c) are graphs in which the raw temperature information obtained every 30 seconds by the temperature sensor is expressed directly on the vertical axis. Difference values are obtained by organizing the above-mentioned raw data using the difference method, and the graphs express these difference values on the vertical axis, with the horizontal axis showing the passage of time in both cases. In addition, Figure 4 (a) ~)
The temperature observation results described with the symbols (1) to (4) above correspond to the temperature change states of each category shown in (1) to (4) above. Figure B) to)
Among the phenomena shown in , "gas blowout" refers to a phenomenon in which a large amount of gas in the furnace suddenly passes along the inner peripheral surface of the refractory wall 3.
"Slip" refers to a phenomenon in which a charge such as iron ore is suddenly unloaded along the inner peripheral surface of the fireproof wall 3. "Drop in rO/C" expresses the normal state in which the charges are unloaded at approximately the same frequency as the charging pitch at the top of the furnace. Furthermore, “
"Stagnation layer" refers to any immobile layer including a deposit layer. If you look at Figure 4 (a) to 4), the temperature change curve is generally gentle, so it is possible that the presence or absence of change or the degree of change may be inaccurate; )
), the vertical axis is the difference value, so it is possible to accurately determine whether or not there is a change, or the extent of the change. In addition, FIG. 5(a) to 5) show the difference values displayed on a CRT screen, and by sequentially monitoring the situation inside the furnace, it is possible to immediately feed back to adjustments etc. outside the operating prefecture.

又第5図G)〜に)に表現される差分値について、高炉
操栗上許容できる上限値及び下限値を設定し、これらの
上限値及び下限値を越える程度・頻度(単位時間当りの
回数・総回数・回復の遅さ等)をチェックすることによ
シ、或はこれを越えることは許されないという様な上々
限及び下々限を設定して同様のチェックをすることによ
シ(尚各チェック項目毎に制限値を定め制限値との対比
によって管理することも自由である)、各内容に応じた
佇報を発する様にすれば、操業者は異常の有無及び程度
を直ちに把握することが可能となシ、減風・調湿具合の
調整・風温調整等の対策を迅速にとることができる。第
6図は同手法を高炉操業に適用したときの一例を示す。
In addition, for the difference values expressed in Figure 5 G) to), the upper and lower limits that are permissible in terms of blast furnace operation are set, and the degree and frequency (number of times per unit time) of exceeding these upper and lower limits are determined.・By checking the total number of times, slowness of recovery, etc.), or by setting upper and lower limits that are not allowed to be exceeded and performing similar checks ( It is also possible to set a limit value for each check item and manage it by comparing it with the limit value), and by issuing a notification according to each content, the operator can immediately understand the existence and extent of abnormalities. As a result, it is possible to quickly take measures such as wind reduction, humidity adjustment, and air temperature adjustment. Figure 6 shows an example of applying this method to blast furnace operation.

本発明は上記の如く構成されているので、竪型炉におけ
る炉内壁表面近傍の状況を温度変化情報の差分値から迅
速且つ正確に把握し、且つそれに対して速やかな対応を
とることが可能となった。
Since the present invention is configured as described above, it is possible to quickly and accurately grasp the situation near the inner wall surface of a vertical furnace from the difference value of temperature change information, and to take prompt action in response. became.

特に高炉では装入物の荷下如やガスの上昇に関する異常
を把握することが可能であシ、操炉県外の調整に益する
ところは極めて太きい。
In particular, in blast furnaces, it is possible to detect abnormalities related to the unloading of the charge and the rise of gas, which is extremely useful for adjustments outside the prefecture where the furnace is operated.

第1図は測温センサーの一部断面見取図、第2図は第1
図の■−■線断面図要部、第3図は高炉炉胸部の断面図
、第4図(()〜に)は生の温度情報を縦軸にとったグ
ラフ、第5図(イ)〜に)は温度差分値を縦軸にとった
グラフ、第6図は差分値の炉内状況監視法を高炉操業に
適用したフロー図である。
Figure 1 is a partial cross-sectional diagram of the temperature sensor, Figure 2 is the
The main part of the cross-sectional diagram along the ■-■ line in the figure, Figure 3 is a cross-sectional view of the blast furnace chest, Figure 4 (() to 2) is a graph with raw temperature information on the vertical axis, Figure 5 (A) (-) is a graph in which the vertical axis is the temperature difference value, and FIG. 6 is a flow diagram in which the furnace condition monitoring method using the difference value is applied to blast furnace operation.

4・・・高炉壁     5・・・測温センサー6・・
・感温点     7・・・鉄鉱石層8・・・コークス
層 出願人  株式会社神戸製鋼所 時間(hr) 時間[hr) 433一 時間CI+r) 時間(br) 時間(hr ) 時間(11r) 時間(hr)
4...Blast furnace wall 5...Temperature sensor 6...
・Temperature sensitive point 7...Iron ore layer 8...Coke layer Applicant Kobe Steel, Ltd. Time (hr) Time [hr) 433 1 hour CI+r) Time (br) Time (hr) Time (11r) Time (hr)

Claims (1)

【特許請求の範囲】[Claims] 竪型炉の内壁表面部近傍の温度を測定し、経時的な温度
変化を差分法で表わすと共に、該差分法によって表現さ
れる温度変化情報によって炉内状況を判断することを特
徴とする竪型炉の炉内状況監視法。
A vertical type furnace characterized by measuring the temperature near the inner wall surface of the vertical type furnace, expressing the temperature change over time by a difference method, and determining the situation inside the furnace based on the temperature change information expressed by the difference method. Method for monitoring the condition inside the furnace.
JP9680683A 1983-05-31 1983-05-31 Method of monitoring internal state of vertical type furnace Granted JPS59221583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9680683A JPS59221583A (en) 1983-05-31 1983-05-31 Method of monitoring internal state of vertical type furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9680683A JPS59221583A (en) 1983-05-31 1983-05-31 Method of monitoring internal state of vertical type furnace

Publications (2)

Publication Number Publication Date
JPS59221583A true JPS59221583A (en) 1984-12-13
JPS6122234B2 JPS6122234B2 (en) 1986-05-30

Family

ID=14174846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9680683A Granted JPS59221583A (en) 1983-05-31 1983-05-31 Method of monitoring internal state of vertical type furnace

Country Status (1)

Country Link
JP (1) JPS59221583A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317217A (en) * 2001-04-17 2002-10-31 Nippon Steel Corp Method, device and computer program for monitoring operation of blast furnace, and computer-readable recording medium
JP2003193120A (en) * 2001-12-28 2003-07-09 Nippon Steel Corp Method and apparatus for monitoring operation in blast furnace, computer program and computer readable storage medium
JP2010090453A (en) * 2008-10-09 2010-04-22 Nippon Steel Corp Method of operating vertical melting furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317217A (en) * 2001-04-17 2002-10-31 Nippon Steel Corp Method, device and computer program for monitoring operation of blast furnace, and computer-readable recording medium
JP2003193120A (en) * 2001-12-28 2003-07-09 Nippon Steel Corp Method and apparatus for monitoring operation in blast furnace, computer program and computer readable storage medium
JP2010090453A (en) * 2008-10-09 2010-04-22 Nippon Steel Corp Method of operating vertical melting furnace

Also Published As

Publication number Publication date
JPS6122234B2 (en) 1986-05-30

Similar Documents

Publication Publication Date Title
US4422326A (en) Method of ascertaining the state inside melting furnace for radioactive waste
JPS59221583A (en) Method of monitoring internal state of vertical type furnace
JP2008145141A (en) Method of estimating state in blast furnace
KR101412403B1 (en) Dropping judgment method of charging material into blast furnace
JP3427834B2 (en) How to detect sensor abnormalities
JP3487203B2 (en) Blast furnace condition prediction method
JP2678767B2 (en) Blast furnace operation method
JPS596888B2 (en) Method for detecting deposits on blast furnace walls
JP2020066759A (en) Blast furnace operation method
CN215448106U (en) Thermosensitive material level meter
JPS581009A (en) Controlling method for temperature distribution in blast furnace
JPS5848615A (en) Detection for slopping in converter
JP3264161B2 (en) How to detect sensor abnormalities
JPS6191307A (en) Detection of descending of charge in blast furnace
KR950010237B1 (en) Method of channeling with blast f'ce
JPH0751263B2 (en) Breakout prediction method in continuous casting mold
JP2733564B2 (en) Slip prediction method in blast furnace operation
JPS6129674A (en) Method of detecting extraneous matter on inner wall of vertical type furnace
JPS60248805A (en) Detection of condition of packing material in blast furnace
JP2000054013A (en) Method for grasping condition in inner part of blast furface and vertically horizontal sonde
JPS62192511A (en) Method for estimating falling position of raw material charged into rotary chute type blast furnace
JPH0257665B2 (en)
JPS62228404A (en) Method for measuring flow rate of gas in blast furnace
KR101175407B1 (en) Method of detecting gas stream of upper part of blast furnace using heat emission index
JPS63243215A (en) Method for operating blast furnace