JPS6191307A - Detection of descending of charge in blast furnace - Google Patents

Detection of descending of charge in blast furnace

Info

Publication number
JPS6191307A
JPS6191307A JP21198984A JP21198984A JPS6191307A JP S6191307 A JPS6191307 A JP S6191307A JP 21198984 A JP21198984 A JP 21198984A JP 21198984 A JP21198984 A JP 21198984A JP S6191307 A JPS6191307 A JP S6191307A
Authority
JP
Japan
Prior art keywords
furnace
load
distribution
blast furnace
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21198984A
Other languages
Japanese (ja)
Inventor
Takanobu Inada
隆信 稲田
Yoshimasa Kajiwara
梶原 義雅
Toshihiko Sakai
俊彦 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21198984A priority Critical patent/JPS6191307A/en
Publication of JPS6191307A publication Critical patent/JPS6191307A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Abstract

PURPOSE:To measure exactly the layer thickness distribution and descending speed distribution of the raw material charged into a blast furnace by providing movably in and out >=2 pieces of guide pipes to the blast furnace in the height direction thereof and measuring the load of the charge exerted to the weight attached by wires to the inside of the furnace through said pipes. CONSTITUTION:The plural guide pipes 3 are attached freely movably in and out at specified intervals through the wall 1 of the blast furnace in the height direction thereof and the wires 4 are passed into the pipes 3 from the outside of the furnace. The weight 5 is preliminarily attached to the top end of the wire. The weight 5 receives the load of the charged raw material 2 descending in the furnace and the downward force acting on the weight 5 is transmitted to a load converter 7 in a load detector 6 through the wire 4. The change in said force is detected as a strain output by a strain gage 8. Each pipe 3 is put in and out to change the position of the top end thereof from the furnace core to the furnace wall in the radial direction by which the layer thickness distribution and descending speed distribution of the charged raw material 2, i.e., ore, coke, etc., are detected exactly and the distribution of the charged raw material is adjusted to stabilize the furnace condition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高炉の炉内装入物の荷下が)状況を正確に検
知できる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for accurately detecting the unloading of blast furnace contents.

(従来の技術〕 鉱石を還元かつ溶解する高炉炉内において、鉱石が半溶
融状態にある領域(以下「融着帯」と云う)が存在する
ことは近年の高炉の解体調査によって明らかになってい
る。ところで、炉内に存在する融着帯は、ガス流れから
見れば最も通気抵抗の大きな領域であり、その形状によ
り炉内ガス流れ分布は大きな影響を受け、また、荷下が
りの面から見れば鉱石の溶解に伴い荷下がり状況が大き
く変化する領域であるだけでなく、炉下部(融着帯よシ
下部の領域)のコークスの荷下がりから見れば、炉芯コ
ークス、炉壁プロフィルと合わせて半径方向の融着帯形
状が炉下部荷下がり領域の境界を形成することから、そ
の形状が炉下部荷下がり状況に大きな影響を与える。
(Prior Art) Recent dismantling surveys of blast furnaces have revealed that in the blast furnace where ore is reduced and melted, there is a region where the ore is in a semi-molten state (hereinafter referred to as the "cohesive zone"). By the way, the cohesive zone that exists in the furnace is the area with the greatest ventilation resistance from the perspective of gas flow, and its shape greatly affects the gas flow distribution within the furnace. Not only is this an area where the unloading conditions change greatly as the ore melts, but also the unloading of coke in the lower part of the furnace (the area below the cohesive zone) shows that the coke in the furnace core and the furnace wall profile are different from each other. Since the shape of the cohesive zone in the radial direction forms the boundary of the lower-furnace unloading area, the shape has a great influence on the lower-furnace unloading situation.

以上のように、炉内融着帯の半径方向位置は、高炉を操
業するうえで重要な管理項目になっている。
As described above, the radial position of the cohesive zone in the furnace is an important control item when operating a blast furnace.

さて、半径方向の融着帯の形状及び位はの制御法として
は、通常ムーバブルアーマ等を用いて炉頂での装入物分
布を調整する方法が採用されているが、炉頂装入物分布
はアーマ・ノツチ、装入量、装入物粒径等の操作可能因
子の他に、炉内の半径方向荷下がり分布↑炉頂装入物表
面形状、ガス流れ分布等の炉内状況、更に、コークス表
層への鉱石装入時に起こるコークスの炉芯への流れ込み
現象等、現状では正確な推定の困難な因子の影響を□ 
受ける。従って、的確な装入物分布の調整を行うために
は1.゛前記操作可能な因子を調整すると共に装入物分
布の実体把握を行う必要がある。
Now, as a method of controlling the shape and position of the cohesive zone in the radial direction, a method is usually adopted in which the burden distribution at the top of the furnace is adjusted using a movable armor, etc. In addition to operable factors such as armour-notch, charge amount, and charge grain size, the distribution is also determined by the radial unloading distribution inside the furnace, the furnace conditions such as the top charge surface shape, gas flow distribution, etc. Furthermore, we will investigate the influence of factors that are currently difficult to accurately estimate, such as the phenomenon of coke flowing into the furnace core when ore is charged to the coke surface layer.
receive. Therefore, in order to accurately adjust the charge distribution, 1. ``It is necessary to adjust the above-mentioned operable factors and to grasp the actual charge distribution.

そこで、炉内半径方向の鉱石/コークス層厚比分布(以
下「層厚比分布」と云う)や、荷下がり速度分布の実体
把握を行う方法が従来より種々提案されている。以下に
その主なものを示す。
Therefore, various methods have been proposed in the past for actually understanding the ore/coke layer thickness ratio distribution in the radial direction within the furnace (hereinafter referred to as "layer thickness ratio distribution") and the unloading speed distribution. The main ones are shown below.

■層頂プロフィル計を用いる推定法 半径方向複数点に、ストックレベル位置を検知するサク
ンジングを設置して各チャージ毎に装入物表面形状を測
定し、層厚比分布、荷量が9速度分布を推定する方法。
■ Estimation method using a layer top profile meter Sakunji to detect the stock level position is installed at multiple points in the radial direction, and the surface shape of the charge is measured for each charge, and the layer thickness ratio distribution and load amount are 9 velocity distributions. How to estimate.

■電気抵抗測定センサを用いる方法 コークス曙と鉱石層とで、電気抵抗が異なることを利用
して、炉の高さ方向2力所以上に電気抵抗測定センナを
設置し、これらの出力の経時製化から装入物の層厚や荷
下がり速度を求める方法。
■Method of using electrical resistance measuring sensors Taking advantage of the fact that the electrical resistance differs between the coke bed and the ore layer, electrical resistance measuring sensors are installed at two or more points in the height direction of the furnace, and the outputs of these sensors are measured over time. A method of determining the layer thickness and unloading speed of the charge from the

そして、このような替成のセンナを半径方向複数点に設
置することにより、これらの量の半径方向分布を知る。
By installing such replacement senna at multiple points in the radial direction, the radial distribution of these amounts can be determined.

(特開昭52−141257号、特開昭52−1516
06号) ■磁気センナを用いた方法 コークス層と鉱石層とで透磁率が異なることを利用して
、炉壁レンガ内或いは炉内に磁気センナを内蔵したゾン
デを挿入してコークス層と鉱石層との間で起こる磁束、
**の変化を炉内高さ方向2力所以上で計測し、これよ
シ装入物の層厚、荷下がり速度を求める方法。そして、
このようなゾンデを半径方向の複数点に設置することに
より、これらの量の半径方向分布が得られる。(4?開
昭52−84112号) ■荷下がり荷重を測定する方法 高炉炉内に挿入した水冷ランスの受ける荷重が、荷下が
りしている装入物の粒径によって変化することを利用し
て、高さ方向2力所以上の荷重測定用ランスを取シ付、
す、当該ランスの歪を計測することにより炉内機入物の
層厚、荷下カリ速度を知る方法。←特願昭59−782
18号)(発明が解決しようとする問題点) 前記し九方法は夫々以下に示す問題点がある。
(JP-A-52-141257, JP-A-52-1516
06) ■Method using a magnetic sensor Taking advantage of the fact that the magnetic permeability is different between the coke layer and the ore layer, a sonde with a built-in magnetic sensor is inserted into the furnace wall brick or inside the furnace to separate the coke layer and the ore layer. The magnetic flux that occurs between
A method of measuring the change in ** at two or more points in the height direction of the furnace to determine the layer thickness of the charge and the unloading speed. and,
By placing such sondes at multiple points in the radial direction, a radial distribution of these quantities can be obtained. (4? 1983-84112) ■Method of measuring unloading load This method uses the fact that the load received by the water-cooled lance inserted into the blast furnace changes depending on the particle size of the unloaded charge. , equipped with a lance for measuring loads at two or more force points in the height direction,
A method of determining the layer thickness of the material in the furnace and the unloading potash rate by measuring the strain of the lance. ←Special application Sho 59-782
No. 18) (Problems to be Solved by the Invention) Each of the above nine methods has the following problems.

Φ層頂プロフィル計を用いる推定法 この方法では、流れ込み現象による装入後の層厚比分布
の変化を捕えることができな−、゛■電気抵抗測定セン
サを用いた方法 電気抵抗は、炉内温度や装入物中の水分によって変化す
ることから、これによる出力変動が測定誤差を引き起こ
すという問題がある。    ゛■磁気センナを用いた
方法  ・ この方法では、装入物の温度により磁気センナの出力が
変動して測定A差を生むばかシでなく、炉内装入物が磁
気変態?:起こす温度以上となるところでは測定できな
い。
Φ Estimation method using layer top profile meter This method cannot capture changes in layer thickness ratio distribution after charging due to flow-in phenomenon. Since the output varies depending on the temperature and the moisture in the charge, there is a problem in that output fluctuations caused by this cause measurement errors.゛ ■Method using a magnetic sensor - In this method, the output of the magnetic sensor varies depending on the temperature of the charged material, which causes a difference in measurement A, but the charge in the furnace undergoes magnetic transformation. :Measurement cannot be performed at temperatures exceeding the temperature that causes the test.

■荷下がり荷重を測定する方法 この方法は、炉壁近傍の層厚、荷下がり速度を知るのに
は適しているが、半径方向の特定位置での層厚や荷下が
り速度を求めることはできない。
■Method for measuring the unloading load This method is suitable for determining the layer thickness near the furnace wall and the unloading speed, but it cannot determine the layer thickness or unloading speed at a specific position in the radial direction. .

一方、装入物分布調整の指針となる炉内半径方向の融M
帝の形状及び位この推定は、高炉シャフト部に挿入、設
置したゾンデから得られる半径方向のガス温度、ガス組
成分布のデータと、装入物の半径方向分布や荷下がり速
度分布については、二定の仮定を置くか、或は、前記各
種センサーによる計測値を用いるか、或は、別の数値シ
ミュレーション結果を入力として、半怪方向各ゾーンに
つい゛て反応伝熱計算を行なうことによって行なわれて
いる。
On the other hand, the molten M in the radial direction inside the furnace, which serves as a guideline for adjusting the burden distribution,
The estimation of the shape and position of the tube is based on the data on the radial gas temperature and gas composition distribution obtained from the sonde inserted and installed in the blast furnace shaft, and the radial distribution and unloading speed distribution of the charge. This can be done by making certain assumptions, by using the measured values from the various sensors mentioned above, or by inputting the results of other numerical simulations and performing reaction heat transfer calculations for each zone in the semicircular direction. ing.

0間1点を解決するための手段) 以上述べたように炉内半径方向の層厚比分布や荷下がり
速度分布の正確な把握は、高炉安定操業の重要な管理項
目である炉内融着帯形状を精度良く把握するうえでも、
また、装入物分布調整による制御を的確に行ううえでも
重要なポイントとなる・ 本発明は、炉壁近傍にI艮らず、炉中間部、炉芯部に至
る装入物層11分布、荷下がり速度分布をも計測でき、
かつ、装入物の温度や水分量にも影響されない当該量の
正確な計測法を提供せんとするものである。
As mentioned above, accurate understanding of the layer thickness ratio distribution and unloading speed distribution in the radial direction inside the furnace is an important control item for stable operation of the blast furnace. In order to accurately grasp the band shape,
This is also an important point in accurately performing control by adjusting the burden distribution.The present invention provides a distribution of the burden layer 11 that does not extend near the furnace wall, but extends to the middle part of the furnace and the furnace core. It is also possible to measure the unloading speed distribution.
Moreover, it is an object of the present invention to provide an accurate method for measuring the amount, which is not affected by the temperature or moisture content of the charged material.

すなわち本発明は、高炉炉壁を貫通して炉内充填層中V
こ、炉の高さ方向に所要間隔を存して2本以上のガイド
パイプを出入可能に挿入し、これらガイドパイプを貫通
して炉内充填層中に導かれたワイヤの先端に取付けたM
鍾が、炉内を降下する炉内装入物から受ける荷重を、前
記ワイヤを介してワイヤの後端に取付けた荷重検出器に
より測定することによって炉内装入物の荷下がり速度お
よび層厚を測定することを要旨とする高炉炉内における
荷下がり検知方法である。
That is, the present invention penetrates the wall of the blast furnace to provide V in the packed bed inside the furnace.
In this case, two or more guide pipes are inserted in and out at a required interval in the height direction of the furnace, and an M is attached to the tip of a wire that passes through these guide pipes and is guided into the packed bed in the furnace.
The unloading rate and layer thickness of the furnace contents are measured by measuring the load that the plow receives from the furnace contents descending in the furnace through the wire with a load detector attached to the rear end of the wire. This is a method for detecting unloading in a blast furnace.

iヌ下本発明方法を添付開面に基づいて詳細に説明する
Below, the method of the present invention will be explained in detail based on the attached illustrations.

第1図は本発明方法を実施するための装aの一例を示す
ものであ)、+11は炉壁、(2+は炉内装入物、(3
)は前記炉壁(υを貫通し、その先端側が炉内装入物【
2)中に位置するように設けられたガイドパイプであっ
て、このガイドパイプ(31に案内されてワイヤ(4)
が炉外から炉内装入物121内に導かれている。
FIG. 1 shows an example of equipment a for carrying out the method of the present invention), +11 is the furnace wall, (2+ is the furnace contents, (3
) penetrates the furnace wall (υ), and its tip side is the furnace contents [
2) A guide pipe provided to be located inside the wire (4) guided by the guide pipe (31).
is introduced into the furnace contents 121 from outside the furnace.

+5)は前記ワイヤ141の先端に取付けられて炉内に
待機し、降下してくる炉内装入物(2)の荷重を直接受
ける重錘であハこの重錘(5)に作用する荷重は、ワイ
ヤ14)を介して伝達され、該ワイヤ(4)の後端に設
置された荷重検出器(6)によって検出される。
+5) is a weight that is attached to the tip of the wire 141, waits in the furnace, and directly receives the load of the falling furnace contents (2), and the load acting on this weight (5) is , wire 14) and is detected by a load detector (6) installed at the rear end of the wire (4).

なお、前記ガイドパイプ(3)は炉壁111に対して出
入可能に成されており、重錘(5)の高炉内半径方向位
置を変更できるようになっている。
The guide pipe (3) is configured to be able to move in and out of the furnace wall 111, so that the radial position of the weight (5) within the blast furnace can be changed.

以上述べたような装置を用いて高炉の荷下が)を検知す
るには以下の如く行う。
To detect the unloading of a blast furnace using the above-mentioned device, the following procedure is performed.

■炉内に吊下げられ九重錘蒐5)は、その周りを降下す
る炉内装入物(2)により下方への力を受ける。この下
方への力はワイヤ!4Iを介して荷重検出器(6)の構
成要素である荷重変灸171に伝えられ、該荷重変換器
171では炉内重錘の受ける力に応じて変形−回復を繰
シ返す。この繰シ返し変化を、荷重変換器+71内に取
シ付けた歪ゲージ(81により歪みの一出力変動として
取シ出すのである。第2図は歪み変動の実測例を示して
いる。
■The nine-layered weight 5) suspended in the furnace receives a downward force from the furnace contents (2) falling around it. This downward force is a wire! 4I to the load converter 171, which is a component of the load detector (6), and the load converter 171 repeats deformation and recovery according to the force received by the weight in the furnace. This repeated change is extracted as an output fluctuation of strain by a strain gauge (81) installed in the load transducer +71. Fig. 2 shows an example of actual measurement of strain fluctuation.

なシ、荷重変換器17)の形式t/cついては特に1艮
定されるものではないが、1錘(団の受ける荷重に対し
て弾性限界内で変形するものでなければならないO ■前記■で実測した値(第2因)を第3図に示すような
一式図に変換し、下記0式に示すような形で、一定時間
内での総和を、歪み変形積分値午して定義する。
The type of T/C of the load transducer 17) is not particularly specified, but it must be able to deform within the elastic limit with respect to the load received by the weight. Convert the values actually measured (second factor) into a set diagram as shown in Figure 3, and define the total sum within a certain time as the distortion and deformation integral value in the form shown in the formula 0 below. .

歪み変形積分値三fax      ・・・■高炉模型
実験装置を用いて荷下がり速度および装入物粒径を変化
させたときの前記0式で定義した歪み変形積分値(1分
間の積分値)の変化を第4図に示す。第4図より、同一
荷下が〕速度においても、装入物粒径が異なることによ
り歪み変形すなわち、炉内装入物であるコークスと鉱石
層の大部分を占める焼結鉱は、互いに粒径がかなり異な
る(コークスの平均粒径は約50■、焼結鉱の平均粒径
は約25■)ことから、上述したような検出方法によっ
てコークス層と焼結鉱層を区別することができるのであ
る。
Strain deformation integral value 3 fax ... ■ Strain deformation integral value (1 minute integral value) defined by the above formula 0 when changing the unloading speed and burden particle size using a blast furnace model experimental device. The changes are shown in Figure 4. From Figure 4, even at the same unloading speed, strain deformation occurs due to the difference in grain size of the burden.In other words, coke, which is the charge in the furnace, and sintered ore, which makes up most of the ore layer, have different grain sizes. Since they are quite different (the average particle size of coke is approximately 50cm and the average particle size of sinter is approximately 25cm), it is possible to distinguish between the coke layer and the sintered ore layer using the detection method described above. .

■重錘(5)の周シの炉内装入物121粒子径は、コー
クス、焼結鉱層が通過するに応じて経時的に変化するこ
とから、先に述べた検知値aを、炉の高さ方向に2台以
上所要間隔を存して設置すれば、各荷重変換器171か
ら出力される歪み変形精分値も経時的に変化する。
■The particle diameter of the furnace contents 121 around the weight (5) changes over time as the coke and sintered ore layer passes, so the detected value a mentioned above is If two or more transducers are installed at a required interval in the horizontal direction, the strain deformation fractional value output from each load transducer 171 will also change over time.

前記装置が2台の場合には、この2台の荷重変換器+7
1171の歪み変形積分値の変化パターンの間には、荷
下がり速度(=)と、高さ方向の重錘151の間隔υよ
シ決まる時間遅れ(T)があり、これを検出することに
よって荷下がり速度を知ることができる。
If there are two devices, these two load converters +7
There is a time delay (T) between the change pattern of the strain deformation integral value of 1171, which is determined by the load lowering speed (=) and the interval υ of the weights 151 in the height direction, and by detecting this, the load can be determined. You can know the rate of decline.

図中(至)は歪み変形値状分計である。In the figure (to) is a distortion deformation value condition meter.

マ= L / T         ・・・・・・■更
に、前記荷下がり速度(v)と、歪み変形積分値の変化
パターンよシ得られるコークス層、焼結鉱層の各通過時
間(tlから、各層の層厚(ωを知ることができる。
Ma = L / T ...... ■Furthermore, from the above-mentioned unloading speed (v) and the change pattern of the strain deformation integral value, the respective transit times (tl) of the coke layer and sintered ore layer are calculated. You can know the layer thickness (ω).

d客マ・t         …・・・00以上述べた
■〜■の手続きによって、炉内装入物の荷下が夛速度2
よび層厚比を求めることができるのである。
dCustomer Ma・t......00 By following the procedures described above, the unloading of the contents in the furnace is completed at a speed of 2.
Therefore, the layer thickness ratio can be determined.

−また、ガイドパイプ−31を炉内に押込んだり、引き
抜いたシして= 鎚ts+の半径方向位置を変更するこ
とにより、半径方向の任意の位置の荷下がり速度、j:
3厚比が得られ、これらの景の半径方向分布を知ること
ができる。
-Also, by pushing the guide pipe 31 into the furnace or pulling it out, = by changing the radial position of the hammer ts+, the unloading speed at any position in the radial direction, j:
3 thickness ratios are obtained, and the radial distribution of these views can be known.

なお、前記した各データを用いて高炉操業を行う場合の
方法を第5図に基づいて説明する。
A method for operating a blast furnace using each of the data described above will be explained based on FIG. 5.

■まず、該式モデルに先に説明した■〜■の処理を経て
得らnた炉内装入物(2)の荷下がり速度(マ)および
層ノ1比のデータと、高炉シャフト部に設けたゾンデ(
9)による半径方向炉内温度およびガス組成分布測位を
入力し、半径方向の各ゾーンについて反応・伝熱計算を
行ない炉内融着帯の形状及び位置を推定する。
■First, data on the unloading speed (ma) and layer no. 1 ratio of the furnace charge (2) obtained through the processes of The sonde (
Input the radial furnace temperature and gas composition distribution positioning according to 9), perform reaction/heat transfer calculations for each zone in the radial direction, and estimate the shape and position of the cohesive zone in the furnace.

ここで、数値計算による融着帯形状及び位置推定法自身
は、従来の高炉数式モデルで行われているものと大きく
異なるものではなく、新規な技術ではない。
Here, the method of estimating the shape and position of the cohesive zone by numerical calculation itself is not significantly different from that used in conventional blast furnace mathematical models, and is not a new technology.

■一方、操業アクションの要否を判定する管理指標は、
各高炉において先に述べた■〜■および■の手@きによ
って得られる炉内融着帯の形状及び位置と、炉内装入物
スリップ回数との相関関係を基に経験的に設定されるも
のである。例えば第6図は、人高炉(内容積3700m
’、炉口径10m)についての管理指標を示し、炉壁よ
りL5〜2゜0m位置での融着帯高さと、炉内スリップ
回数との相関が比較的良くとれておシ、当該高炉では、
この位までの融着帯高さを管理指標としている。
■On the other hand, the management indicators used to determine the necessity of operational actions are:
It is set empirically based on the correlation between the shape and position of the cohesive zone in the furnace obtained by the above-mentioned manuals for each blast furnace and the number of slips of the contents in the furnace. It is. For example, Figure 6 shows a man-made blast furnace (inner volume 3,700m).
', the furnace diameter is 10 m), and there is a relatively good correlation between the cohesive zone height at a position of L5 to 2°0 m from the furnace wall and the number of slips in the furnace.
The height of the cohesive zone up to this point is used as a management index.

但し、このような管理指標の設定方法は、6炉によって
当然、異なる。
However, the method of setting such management indicators naturally differs among the six furnaces.

θ前記■で計算される炉内融着帯の形状を、[相]で説
明したような管理指標と照らし合わせ、操業アクション
の要否を判定する。更に、炉内装入物分布シ電ニレ−7
ヨンモデルをこれに付加することにより、具体的なアク
ション内容も高炉オペレーターに指示させることもでき
る。
θ The shape of the in-furnace cohesive zone calculated in (2) above is compared with the management index described in [Phase] to determine whether or not operational action is necessary. Furthermore, the distribution of contents in the furnace is
By adding the Yon model to this, it is also possible to instruct the blast furnace operator on specific actions.

(実施例) ■ム高炉(内容積3700i、炉口径10m)において
、本発明方法により炉内装入物荷下がり速度および層厚
比の計測を行った。その主な諸元を以下に示す〔第7図
〕。
(Example) (1) In a blast furnace (inner volume: 3700 i, furnace diameter: 10 m), the rate of unloading of the contents in the furnace and the layer thickness ratio were measured using the method of the present invention. Its main specifications are shown below [Figure 7].

重錐:φ50■ 球凰 設置位置:炉壁よシ約1m中心寄シで、かつ、ストック
ライン下約5m(上段の 重錐位f!1)。
Heavy cone: φ50■ Ball aviator installation position: Approximately 1 m from the furnace wall and close to the center, and approximately 5 m below the stock line (upper cone position f!1).

2ケの重錐の間隔:550露 ガイドパイプ先端からの繰シ出し長さ:約400fi(
上段、下段とも) 但し、上段の重錐と下段のガイドパイプが干渉しないよ
うに、両重錐の操シ出し位置は円周方向に約5oo−ず
らせている。
Spacing between two heavy cones: 550 dew Length of feeding from the tip of the guide pipe: Approximately 400 fi (
However, in order to prevent the upper and lower guide pipes from interfering with each other, the operating positions of both the upper and lower guide pipes are offset by approximately 50 mm in the circumferential direction.

第8図(イ)(ロ)および第9図、第10図に上、下段
の荷重検出器(6)の出力波形と、これを用いて求めた
荷下がり速度および層厚比のデータを示す。
Figures 8 (a) and (b), 9, and 10 show the output waveforms of the upper and lower load detectors (6), and the data on the unloading speed and layer thickness ratio determined using the waveforms. .

■前記■で示した荷重検出器+61 +61の半径方向
測定位置を、ガイドパイプ+31131の押し込み、引
き抜き操作を行うことによって炉壁から1mと15mの
位置での荷下がり速度、層厚比を約20分間隔で交互に
計測し、このデータを用いて、先に説明したΦ〜θの操
作を行い、炉内融着帯形状の制御、を行なった。
■ By pushing in and pulling out the guide pipe +31131 at the radial measurement position of the load detector +61 +61 shown in (■) above, the unloading speed and layer thickness ratio at positions 1 m and 15 m from the furnace wall can be adjusted to approximately 20 Measurements were taken alternately at minute intervals, and using this data, the previously described operations of Φ to θ were performed to control the shape of the cohesive zone in the furnace.

第11図は、本発明方法により求めた荷下が〕速度、炉
内装入物層厚比の計測データを用いて、炉内融着帯位置
を推定した結果と、従来の垂直ゾンデによる融着帯計測
値および炉頂プロフィル計の計測値を用いて推定した融
着帯形状を示している。同図よ)15IIらかなように
、本発明方法により得たデータを用いて求めた融着帯形
状は妥当な形状を示している。
Figure 11 shows the results of estimating the position of the cohesive zone in the furnace using the measurement data of the unloading velocity determined by the method of the present invention and the layer thickness ratio of the contents in the furnace, and the results of estimating the position of the cohesive zone in the furnace using the conventional vertical sonde. The shape of the cohesive zone estimated using the zone measurement value and the measurement value of the furnace top profile meter is shown. (See the same figure) 15II As is clear, the cohesive zone shape determined using the data obtained by the method of the present invention shows a reasonable shape.

■第12図はム高炉において、炉頂プロフィル計の計測
値門用いて炉内融・3帯の管理および炉内装入物分布の
制御を行っていた時期(Alと、本発明方法により得た
値を用いて同様の制御を行った時期ω)での炉内スリッ
プの発生回数の変化を示したものである。なお、この間
は炉内装入力分布制御以外の大きな操業変更はなかった
■Figure 12 shows the period when the furnace top profile meter was used to manage the melting in the furnace, the three zones, and the distribution of the contents in the furnace in the blast furnace. This figure shows the change in the number of occurrences of in-furnace slip at time ω) when similar control was performed using the values. During this period, there were no major operational changes other than the control of the input distribution inside the reactor.

同図よシ明らかなように、本発明方法i用いた期間俤)
は従来法を用いた期間(A)と比較して大傷にスリップ
回数が、1少しだ。
As is clear from the figure, the period when the method of the present invention was used)
Compared to period (A) using the conventional method, the number of slips due to large scratches was a little over 1.

(発明の効果) 以上述べた如く本発明方法によれば、良好な精度で高炉
の炉内装入物の荷下がりを検知でき、スリップの発生を
未然に防止できる等高炉の安定操業に大きく寄与するこ
とができる。
(Effects of the Invention) As described above, according to the method of the present invention, it is possible to detect the unloading of the contents in the blast furnace with good accuracy, which greatly contributes to the stable operation of the blast furnace by preventing the occurrence of slips. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1]は本発明方法を実施するための装置lの一例を示
す図面、42図は第1図の装置で実測した全変動値、r
ス3図は第2図の漢式図、第4図は炉内装入物粒+tの
変化による荷下がり速度と歪み変形積分値との関係図、
8g5図は本発明方法および本発明方法により得たデー
タを基にした高炉操業方法の訳明フローチャート、第6
図は羽口上融着帯位置と平均スリップ回数との関係rΔ
、第7図は本発明方法の一実施例の荷重検出器の設ユ位
置説明図であシ、(イ)は平石図、(2))は正面1、
第8図は第7図の実施例の場合の荷重検出器の出力値を
示したもので、何)は上段検出器、(ロ)は下段検出器
、第9図は同様の荷下が勺速度の検出値、第1O図は層
4比の検出値を夫々示したもの、Ql 11 U;!J
は本発明方法を用いた場合と従来法を用いた場合の夫々
の推定融着帝位d′を示した図、第12図は従来法と本
発明法を用いて制御した場合の平均スリップ回数を示し
た図面である。 111は炉壁、(2)は炉内装入物、(31はガイドパ
イプ、(4)はワイヤ、(51は重錐、(6)は荷重検
出器。 特許出願人  住友金属工業株式会社 jlllllIll 第12関
1] is a drawing showing an example of an apparatus l for carrying out the method of the present invention, and FIG.
Figure 3 is a Chinese-style diagram of Figure 2, Figure 4 is a diagram of the relationship between the unloading speed and the integrated value of strain deformation due to changes in the charge grains +t in the furnace,
Figure 8g5 is an explanation flowchart of the method of the present invention and the blast furnace operating method based on the data obtained by the method of the present invention, No. 6
The figure shows the relationship rΔ between the position of the cohesive zone above the tuyere and the average number of slips.
, FIG. 7 is an explanatory diagram of the installation position of the load detector in one embodiment of the method of the present invention, (a) is a flat stone diagram, (2)) is a front view 1,
Figure 8 shows the output values of the load detectors in the case of the embodiment shown in Figure 7; The detected value of velocity, Figure 1O shows the detected value of layer 4 ratio, respectively, Ql 11 U;! J
Figure 12 shows the estimated fusion position d' when using the method of the present invention and when using the conventional method, and Figure 12 shows the average number of slips when controlling using the conventional method and the method of the present invention. This is a drawing shown. 111 is the furnace wall, (2) is the furnace contents, (31 is the guide pipe, (4) is the wire, (51 is the heavy cone, and (6) is the load detector. Patent applicant: Sumitomo Metal Industries, Ltd. 12 Seki

Claims (1)

【特許請求の範囲】[Claims] (1)、高炉炉壁を貫通して炉内充填層中に、炉の高さ
方向に所要間隔を存して2本以上のガイドパイプを出入
可能に挿入し、これらガイドパイプを貫通して炉内充填
層中に導かれたワイヤの先端に取付けた重錐が、炉内を
降下する炉内装入物から受ける荷重を、前記ワイヤを介
してワイヤの後端に取付けた荷重検出器により測定する
ことによつて炉内装入物の荷下がり速度および層厚を測
定することを特徴とする高炉炉内における荷下がり検知
方法。
(1) Two or more guide pipes are inserted into and out of the blast furnace wall at a required interval in the furnace height direction into the packed bed inside the blast furnace, and these guide pipes are penetrated. A heavy cone attached to the tip of a wire guided into the packed bed in the furnace measures the load received from the furnace contents descending inside the furnace with a load detector attached to the rear end of the wire via the wire. 1. A method for detecting unloading in a blast furnace, characterized by measuring the unloading speed and layer thickness of materials loaded into the furnace.
JP21198984A 1984-10-10 1984-10-10 Detection of descending of charge in blast furnace Pending JPS6191307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21198984A JPS6191307A (en) 1984-10-10 1984-10-10 Detection of descending of charge in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21198984A JPS6191307A (en) 1984-10-10 1984-10-10 Detection of descending of charge in blast furnace

Publications (1)

Publication Number Publication Date
JPS6191307A true JPS6191307A (en) 1986-05-09

Family

ID=16615046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21198984A Pending JPS6191307A (en) 1984-10-10 1984-10-10 Detection of descending of charge in blast furnace

Country Status (1)

Country Link
JP (1) JPS6191307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087389A (en) * 2010-10-21 2012-05-10 Sumitomo Metal Ind Ltd Condition-detector in furnace of blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087389A (en) * 2010-10-21 2012-05-10 Sumitomo Metal Ind Ltd Condition-detector in furnace of blast furnace

Similar Documents

Publication Publication Date Title
US5961214A (en) Determining protective layer thickness of blast furnaces
CN110283956A (en) Whether go out most devices and methods therefor for rational judgment Blast furnace slag
JPS6191307A (en) Detection of descending of charge in blast furnace
JP2727563B2 (en) Blast furnace operation method
JP5387066B2 (en) Blast furnace gas flow distribution estimation method, blast furnace gas flow distribution estimation device, and blast furnace gas flow distribution estimation program
YAMAMOTO et al. Development of monitoring system for lumpy and cohesive zones in the blast furnace
CA1049258A (en) Method of detecting abnormal conditions of blast furnaces
JPS6122234B2 (en)
JPS6325043B2 (en)
JPH0913110A (en) Method for evaluating ventilation of charged material layer in vertical type furnace
JPS62192511A (en) Method for estimating falling position of raw material charged into rotary chute type blast furnace
JPH0586446B2 (en)
JPS62257004A (en) Method for detecting eroded state of furnace floor wall of shaft furnace
JPS6361367B2 (en)
JPH0610289B2 (en) Blast furnace operation method
JPS60248805A (en) Detection of condition of packing material in blast furnace
Fredman Accretions in the blast furnace stack-diagnosis, modeling and control
JPS63243215A (en) Method for operating blast furnace
JPS5852411A (en) Measuring method for distribution of charging materials in blast furnace
JP2006342382A (en) Method for evaluating gas permeability of lower part in blast furnace, and blast furnace operating method
CN117051190A (en) System and method for monitoring slag iron storage quantity of blast furnace hearth
CA2383538A1 (en) Method for determining the trajectory of materials when charging a shaft kiln
JPH0717931B2 (en) Blast furnace furnace interior entrance layer boundary measurement method
JPS61139612A (en) Method for measuring layer thickness and descending speed of packing material in blast furnace
JPS58147503A (en) Operating method of blast furnace