JPH0717931B2 - Blast furnace furnace interior entrance layer boundary measurement method - Google Patents

Blast furnace furnace interior entrance layer boundary measurement method

Info

Publication number
JPH0717931B2
JPH0717931B2 JP58030775A JP3077583A JPH0717931B2 JP H0717931 B2 JPH0717931 B2 JP H0717931B2 JP 58030775 A JP58030775 A JP 58030775A JP 3077583 A JP3077583 A JP 3077583A JP H0717931 B2 JPH0717931 B2 JP H0717931B2
Authority
JP
Japan
Prior art keywords
probe
layer
furnace
change region
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58030775A
Other languages
Japanese (ja)
Other versions
JPS59157208A (en
Inventor
裕 宮辺
宗之 樋口
勇次 土井
達朗 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58030775A priority Critical patent/JPH0717931B2/en
Publication of JPS59157208A publication Critical patent/JPS59157208A/en
Publication of JPH0717931B2 publication Critical patent/JPH0717931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、プローブ挿入時の挿入抵抗の変化(所要推力
の変化)から、高炉炉内装入物の層状認識、融着帯層位
置検出を行ない、高位安定な高炉操業を実現するための
高炉炉内装入物層境界測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is capable of stable operation of a blast furnace at a high level by recognizing the layered state of the interior contents of the furnace in the blast furnace and detecting the position of the cohesive zone from the change in insertion resistance (change in required thrust) when inserting the probe. The present invention relates to a method for measuring the boundary layer of the inner layer of the blast furnace for realizing the above.

高炉は、炉上部から鉄鉱石とコークスを交互に層状装入
し、炉下部から高温ガスを吹込んで、銑鉄を生産する対
向流型反応炉である。炉上部から層状装入された鉄鉱石
は、高温還元ガスにより、降下につれて還元、昇温が進
み、ついには軟化融着状態を呈するようになる。これが
融着帯と呼ばれ、さらに反応が進行すれば、ついには溶
融して溶銑となり、炉下部に向かつて滴下する。
The blast furnace is a counter-flow reactor in which iron ore and coke are alternately charged in layers from the upper part of the furnace and hot gas is blown from the lower part of the furnace to produce pig iron. The iron ore layer-wise charged from the upper part of the furnace is reduced by the high-temperature reducing gas as the temperature decreases, and the temperature rises, and finally becomes a softened and fused state. This is called a cohesive zone, and when the reaction proceeds further, it finally melts into hot metal, and drops toward the lower part of the furnace.

融着帯部分は、通気抵抗が非常に高く、それゆえ、炉内
ガス流れの円周方向、半径方向の分布を大きく左右する
ため、その位置と形状は、高炉操業上の重要管理項目と
して認識されている。融着帯形状は、それ自身が決定す
る炉内ガス流れ分布と共に、上部の塊状を保つた鉄鉱石
と、コークスの層状領域(以下塊状帯と記す)における
鉄鉱石とコークスの各々の層の厚さの比(以下層厚比と
記す)の円周方向、半径方向の分布状態に支配される。
従つて、塊状帯における層の形成状態の検知、融着帯層
の形状と位置を検知することで、高炉操業にとつて重要
な情報を提供することができる。
The cohesive zone has a very high ventilation resistance and therefore greatly affects the circumferential and radial distributions of the gas flow in the furnace, so its position and shape are recognized as important control items for blast furnace operation. Has been done. The shape of the cohesive zone is determined by the gas flow distribution in the furnace, which is determined by itself, and the thickness of each layer of iron ore and coke in the layered region of coke and the coke layered region (hereinafter referred to as the cohesive zone). The thickness ratio (hereinafter referred to as the layer thickness ratio) is governed by the circumferential and radial distribution states.
Therefore, it is possible to provide important information for the operation of the blast furnace by detecting the layer formation state in the massive zone and by detecting the shape and position of the cohesive zone layer.

塊状帯における層厚、層厚比の測定方法の1つに、鉄鉱
石とコークスの透磁率、誘電率の差異を利用した磁気式
層厚測定法、電極式層厚測定法があるが、原理上炉上部
および炉壁部での測定が可能であるのみで、炉内全域に
わたる測定は事実上不可能である。
One of the methods for measuring the layer thickness and layer thickness ratio in the massive zone is the magnetic layer thickness measuring method and the electrode type layer thickness measuring method that use the difference in the magnetic permeability and the permittivity of iron ore and coke. Only the upper part of the upper furnace and the wall of the furnace can be measured, and the measurement over the entire area of the furnace is virtually impossible.

また、本発明者らが特願昭56−5990号(特開昭57−1206
04号公報)、特願昭56−57832号(特開昭57−174405号
公報)、特願昭56−57833号(特開昭57−174406号公
報)、特願昭56−104140号(特開昭58−6913号公報)で
提案した装置、方法を用いれば、炉内全域にわたる層状
態の検知、融着帯形状、位置の検知のみならず、塊状帯
における装入物粒度、ガス流れ等多種多様の情報が得ら
れるが、測定用プローブに高度な製作技術を有するこ
と、一定周期での整備、調整が必要なこと、現状では測
定機器が高価なこと等から、上下方向、円周方向に多数
設置することは現実的ではない。
In addition, the inventors of the present invention have disclosed Japanese Patent Application No. 56-5990 (JP-A-57-1206).
04), Japanese Patent Application No. 56-57832 (Japanese Patent Application Laid-Open No. 57-174405), Japanese Patent Application No. 56-57833 (Japanese Patent Application Laid-Open No. 57-174406), Japanese Patent Application No. 56-104140 (Japanese Patent Application No. 56-104140). By using the apparatus and method proposed in Japanese Laid-Open Patent Publication No. 58-6913), not only can the layer state, the cohesive zone shape, and the position of the entire furnace be detected, but also the particle size of the charge in the massive zone, gas flow, etc. A wide variety of information can be obtained, but since the measurement probe has advanced manufacturing technology, maintenance and adjustment at regular intervals are required, and the measurement equipment is currently expensive, It is not realistic to install a large number in.

ところが、高炉内の塊状帯、融着帯全域にわたり、塊状
帯部分での層状態の検知、融着帯形状・位置の検知を行
なうためには、現実的な範囲内で多数の検出端が必要で
あり、かつ整備調整に要する労力を可能な限り低減する
ことが必要である。
However, in order to detect the layer state and the shape and position of the cohesive zone in the cohesive zone, it is necessary to have a large number of detection ends within the blast furnace. It is necessary to reduce the labor required for maintenance and adjustment as much as possible.

本発明者らが特願昭57−101437号(特開昭58−221208号
公報)で提案した測定装置を用いて、特願昭56−5990号
公報(特開昭57−120604号公報)で提案した光学的測定
方法により、、特願昭56−57832号(特開昭57−174405
号公報)、特願昭56−57833号(特開昭57−174406号公
報)、特願昭56−104140号(特開昭58−6913号公報)で
提案した測定用プローブを炉内に挿入して、高炉内の計
測を行なうと共に、該プローブの挿入抵抗を、所要推力
で測定したところ、炉内装入物層の形成状態と該所要推
力との間に明確な対応関係が存在することが判明した。
また、該測定装置を用いて、ガス温度、成分測定用プロ
ーブあるいは装入物サンプリング用プローブ等を炉内に
挿入した際の挿入抵抗も同様であった。
Using the measuring device proposed by the present inventors in Japanese Patent Application No. 57-101437 (Japanese Patent Application Laid-Open No. 58-221208), Japanese Patent Application No. 56-5990 (Japanese Patent Application No. 57-120604) discloses According to the proposed optical measurement method, Japanese Patent Application No. 56-57832 (JP-A-57-174405) is used.
Japanese Patent Application No. 56-57833 (Japanese Patent Application Laid-Open No. 57-174406) and Japanese Patent Application No. 56-104140 (Japanese Patent Application Laid-Open No. 58-6913). Then, the inside of the blast furnace is measured and the insertion resistance of the probe is measured by the required thrust, and there is a clear correspondence between the state of formation of the furnace interior charge layer and the required thrust. found.
Further, the insertion resistance when the gas temperature probe, the component measurement probe, the charge sampling probe, or the like was inserted into the furnace using the measuring device was also the same.

本発明は、かかる知見をもとになされたものであり、そ
の特徴とするところは、プローブ挿入駆動装置にプロー
ブ本体を設け、且つ、該プローブ挿入駆動装置にプロー
ブ挿入抵抗測定装置を設け、前記プローブ本体を前記プ
ローブ挿入駆動装置により高炉側周部から炉内装入物中
に挿入し、この挿入中における挿入抵抗を前記挿入抵抗
測定装置で測定して、該測定挿入抵抗の変化を検出し、
その上昇変化領域をコークス層、下降変化領域を鉱石
層、不規則変動領域を融着帯層とし、上記挿入抵抗が上
昇変化領域から下降変化領域に変わる極大点時のプロー
ブ先端位置、又は上昇変化領域から下降変化領域に変わ
る極小点時のプローブ先端位置をコークス層と鉱石層の
境界とし、上昇変化領域又は下降変化領域から上記不規
則変動領域に変わる位置をコークス層又は鉱石層と融着
帯層の境界として検知する方法である。
The present invention is based on such knowledge, and is characterized in that a probe main body is provided in a probe insertion driving device, and a probe insertion resistance measuring device is provided in the probe insertion driving device. The probe body is inserted into the furnace interior container from the blast furnace side peripheral portion by the probe insertion driving device, the insertion resistance during this insertion is measured by the insertion resistance measuring device, and a change in the measured insertion resistance is detected,
The rising change region is a coke layer, the falling change region is an ore layer, and the irregular fluctuation region is a cohesive zone layer, and the probe tip position at the maximum point when the insertion resistance changes from the rising change region to the falling change region, or the rising change The probe tip position at the minimum point where the region changes to the falling change region is the boundary between the coke layer and the ore layer, and the position where the rising change region or the falling change region changes to the irregular change region is the coke layer or the ore layer and the cohesive zone This is a method of detecting the boundary of layers.

本発明により、ごく単純な構造のプローブを炉内に挿入
し、その際の挿入抵抗の変化(挿入推力の変化)のみか
ら塊状帯における層厚、層厚比の測定、融着帯形状位置
検知が可能となり、高炉操炉の精度を向上し、操炉条
件、製銑計画の変更に迅速、柔軟に対応した操炉を可能
とするものである。
According to the present invention, a probe having a very simple structure is inserted into a furnace, and only the change in insertion resistance (change in insertion thrust) at that time is measured to measure the layer thickness and layer thickness ratio in the massive band, and the position of the fused zone shape is detected. It is possible to improve the accuracy of the blast furnace operation, and to enable the operation of the furnace in a quick and flexible manner in response to changes in the furnace operating conditions and the ironmaking plan.

以下、本発明の一実施例を示す図面を参照しながら本発
明を詳細に説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings showing an embodiment of the present invention.

第1図に、本発明者らが特願昭57−101437号(特開昭58
−221208号公報)で提案した測定装置に、プローブの駆
動力測定装置(具体的には駆動モーターの負荷電流計)
と、プローブの取付部の圧力検出装置を挿入抵抗測定装
置(所要推力測定装置)として設け、該光学的測定方法
により検出した炉内状態と、その際測定したプローブの
挿入抵抗(所要推力)との対応を示す。該測定装置が有
する挿入角度は25°下向きで、1は鉄皮である。
FIG. 1 shows that the inventors of the present invention have disclosed Japanese Patent Application No. 57-101437 (Japanese Patent Application Laid-Open No. 58-101437).
-221208), a probe driving force measuring device (specifically, a drive motor load ammeter)
And a pressure detecting device at the probe mounting portion is provided as an insertion resistance measuring device (required thrust measuring device), and the furnace state detected by the optical measurement method and the probe insertion resistance (required thrust) measured at that time Shows the correspondence of. The measuring device has an insertion angle of 25 ° downward, and 1 is an iron skin.

光学的測定の結果から、プローブ2の挿入に従い、コー
クス層3、次に鉱石層4を通過し、さらにコークス層
5、鉱石層6、コークス層7を通過して、融着帯8に突
入したことがわかる。この時プローブ2の挿入抵抗即ち
挿入に要した推力は、該コークス層3と該鉱石層4の境
界で極大値9を生じ、該鉱石層4と該コークス層5の境
界で極小値10を生じている。さらに同様の変化を生じた
後、融着帯8に突入した時点から、短周期の不規則変動
11を持続した。
From the result of the optical measurement, according to the insertion of the probe 2, it passed through the coke layer 3, then the ore layer 4, further passed through the coke layer 5, the ore layer 6, and the coke layer 7, and entered the cohesive zone 8. I understand. At this time, the insertion resistance of the probe 2, that is, the thrust required for insertion, produces a maximum value 9 at the boundary between the coke layer 3 and the ore layer 4, and a minimum value 10 at the boundary between the ore layer 4 and the coke layer 5. ing. Furthermore, after the similar change, short-period irregular fluctuation starts from the time when it enters the cohesive zone 8.
Sustained 11.

本発明者らは、この結果をもとに、さらに数次にわたる
実験検討を行なつた結果、装入物粒径、炉内ガス流れの
強さに左右されることなく、以下のモデリングにより十
分に信頼できる測定方法を確認した。この点について第
2図を参照しつつ説明する。
Based on these results, the present inventors have conducted several further experiments and as a result, have shown that the modeling described below is sufficient regardless of the particle size of the charge and the strength of the gas flow in the furnace. Confirmed the reliable measurement method. This point will be described with reference to FIG.

即ち本発明によると1)該推力が上昇中の領域12は、コ
ークス層3である。2)該推力の極大点9が1)で検出
したコークス層3と、下方に存在する鉱石層4の境界で
ある。3)該推力が下降中の領域13は、鉱石層4であ
る。4)該推力の極小点10が該鉱石層4と、下方に存在
するコークス層5の境界である。5)該推力の不規則変
動領域11は、融着帯8である。したがつて該不規則変動
領域11が生じ始めた地点が融着帯外面14である。
That is, according to the present invention, 1) the region 12 where the thrust is increasing is the coke layer 3. 2) The maximum point 9 of the thrust is the boundary between the coke layer 3 detected in 1) and the ore layer 4 existing below. 3) The area 13 in which the thrust is descending is the ore layer 4. 4) The minimum point 10 of the thrust is the boundary between the ore layer 4 and the coke layer 5 located below. 5) The irregular fluctuation area 11 of the thrust is the cohesive zone 8. Therefore, the point where the irregular fluctuation region 11 starts to occur is the outer surface 14 of the cohesive zone.

測定を行なう際、実施位置、目的等により、挿入するプ
ローブの長さ、挿入角度は、状況に応じて選定すべきで
ある。その一例として、第3図を参照しながら説明す
る。
When performing the measurement, the length of the probe to be inserted and the insertion angle should be selected according to the situation, depending on the implementation position, purpose and the like. As an example, description will be made with reference to FIG.

高炉15の上部においては、炉内装入物層は傾斜してお
り、プローブ16を水平挿入した場合には、コークス層1
9、鉱石層20、コークス層21が検出される。プローブ17
を斜行挿入した場合は、コークス層22から鉱石層26まで
を検出することができる。さらにプローブ18を斜行挿入
すれば、鉱石層28からコークス層31まで、および融着帯
外面14、融着帯8を検知することができる。例えば、融
着帯外面14を検知することを主な目的とする場合には、
本発明者らが実願昭57−101437号(特開昭58−221208号
公報)で示したように、下向き20°前後の挿入角度で挿
入すれば、最小に近い挿入長で該融着帯外面14を検知す
ることができる。
In the upper part of the blast furnace 15, the furnace interior charge layer is inclined, and when the probe 16 is inserted horizontally, the coke layer 1
9. Ore layer 20 and coke layer 21 are detected. Probe 17
When the slant is inserted, the coke layer 22 to the ore layer 26 can be detected. Further, if the probe 18 is obliquely inserted, the ore layer 28 to the coke layer 31, the outer surface 14 of the cohesive zone, and the cohesive zone 8 can be detected. For example, when the main purpose is to detect the cohesive zone outer surface 14,
As shown in Japanese Patent Application No. 57-101437 (Japanese Patent Application Laid-Open No. 58-221208) by the present inventors, if the fusion band is inserted at an insertion angle of about 20 ° downward, the fusion zone is close to the minimum length. The outer surface 14 can be detected.

第4図は、本発明を実施するのに必要なプローブの説明
図である。プローブ32先端部が受ける挿入抵抗を可能な
限り該プローブ32に伝達する工夫をすることが必要であ
る。したがつて該プローブ32先端の平面部36を可能な限
り大きくすることが望ましい。同様の理由により該プロ
ーブ尖頭部35の持つ角度θも、可能な限り90°に近づけ
ることが好ましい。
FIG. 4 is an explanatory diagram of a probe necessary to carry out the present invention. It is necessary to devise to transmit the insertion resistance received at the tip of the probe 32 to the probe 32 as much as possible. Therefore, it is desirable to make the flat portion 36 at the tip of the probe 32 as large as possible. For the same reason, it is preferable that the angle θ of the probe tip 35 be as close to 90 ° as possible.

該プローブ32の外径が過小な場合、該平板部36および該
尖頭部35が受ける挿入抵抗に比して、該プローブ32の側
面37と、炉内装入物との摩擦抵抗が増大して、雑音成分
が大きくなる。また該プローブ32の外径が過大で、例え
ば、装入物層厚以上となると判別は不可能となる。挿入
装置の無用な大型化を避けるためにも、該プローブ32の
外径は、50〜150mm程度が望ましい。
When the outer diameter of the probe 32 is too small, the frictional resistance between the side surface 37 of the probe 32 and the furnace interior container increases as compared with the insertion resistance received by the flat plate portion 36 and the pointed portion 35. , The noise component becomes large. Further, if the outer diameter of the probe 32 is too large, for example, if it is equal to or larger than the thickness of the charging material layer, it becomes impossible to determine. In order to avoid an unnecessary increase in the size of the insertion device, the outer diameter of the probe 32 is preferably about 50 to 150 mm.

プローブ32の炉内滞留時間は、挿入及び引抜きに要する
時間のみであるから、強度、冷却等の条件を測定作業に
支障が生じない範囲で簡素化することができる。炉上部
で実施する場合には、水冷する必要はなく、該プローブ
32後端に設けた導入孔33から不活姓ガス等を供給し、該
プローブ32先端に設けた吹出し用小孔34から炉内へ放出
することで、冷却および爆発防止を行なうのみでも良
い。炉下部で実施する場合には、該プローブ32を水冷構
造とすることも好ましい。
Since the residence time of the probe 32 in the furnace is only the time required for insertion and extraction, conditions such as strength and cooling can be simplified within a range that does not hinder the measurement work. If it is carried out in the upper part of the furnace, it is not necessary to cool it with water.
It is also possible to supply inert gas or the like from the introduction hole 33 provided at the rear end of the probe 32 and discharge it into the furnace from the small blow-out hole 34 provided at the tip of the probe 32 so that only cooling and explosion prevention are performed. When the operation is performed in the lower part of the furnace, it is also preferable that the probe 32 has a water cooling structure.

また、以上述べた構造以外には、プローブに特別な制約
を課すことは不用であり、必要な場合には、該プローブ
に他の測定機能を付加して複数の測定を同時実施するこ
とも可能である。
In addition to the structure described above, it is unnecessary to impose special restrictions on the probe, and if necessary, other measurement functions can be added to the probe to perform multiple measurements simultaneously. Is.

第5図は本発明の他の実施例である。塊状帯38における
装入物層厚、層厚比の測定を行なう場合には、高炉上部
からプローブ41の挿入、引抜きを行なう。挿入長、円周
方向、上下方向の挿入本数は必要に応じて決定される。
融着帯外面14の位置を検知することを主目的とする場合
には、炉中部〜炉下部に設置したプローブ39の挿入、引
抜きを行なう。また、炉壁部の融着帯位置42を検知する
場合には、上下方向に複数本設けたプローブ40を順次ま
たは同時に挿入し、第2図における不規則変動領域11を
検知した最も上部のプローブ位置を該炉壁部融着帯位置
42とすれば良い。
FIG. 5 shows another embodiment of the present invention. When the charge layer thickness and the layer thickness ratio in the massive band 38 are measured, the probe 41 is inserted and withdrawn from the upper part of the blast furnace. The insertion length, the circumferential direction, and the number of vertical insertions are determined as necessary.
When the main purpose is to detect the position of the outer surface 14 of the cohesive zone, the probe 39 installed in the middle part of the furnace to the lower part of the furnace is inserted and withdrawn. When detecting the cohesive zone position 42 on the furnace wall, a plurality of probes 40 provided in the vertical direction are sequentially or simultaneously inserted to detect the irregular fluctuation region 11 in FIG. Position is the fusion zone position of the furnace wall
It should be 42.

第6図に挿入装置の模式図を示す。プローブ32を駆動す
る駆動装置43を有し、本発明を実施するために挿入抵抗
(所要推力)測定装置44を有する。該装置装置44は、プ
ローブ32の後端または保持部に、例えばひずみゲージ等
を装着して検出する場合、該駆動装置に設置する場合等
があり、後者を用いる際には、該測定装置44−2は駆動
源の種類により、例えば油圧駆動に対して圧力検出器を
用いる等、適切なものを選択する必要がある。
FIG. 6 shows a schematic view of the insertion device. It has a driving device 43 for driving the probe 32 and an insertion resistance (required thrust) measuring device 44 for carrying out the present invention. The device 44 may be installed, for example, in a case where a strain gauge or the like is attached to the rear end or the holding portion of the probe 32 for detection, or installed in the drive device. When the latter is used, the measuring device 44 is used. -2 needs to be properly selected depending on the type of drive source, for example, a pressure detector is used for hydraulic drive.

以上述べたように、本発明は、プローブ挿入時の挿入抵
抗(所要推力)の変化から、塊状帯における鉱石層・コ
ークス層およびその境界の認識・検知、また融着帯の認
識・検知、さらに塊状帯と融着帯の境界形状の検知を、
必要に応じてごく簡単に実現できるため、高炉全域にわ
たる測定を現実化し、高炉の高位安定操業に多大の寄与
をもたらすものである。
As described above, the present invention recognizes and detects the ore layer, the coke layer and their boundaries in the massive zone, and also recognizes and detects the cohesive zone from the change of the insertion resistance (required thrust) at the time of inserting the probe. Detection of the boundary shape between the lumpy zone and the cohesive zone,
Since it can be realized very easily as needed, it will make the measurement over the entire blast furnace a reality and make a great contribution to the stable operation of the blast furnace at a high position.

【図面の簡単な説明】[Brief description of drawings]

第1図は、高炉炉内装入物の状態とプローブ挿入抵抗
(所要推力)の関係を示す測定結果の説明図、第2図は
プローブ挿入抵抗(所要推力)から、炉内状態を検知す
る方法の説明図、第3図は本発明実施の際の模式図、第
4図はプローブの説明図、第5図は本発明の一実施例を
示す説明図、第6図は挿入装置の模式図である。 1…高炉鉄皮、2…プローブ 3,5,7…コークス層、4,6…鉱石層 8…融着層、9…挿入推力の極大点 10…挿入推力の極小点 11…挿入推力の不規則変動領域 12…挿入推力の上昇中の領域 13…挿入推力の下降中の領域 14…融着帯外面、15…高炉 16,17,18…プローブ 19,21,22,24,26,29,31…コークス層 20,23,25,27,28,30…鉱石層 32…プローブ、33…導入孔 34…吹出し用小孔、35…尖頭部 36…平板部、37…プローブ側面 38…塊状帯、39,40,41…プローブ 42…炉壁部融着帯位置、43…プローブ駆動装置 44…挿入推力検出装置
FIG. 1 is an explanatory diagram of measurement results showing the relationship between the state of the contents inside the blast furnace and the probe insertion resistance (required thrust), and FIG. 2 is the method for detecting the state inside the furnace from the probe insertion resistance (required thrust). FIG. 3, FIG. 3 is a schematic diagram in carrying out the present invention, FIG. 4 is an explanatory diagram of a probe, FIG. 5 is an explanatory diagram showing an embodiment of the present invention, and FIG. 6 is a schematic diagram of an insertion device. Is. 1 ... Blast furnace iron crust, 2 ... Probe 3,5,7 ... Coke layer, 4,6 ... Ore layer 8 ... Fused layer, 9 ... Maximum point of insertion thrust 10 ... Minimum point of insertion thrust 11 ... No insertion thrust Regular fluctuation area 12… Increase in insertion thrust 13… Increase in insertion thrust 14… Cohesive zone outer surface, 15… Blast furnace 16,17,18… Probe 19,21,22,24,26,29, 31… Coke layer 20,23,25,27,28,30… Ore layer 32… Probe, 33… Introduction hole 34… Blowout small hole, 35… Spiked head 36… Plate part, 37… Probe side 38… Bulk Band, 39, 40, 41 ... Probe 42 ... Furnace wall fusion zone position, 43 ... Probe drive device 44 ... Insertion thrust detection device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土井 勇次 大分県大分市大字西ノ洲1 新日本製鉄株 式会社大分製鉄所内 (72)発明者 平田 達朗 大分県大分市大字西ノ洲1 新日本製鉄株 式会社大分製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Doi Oita-shi, Oita 1 Nishinosu, Nippon Steel Co., Ltd. Oita Works (72) Inventor Tatsuro Hirata 1 Nishinosu, Oita-shi, Oita New Nippon Steel Co., Ltd. Oita Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】プローブ挿入駆動装置にプローブ本体を設
け、且つ、該プローブ挿入駆動装置にプローブ挿入抵抗
測定装置を設け、前記プローブ本体を前記プローブ挿入
駆動装置により高炉側周部から炉内装入物中に挿入し、
この挿入中における挿入抵抗を前記挿入抵抗測定装置で
測定して、該測定挿入抵抗の変化を検出し、その上昇変
化領域をコークス層、下降変化領域を鉱石層、不規則変
動領域を融着帯層とし、上記挿入抵抗が上昇変化領域か
ら下降変化領域に変わる極大点時のプローブ先端位置、
又は上昇変化領域から下降変化領域に変わる極小点時の
プローブ先端位置をコークス層と鉱石層の境界とし、上
昇変化領域又は下降変化領域から上記不規則変動領域に
変わる位置をコークス層又は鉱石層と融着帯層の境界と
して検知することを特徴とする高炉炉内装入物層境界測
定方法。
1. A probe insertion drive device is provided with a probe main body, and a probe insertion resistance measurement device is provided with the probe insertion drive device, and the probe main body is inserted into the furnace interior from a blast furnace side peripheral portion by the probe insertion drive device. Insert inside,
The insertion resistance during the insertion is measured by the insertion resistance measuring device to detect the change in the measured insertion resistance, and the rising change region is the coke layer, the falling change region is the ore layer, and the irregular fluctuation region is the fusion zone. As a layer, the probe tip position at the maximum point when the insertion resistance changes from the rising change region to the falling change region,
Alternatively, the probe tip position at the minimum point where the rising change region changes to the falling change region is the boundary between the coke layer and the ore layer, and the position where the rising change region or the falling change region changes to the irregular fluctuation region is the coke layer or the ore layer. A method for measuring a boundary layer between inner layers of a blast furnace, which is characterized by detecting the boundary of the cohesive zone layer.
JP58030775A 1983-02-28 1983-02-28 Blast furnace furnace interior entrance layer boundary measurement method Expired - Lifetime JPH0717931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58030775A JPH0717931B2 (en) 1983-02-28 1983-02-28 Blast furnace furnace interior entrance layer boundary measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58030775A JPH0717931B2 (en) 1983-02-28 1983-02-28 Blast furnace furnace interior entrance layer boundary measurement method

Publications (2)

Publication Number Publication Date
JPS59157208A JPS59157208A (en) 1984-09-06
JPH0717931B2 true JPH0717931B2 (en) 1995-03-01

Family

ID=12313055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58030775A Expired - Lifetime JPH0717931B2 (en) 1983-02-28 1983-02-28 Blast furnace furnace interior entrance layer boundary measurement method

Country Status (1)

Country Link
JP (1) JPH0717931B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726326A (en) * 1980-07-22 1982-02-12 Ngk Spark Plug Co Ltd Preheat current controlling type glow plug

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726326A (en) * 1980-07-22 1982-02-12 Ngk Spark Plug Co Ltd Preheat current controlling type glow plug

Also Published As

Publication number Publication date
JPS59157208A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
JPH0717931B2 (en) Blast furnace furnace interior entrance layer boundary measurement method
KR20120020358A (en) High temperature properties testing method of iron ore, and high temperature weight synchysis testing device used in the method
JP2678767B2 (en) Blast furnace operation method
JPS6136564B2 (en)
JPS6191307A (en) Detection of descending of charge in blast furnace
JPS5833082A (en) Method of deciding behavior of charge in furnace in metal smelting furnace, etc.
JPS5848355Y2 (en) Blast furnace softening cohesive zone measuring device
JPS5916917A (en) Built-in type vertical sonde
JPH06299215A (en) Operation of blast furnace
Committee on Reaction within Blast Furnace et al. Measurements in Operating Blast Furnaces
JPH0693317A (en) Control method for blowing pulverized coal from tuyere in blast furnace
JP2003155507A (en) Method for estimating pig iron slag height in blast furnace and its estimating instrument
JPS63243215A (en) Method for operating blast furnace
JPS5832207B2 (en) Charge deposition layer thickness detection sonde
JPS59104408A (en) Detection of bonded zone by fusion of blast furnace
JPS5993809A (en) Operating method of blast furnace
JPS6028678Y2 (en) Blast furnace furnace condition measuring device
JPH11140516A (en) Method for evaluating stability of in-furnace deposition shape for blast furnace
JPS59221583A (en) Method of monitoring internal state of vertical type furnace
JPH06271916A (en) Method for measuring slag level in blast furnace
JP2006342382A (en) Method for evaluating gas permeability of lower part in blast furnace, and blast furnace operating method
KR20040017934A (en) Method for preventing channeling in blast furnace
JPS6277413A (en) Method for controlling position of welded zone of blast furnace
JPS6041682B2 (en) Method and device for measuring heat level in a reduction melting furnace
JPH0754026A (en) Method for measuring descending position of charged material in blast furnace