JPS6277413A - Method for controlling position of welded zone of blast furnace - Google Patents

Method for controlling position of welded zone of blast furnace

Info

Publication number
JPS6277413A
JPS6277413A JP21773485A JP21773485A JPS6277413A JP S6277413 A JPS6277413 A JP S6277413A JP 21773485 A JP21773485 A JP 21773485A JP 21773485 A JP21773485 A JP 21773485A JP S6277413 A JPS6277413 A JP S6277413A
Authority
JP
Japan
Prior art keywords
blast furnace
cohesive zone
temperature
distribution
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21773485A
Other languages
Japanese (ja)
Other versions
JPS6361367B2 (en
Inventor
Takashi Sugiyama
喬 杉山
Masayasu Sugata
須賀田 正泰
Nobukuni Suzuki
鈴木 信邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21773485A priority Critical patent/JPS6277413A/en
Publication of JPS6277413A publication Critical patent/JPS6277413A/en
Publication of JPS6361367B2 publication Critical patent/JPS6361367B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To form a stable softened and welded zone and to make a smooth blast furnace operation by inserting sondes into the barrel part of a blast furnace, determining the into the barrel part of a blast furnace, determining the upper and lower positions of the welded zone from the values actually measured therewith and controlling the layer thickness distribution in the radial direction of charge in accordance therewith. CONSTITUTION:>=1 Pieces of the sondes are inserted into the blast furnace from the belly part 2 thereof. The results of the measurement therewith are fed via a mechanism 10 for measuring gas conc. and a mechanism 11 for measuring gas. solid temp. to an arithmetic unit 12, by which the upper and lower positions of the welded zone are determined. The mode of the charging quantity analysis of the ore and coke is determined by a mechanism 13 for distributing O/C in accordance with the result thereof. As a result, the distribution of the layer thickness ratio in the radial direction of a coke layer 7 and ore layer 8 at the furnace top and the grain size distribution thereof are controlled by operating a device 14 for controlling the charging of the raw material. The shape of the welded zone meeting the operation at the present point of the time is thereby created and a smooth blast furnace operation is realized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高炉により生産される銑鉄の品質ならびに生
産量の変動に伴う炉内状況の変化に対しても安定な軟化
融着帯を形成し、円滑な高炉操業を行うための融着帯位
置の制御方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention forms a stable softened cohesive zone even when conditions inside the furnace change due to fluctuations in the quality and production volume of pig iron produced in a blast furnace. The present invention also relates to a method for controlling the position of the cohesive zone for smooth blast furnace operation.

(従来の技術) 一般に高炉内に装入された鉄鉱石は還元を受けながら高
温に達し、軟化収縮をはじめ、さらに降下し、高温領域
に入ると溶は落ちるが、この軟化開始から熔は落ちるま
での半溶融状態の鉱石層の一連の並びを融着帯と定義し
ている。
(Prior art) Generally, iron ore charged into a blast furnace reaches a high temperature while undergoing reduction, begins to soften and shrink, and then further descends, and when it enters a high temperature region, the melt falls off, but from the start of this softening, the melt falls off. The series of ore layers in a semi-molten state up to the point where the ore layer is in a semi-molten state is defined as a cohesive zone.

この融着帯は、ガスの流通抵抗が非常に高いために、高
炉全体からみて融着帯のある部分はガス流れの抵抗部分
と見做される。従って半径方向から見た融着帯の形状を
どのように制御するかが高炉の安定性、生産性に太き(
作用する。
Since this cohesive zone has very high gas flow resistance, the part of the blast furnace where the cohesive zone is located is considered to be a part that resists gas flow. Therefore, how to control the shape of the cohesive zone viewed from the radial direction has a big impact on the stability and productivity of the blast furnace (
act.

このように融着帯の形状を制御するためには、その形状
を知らなければならないが、直接観察することは不可能
である。そこで近年、高炉内にゾンデを挿入し、得られ
た種々の測定データを用いて融着帯の形状を推定するこ
とが試みられている。
In order to control the shape of the cohesive zone in this way, it is necessary to know the shape, but it is impossible to directly observe it. Therefore, in recent years, attempts have been made to insert a sonde into a blast furnace and estimate the shape of the cohesive zone using various measurement data obtained.

例えば「鉄と鋼J 67 (1981) S69あるい
は「鉄と鋼J 69 (1983) S 5には、TD
R法あるいはTDR溶融帯センサーと称する高炉内に挿
入した可撓性の電導性ケーブルに電圧パルスを送り、溶
融帯でケーブルが溶けたときに発生した反射波が戻るま
でのケーブルの長さから熔融体の位置を測定する方法が
示されている。また熱電対を挿入した可撓性の垂直ゾン
デを炉の半径方向に数本同時に挿入し、温度パターンを
追跡して融着帯形状を判定する方法もある。
For example, "Tetsu to Hagane J 67 (1981) S69 or "Tetsu to Hagane J 69 (1983) S 5 has TD
A voltage pulse is sent to a flexible conductive cable inserted into the blast furnace, called the R method or TDR melting zone sensor, and the length of the cable is determined by the length of the cable until the reflected wave that is generated when the cable melts in the melting zone returns. A method for measuring body position is shown. Another method is to simultaneously insert several flexible vertical probes with thermocouples in the radial direction of the furnace and track the temperature pattern to determine the shape of the cohesive zone.

しかし高炉内はシャフト部の傾斜の影響で上部と下部と
で装入物の降下速度が異なる。例えば炉の上部では降下
速度が7m/時であるものが炉腹部では4m/時に低下
する。従って可撓性のケーブルを使用する上記のような
場合、ケーブルは炉上部で装入物に噛み込まれ、同一粒
子とともに降下するが、先端と噛み込み位置とでは降下
速度が異なるためにゾンデにたわみを生じ、先端の位置
の精度に問題を生じてしまう。
However, inside the blast furnace, the rate of descent of the charge differs between the upper and lower parts due to the slope of the shaft. For example, the descending speed is 7 m/hour in the upper part of the furnace, but it decreases to 4 m/hour in the lower part of the furnace. Therefore, in the above case where a flexible cable is used, the cable is bitten by the charge at the top of the furnace and descends with the same particles, but the falling speed is different between the tip and the biting position, causing the cable to fall into the sonde. This causes deflection, causing a problem in the accuracy of the tip position.

また「鉄と鋼J 66 (1980) 3685には高
炉のシャフト部に水平に設置された上部と下部の2本の
ゾンデのガス温度、ガス組成の情報を用いて融着帯形状
を推定するシステムが開示されている。
In addition, "Tetsu-to-Hagane J 66 (1980) 3685 describes a system that estimates the shape of the cohesive zone using information on the gas temperature and gas composition of two sondes, upper and lower, installed horizontally in the shaft of a blast furnace. is disclosed.

この方法は実測値と針算値の整合性をとりつつ固体温度
10′0℃、ガス中のCO2が0の線を融着帯の上側形
状と定義して融着帯形状の推定を行っている。しかしこ
の方法は水平ゾンデの位置が実際の融着帯よりもかなり
上部の低温度領域にあるためにその位置より大きく離れ
た下部の融着帯形状の推定にはかなりの誤差を生じる可
能性がある。
This method estimates the shape of the cohesive zone by defining the line at which the solid temperature is 10'0℃ and the CO2 in the gas is 0 as the upper shape of the cohesive zone while maintaining consistency between the measured values and the calculated values. There is. However, with this method, since the position of the horizontal sonde is located in a low-temperature region well above the actual cohesive zone, there is a possibility that a considerable error may occur in estimating the shape of the cohesive zone at the bottom, which is far away from that position. be.

また、これらのセンサーを用いた方法に共通する問題点
は、融着帯の上側形状の推定は可能であるが、下側形状
の推定が不可能あるいは正確に行えないことである。
Furthermore, a common problem with the methods using these sensors is that although it is possible to estimate the upper shape of the cohesive zone, it is impossible or impossible to estimate the lower shape.

(発明が解決しようとする問題点) 本発明は上記のような問題、すなわち融着帯の位置、特
に下側形状の推定が不可能あるいは不正確になるという
問題点を解決したものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problem, that is, it is impossible or inaccurate to estimate the position of the cohesive zone, especially the lower shape.

(問題点を解決するための手段) ところで融着帯は、軟化開始温度(Tms)と熔は落ち
温度(T md)との間にある鉱石層であるが、Tll
l5とT+++dは一定ではなく、鉱石の種類、そこに
到達するまでの鉱石の還元率によって異なる。すなわち
還元率が低い場合には低温で軟化し、低温で熔は落ちる
ことが明らかになっている。従ってゾンデによって得ら
れた温度情報だけから融着帯の位置を決定することがで
きず、還元状況を表わすガス濃度の情報も考慮した推定
システムが必要となる。またゾンデが融着帯の上側と下
側を同時に貫通した場合には融着帯の位置は精度良く決
まるが、それ以外の場合には近傍の温度分布、還元率分
布を何等かの方法で推定する必要がある。
(Means for solving the problem) By the way, the cohesive zone is an ore layer between the softening start temperature (Tms) and the melt drop temperature (Tmd), but Tll
l5 and T+++d are not constant, but vary depending on the type of ore and the reduction rate of the ore until reaching it. In other words, it has become clear that when the reduction rate is low, the material softens at low temperatures and the melt melts at low temperatures. Therefore, the position of the cohesive zone cannot be determined only from the temperature information obtained by the sonde, and an estimation system is required that also takes into consideration information on the gas concentration representing the reduction situation. Furthermore, if the sonde penetrates both the upper and lower sides of the cohesive zone at the same time, the position of the cohesive zone can be determined accurately, but in other cases, the temperature distribution and reduction rate distribution in the vicinity must be estimated using some method. There is a need to.

本発明はこのような融着帯の位置の推定およびそれに基
づく融着帯の制御を高炉の操業条件に適合するように行
わせるものである。
The present invention allows estimation of the position of the cohesive zone and control of the cohesive zone based on the estimation to suit the operating conditions of the blast furnace.

すなわち本発明は、高炉の炉腹部あるいはそれ以下の部
分から炉内に1個または複数個のゾンデを挿通し、該ゾ
ンデから得られるガス・固体温度、ガス組成の実測値か
ら融着帯の上側および下側の位置を求めるとともに、該
融着帯の位置が高炉操業上最適な位置を占めるように、
高炉の半径方向の鉱石層厚とコークス層厚の比の分布を
制御することを特徴とするものである。以下図面により
本発明方法を詳細に説明する。
That is, the present invention involves inserting one or more sondes into the blast furnace from the belly or lower part of the blast furnace, and determining the upper side of the cohesive zone from the actual measured values of gas/solid temperature and gas composition obtained from the sondes. and the lower position, and so that the position of the cohesive zone occupies the optimum position for blast furnace operation.
This method is characterized by controlling the distribution of the ratio of ore layer thickness to coke layer thickness in the radial direction of the blast furnace. The method of the present invention will be explained in detail below with reference to the drawings.

第1図は本発明の説明図で、■は高炉、2はその炉腹部
、3は炉腹部から炉内に挿入したゾンデで、ガス濃度測
定機構10およびガス・固体温度測定機構11と接続す
る。4は融着帯、5はその上側、6は下側である。7は
炉頂から装入されたコークス層、8は鉱石層、9は羽口
である。12は前記ガス濃度測定機構10およびガス・
固体温度測定機構11からの測定値から融着帯形状を推
定するための演算装置、13は該演算装置12からの出
力により鉱石、コークス比の分布を設定する設定機構(
以下0/C分布設定機構という)、14は該設定機構1
3により作動を制御される原料装入制御装置である。
FIG. 1 is an explanatory diagram of the present invention, where ■ is a blast furnace, 2 is a blast furnace, and 3 is a sonde inserted into the furnace from the furnace belly, which is connected to a gas concentration measuring mechanism 10 and a gas/solid temperature measuring mechanism 11. . 4 is a cohesive zone, 5 is an upper side thereof, and 6 is a lower side thereof. 7 is a coke layer charged from the top of the furnace, 8 is an ore layer, and 9 is a tuyere. 12 is the gas concentration measuring mechanism 10 and the gas concentration measuring mechanism 10;
A calculation device for estimating the shape of the cohesive zone from the measured value from the solid temperature measuring mechanism 11, and a setting mechanism 13 for setting the distribution of ore and coke ratios based on the output from the calculation device
(hereinafter referred to as 0/C distribution setting mechanism), 14 is the setting mechanism 1
This is a raw material charging control device whose operation is controlled by 3.

本発明方法により融着帯の位置を制御するには、高炉1
の炉腹部2あるいはそれ以下の任意の高さに水平あるい
は傾斜させて1個または複数個のゾンデ3を炉内に挿入
する。このゾンデは挿入された軌跡の任意の位置におけ
るガス・固体温度およびCO,CO2,H2,H2O,
N2等のガス濃度を測定できるので、これらの測定結果
は、ガス濃度測定機構10、ガス・固体温度測定機構1
1を経て融着帯形状を推定するための演算装置12に送
られ、該装置により後述する融着帯形状の推定が行われ
る。さらにその結果に基づきO/C分布設定機構13に
よって鉱石、コークスの装入量分析の態様が決定され、
その結果原料装入制御装置が動作し、炉頂における装入
物の半径方向の層厚分布が制御される。従って現時点の
操業条件に最も適合した能率の良い融着帯形状を作り、
円滑な高炉操業を実現させることができる。
In order to control the position of the cohesive zone by the method of the present invention, the blast furnace 1
One or more probes 3 are inserted into the reactor horizontally or inclined at an arbitrary height of the reactor belly 2 or lower. This sonde detects the gas/solid temperature at any position of the inserted trajectory, CO, CO2, H2, H2O,
Since the concentration of gases such as N2 can be measured, these measurement results can be obtained using the gas concentration measurement mechanism 10 and the gas/solid temperature measurement mechanism 1.
1, the data is sent to an arithmetic unit 12 for estimating the cohesive zone shape, and the cohesive zone shape is estimated by the device, which will be described later. Further, based on the results, the O/C distribution setting mechanism 13 determines the mode of analysis of the amount of ore and coke charged,
As a result, the raw material charging control device operates, and the radial layer thickness distribution of the charge at the top of the furnace is controlled. Therefore, we create an efficient cohesive zone shape that best suits the current operating conditions.
Smooth blast furnace operation can be realized.

次に本発明における融着帯位置の推定方法について説明
する。最初に融着帯近傍の温度分布・還元率分布を推定
する方法について説明する。
Next, a method for estimating the cohesive zone position in the present invention will be explained. First, a method for estimating the temperature distribution and reduction rate distribution near the cohesive zone will be explained.

まず高炉内の高さ方向、半径方向を、−辺がDLの微小
長さの正方格子で分割する。各格子点上ではガスの流速
U、化学反応による反応量kc、還元率RR1固体の降
下速度Us、ガス濃度F1ガス温度Tg、固体温度Ts
が計算されるしくみを有している。
First, the inside of the blast furnace is divided in the height direction and the radial direction by a square lattice whose negative side has a minute length of DL. On each grid point, gas flow rate U, reaction amount kc due to chemical reaction, reduction rate RR1 solid fall rate Us, gas concentration F1 gas temperature Tg, solid temperature Ts
It has a mechanism for calculating.

ガス温度Tgと固体温度Tsは熱収支から次の様に表わ
すことができる。
The gas temperature Tg and the solid temperature Ts can be expressed from the heat balance as follows.

蓄熱速度=バルクの流れによる(入熱−出熱)速度十温
度勾配にもとづく伝熱速度十反 応熱による発熱(又は吸熱)速度十他 相から(また他相への)伝熱速度十熱 損失 と表現できる。これから、モデルを定常状態と考え 蓄熱速度=0 として求めた伝熱の基礎式(1)と(2)を用い−Qr
(1−η) ha (Tg −Ts ) 二 〇                      
  ・・・川(1)固体温度の基礎式 %式%) r:半径方向距離(m)、Z:高さ方向距離(m) 、
 ha:熱伝達係数(kcal/ cd−s ・’C)
添字 “g”:ガス “S”;固体 “r”:半径方向
 “Z”:高さ方向 ガス濃度分布Fに関する基礎方程式は位置の関数ヒして
物質収支から(3)〜(7)式のように表わされる。
Heat storage rate = (heat input - heat output) rate due to bulk flow; heat transfer rate based on temperature gradient; heat generation (or heat absorption) rate due to reaction heat; heat transfer rate from (and to) other phases; heat loss; It can be expressed as From now on, assuming that the model is in a steady state and using the basic heat transfer equations (1) and (2) obtained with the heat storage rate = 0, -Qr
(1-η) ha (Tg -Ts) 2 0
... River (1) Basic formula for solid temperature % formula %) r: Radial distance (m), Z: Height distance (m),
ha: Heat transfer coefficient (kcal/cd-s ・'C)
Subscript “g”: gas “S”; solid “r”: radial direction “Z”: height direction The basic equation for gas concentration distribution F is a function of position and is calculated from mass balance by Equations (3) to (7). It is expressed as follows.

・・・・・・(3) ・・・・・・(4) ・・・・・・(5) ・・・・・・(6) Gr、Gz、Gは計算されたガスの質量速度のr方向、
2方向の成分と絶対値、FCO=FN2はMOL分率で
表わしたガス濃度である。
・・・・・・(3) ・・・・・・(4) ・・・・・・(5) ・・・・・・(6) Gr, Gz, and G are the calculated gas mass velocity. r direction,
The components in two directions and the absolute value, FCO=FN2, are gas concentrations expressed in MOL fraction.

FRCO−FRN2 S反応による単位体積当りのガス
量の増分(mol/ g bed−s )TFRS反応
による単位体積当りの全(Total)ガス量の増分(
mol/ rr? bed −s )TVML ;ガス
の全MOL流量 (mol/rd −s) dTVML ;ガス、の全MOL流量の増分(+nol
/ボ・S) 次に各位置における還元率は固体の流下速度Usr。
Increment in gas amount per unit volume due to FRCO-FRN2 S reaction (mol/g bed-s) Increment in total gas amount per unit volume due to TFRS reaction (
mol/rr? bed -s ) TVML ; Total MOL flow rate of gas (mol/rd -s) dTVML ; Increment of total MOL flow rate of gas (+nol
/Bo・S) Next, the reduction rate at each position is the solid flow rate Usr.

Uszと流下方向に関係する。鉄鉱石の還元は各還元段
階毎にヘマタイトからマグネタイト(RRI)。
It is related to Usz and the flow direction. Iron ore is reduced from hematite to magnetite (RRI) at each reduction stage.

マグネタイトからウスタイト(RR2)、ウスタイトか
ら鉄(RR3)の還元率として(8)〜もの式で表わさ
れる。
The reduction rate from magnetite to wustite (RR2) and from wustite to iron (RR3) is expressed by the following equations (8).

U Srl U szは固体流れモデルから求まる各位
置の固体の速度成分(m/s)である。■1〜V4は1
コ粒子の各段階毎の反応速度(mol Co/ s・コ
、 mol H2/s ・コ)である。
U Srl U sz is the velocity component (m/s) of the solid at each position found from the solid flow model. ■1~V4 is 1
This is the reaction rate (mol Co/s·co, mol H2/s·co) of each stage of coparticles.

Woは一粒子の重量(g/コ) +  dog−do4
は各還元段階の鉱石の被還元酸素量(gmolo 2 
/ g )である。鉱石の全還元率(RR)は(11)
式で表わされる。
Wo is the weight of one particle (g/co) + dog-do4
is the amount of reduced oxygen in the ore at each reduction stage (gmolo 2
/g). The total reduction rate (RR) of ore is (11)
It is expressed by the formula.

RR=0.111 RRI +0.1871RR,2+
0.7017RR3・・・・・・(11) 各位置における還元率の計算は炉頂より固体の流下方向
に沿って(8)〜(11)式を積分することにより求め
られる。
RR=0.111 RRI +0.1871RR,2+
0.7017RR3 (11) The reduction rate at each position is calculated by integrating equations (8) to (11) along the direction of solid flow from the top of the furnace.

たとえば格子点上のある点のガス・固体温度はus R
R% Us、kc、Fなどによって影響を受けるから、
これらは連立させて計算される。
For example, the gas/solid temperature at a certain point on the lattice point is us R
Because it is affected by R% Us, kc, F, etc.
These are calculated simultaneously.

ゾンデによって測定された温度情報、ガス濃度情報を入
力条件として利用してこの実測値に最適な(誤差を最小
にする)近傍の温度分布、ガス濃度分布を得る計算方法
は次の通りである。
A calculation method for obtaining the optimal temperature distribution and gas concentration distribution in the vicinity of the actual measurement value (minimizing the error) using the temperature information and gas concentration information measured by the sonde as input conditions is as follows.

l)まず対象とするゾンデを選択する。これは炉腹部以
下に設置された単数あるいは複数個のゾンデである。
l) First, select the target sonde. This is one or more sondes installed below the belly of the reactor.

2)各ゾンデの炉内計測点に最も近い格子点を決める。2) Determine the grid point closest to the in-furnace measurement point of each sonde.

3)各格子点上の温度は熱伝導、粒子流体間の対流伝熱
、反応熱、顕熱変化等を考慮した局所の熱収支から展開
される微分方程式を差分に変換し、緩和法を用いた繰り
返しの収束計算によって解かれるが、格子点が計測点と
一致したときに微分方程式系の計算ではなしに実測値を
与える。他の格子点では熱収支の計算を行なっているか
ら、実測温度の影響が繰返しのたびにしだいに周囲に拡
がり、最終的には実測点近傍では熱収支を考慮し、なお
かつ実測値に最も適合したガス・固体温度分布に収束さ
せることができる。
3) The temperature at each grid point is determined by converting the differential equation developed from the local heat balance that takes into account heat conduction, convective heat transfer between particle fluids, reaction heat, sensible heat changes, etc. into differences, and using the relaxation method. The problem is solved by repeated convergence calculations, but when the grid points match the measurement points, the actual value is given instead of the calculation of the differential equation system. Since the heat balance is calculated at other grid points, the influence of the actual measured temperature gradually spreads to the surrounding area each time it is repeated, and in the end, the heat balance is taken into account near the actual measurement point, and the result is the most suitable for the actual measurement value. It is possible to converge to the gas/solid temperature distribution.

次に推定したガス・固体温度分布、還元率分布から融着
帯の位置を推定する方法について説明する。最初に説明
したように、融着帯とは鉱石が軟化収縮している領域と
して定義される。鉱石が軟化収縮を起こす条件は第5図
に示すように固体温度、層還元率と鉱石の種類によって
決まる。層還元率と鉱石の種類とから軟化開始温度(T
 ms)と熔は落ち温度(Tmd)が決まる。融着帯の
近傍の格子点上の温度が与えられたとき、その温度が両
者の間にあるかどうかを判定し、もし間に有れば融着帯
と定義することが出来る。
Next, a method for estimating the position of the cohesive zone from the estimated gas/solid temperature distribution and reduction rate distribution will be explained. As explained at the beginning, the cohesive zone is defined as the area where the ore softens and contracts. The conditions under which the ore undergoes softening and shrinkage are determined by the solid temperature, layer reduction rate, and type of ore, as shown in Figure 5. The softening start temperature (T
ms) and the falling temperature (Tmd) of the melt. When the temperature on a grid point near the cohesive zone is given, it is determined whether the temperature is between the two, and if it is between the two, it can be defined as a cohesive zone.

焼結鉱に関する軟化開始温度Tmsは還元率RRの関数
として(12)式のように表わすことができる。
The softening start temperature Tms regarding the sintered ore can be expressed as a function of the reduction rate RR as shown in equation (12).

Tm5=1140−153.6 RR+244.7 R
R−(12)また焼結鉱の溶は落ち温度Tmdは(13
) 、  (14)式で表わされる。
Tm5=1140-153.6 RR+244.7 R
R-(12) Also, the melting temperature Tmd of the sintered ore is (13
), expressed by equation (14).

Tmd=129 RR+1291 (0<RR<0.7
)・・・・・・(13) Tmd−230X (RR−0,7) +1381(R
R>0.7)  ・・・・・・(14)もし、融着帯で
あれば格子点上の温度と軟化開始温度の差から融着帯の
収縮率が計算される。焼結鉱の収縮率sRは格子点(I
、J)の固体温度Tsと軟化開始温度Tmsと基準温度
To(=1000℃)で表わされる無次元温度Tの関数
として表わされる。
Tmd=129 RR+1291 (0<RR<0.7
)・・・・・・(13) Tmd-230X (RR-0,7) +1381(R
R>0.7) (14) If it is a cohesive zone, the shrinkage rate of the cohesive zone is calculated from the difference between the temperature on the lattice point and the softening start temperature. The shrinkage rate sR of sintered ore is the lattice point (I
, J) as a function of the dimensionless temperature T expressed by the solid temperature Ts, the softening start temperature Tms, and the reference temperature To (=1000° C.).

無次元温度Tは T=(Ts−Tms)/To   ”・・・・(15)
収縮率SRは SR=0.02−0.2517+26.7T−12,I
T3・・・・・・(16) このようにして融着帯近傍のすべての格子点において融
着帯の判定、温度、収縮率の計算がなされるから、現在
の融着帯の分布を推定することが可能である。
The dimensionless temperature T is T=(Ts-Tms)/To''...(15)
Shrinkage rate SR is SR=0.02-0.2517+26.7T-12,I
T3... (16) In this way, the cohesive zone is determined, the temperature, and the shrinkage rate are calculated at all grid points near the cohesive zone, so the current distribution of the cohesive zone can be estimated. It is possible to do so.

実際、融着帯の形状推定は実測点が融着帯に近ければ近
いほど推定精度が向上することは言うまでもない。
In fact, it goes without saying that the accuracy of estimating the shape of the cohesive zone improves as the actual measurement point approaches the cohesive zone.

つぎに融着帯形状を制御するO/C分布の制御方法につ
いて説明する。O/C分布が融着帯形状に影響を及ぼす
理由はガスの通気性、ガス顕熱の伝達性、反応の進行度
、被還元酸素の量の半径方向の分布によって説明される
Next, a method of controlling the O/C distribution to control the shape of the cohesive zone will be explained. The reason why the O/C distribution influences the cohesive zone shape is explained by the gas permeability, the transferability of gas sensible heat, the degree of progress of the reaction, and the radial distribution of the amount of oxygen to be reduced.

鉱石層はコークス層に(らべて粒子径および層の空間率
が小さいので高炉の半径方向のうちで鉱石層厚が相対的
に厚い部分ではガスの通気性は悪く、そのためその部分
を流れるガス流速、ガス流量が低下する。ガス流量の低
下はいろいろな面に影響を及ぼす。伝熱に関して単位断
面積を流れるガス顕熱量の低下、固体への伝熱性の悪化
をもたらす。反応に関しては、鉱石を還元するのに充分
なガス量が供給されないために還元ガスの濃度が低下し
、還元推進力が弱まることから、還元率の相対的低下を
もたらす。
The ore layer has a smaller particle size and layer void ratio than the coke layer, so gas permeability is poor in areas where the ore layer is relatively thick in the radial direction of the blast furnace. The flow rate and gas flow rate decrease.A decrease in gas flow rate affects various aspects.In terms of heat transfer, it causes a decrease in the amount of sensible heat of the gas flowing through a unit cross-sectional area, and worsens heat transfer to solids.In terms of reactions, Since a sufficient amount of gas is not supplied to reduce the gas, the concentration of the reducing gas decreases, and the driving force for reduction weakens, resulting in a relative decrease in the reduction rate.

以上のことから半径方向でO/Cの高い部分は還元率の
低下、ガス・固体温度の低下をもたらす。
From the above, a portion with high O/C in the radial direction brings about a decrease in the reduction rate and a decrease in gas/solid temperature.

したがってたとえば中心部で高い融着帯を実現するため
には炉下部の中心部に充分な熱を供給することが必要で
ある。そのためには炉中心部にガスの供給を増す操作す
なわち中心部のO/Cを小さくすることが必要である。
Therefore, for example, in order to achieve a high cohesive zone in the center, it is necessary to supply sufficient heat to the center of the lower part of the furnace. For this purpose, it is necessary to increase the supply of gas to the center of the furnace, that is, to reduce the O/C in the center.

また周辺部で高い融着帯を実現するためには同様な理由
から周辺部の0/Cを小さくする操作をすればよい。
Moreover, in order to realize a high cohesive zone in the peripheral part, the 0/C of the peripheral part may be reduced for the same reason.

(実施例) 以下にこの発明の実施例を示す。(Example) Examples of this invention are shown below.

第2図(B)は高炉の炉腹部から25°の角度で炉内に
4mまで挿入することができる炉腹部ゾンデにファイバ
ースコープを搭載し、各位置における炉内状況を直接観
察したものである。図中のトンネルの部分は融着帯に相
当する。このケースでは融着帯を貫通しているケースで
ある。
Figure 2 (B) shows a direct observation of the conditions inside the blast furnace at each position using a fiberscope mounted on a blast furnace probe that can be inserted up to 4 meters into the blast furnace at an angle of 25 degrees. . The tunnel portion in the figure corresponds to the cohesive zone. In this case, the cohesive zone has been penetrated.

第2図(A)は与えられたO/C分布で計算によって推
定した融着帯形状とトンネル部の位置との比較を示して
いる。ファイバースコープによる直接観察と推定結果と
は良好な一致を示している。
FIG. 2(A) shows a comparison between the cohesive zone shape estimated by calculation with the given O/C distribution and the position of the tunnel portion. Direct observation using a fiberscope and the estimated results show good agreement.

第3図は炉腹部ゾンデによって得られた各部の温度を入
力条件にしてその近傍の温度を推定した例である。この
図では同時に炉腹より上部に取り付けられたゾンデの情
報も入力している。黒塗りの位置は実測値を示している
。第2図(A)の融着帯形状はこの温度分布がもとにな
っており、周囲の温度もこの実測値によってほぼ妥当な
値に収束していることがわかる。
FIG. 3 is an example of estimating the temperature in the vicinity using the temperature of each part obtained by the furnace belly sonde as an input condition. In this figure, information on the sonde installed above the reactor belly is also entered at the same time. Black positions indicate actual measured values. The shape of the cohesive zone in FIG. 2(A) is based on this temperature distribution, and it can be seen that the surrounding temperature also converges to a substantially appropriate value based on this actual measurement value.

第4図の(alは中心に低いO/Cのもとて操業した時
の実測したO/C分布(層厚分布)と炉腹部ゾンデから
測定された固体温度情報をもとにして推定した融着帯形
状である。この場合中心部で鉱石層が薄い分だけ周辺部
が厚くなっており、その結果、融着帯の周辺部が燃焼帯
に入りこむという悪い状況を示している。炉腹部におい
て測定された温度も相対的に低く不安定な炉況であった
Figure 4 (al) is estimated based on the actually measured O/C distribution (layer thickness distribution) during operation with low O/C in the center and the solid temperature information measured from the furnace belly sonde. It has a cohesive zone shape.In this case, the thinner ore layer at the center is thicker at the periphery, and as a result, the periphery of the cohesive zone enters the combustion zone, indicating a bad situation. The temperature measured in the reactor was also relatively low and the furnace conditions were unstable.

これに対し、O/C分布の適正な制御により半径方向の
O/Cの層厚分布を比較的均一にした第4図(blでは
ガス流分布の均一な炉況が実現し炉腹部ゾンデの実測固
体温度も上昇し、狙った融着帯形状を実現することが出
来た。
On the other hand, in Figure 4 (bl), where the O/C layer thickness distribution in the radial direction is made relatively uniform by proper control of the O/C distribution, a furnace condition with a uniform gas flow distribution is achieved, and the The measured solid temperature also increased, and we were able to achieve the desired cohesive zone shape.

(発明の効果) 融着帯の形状安定効果は溶銑中のSiの低下、またSi
濃度のばらつきに現れる。この発明により、溶銑中の5
i−0,1%の減少を示し、また炉況の安定効果により
高炉の燃料比3 kg/ tpigの減少をもたらした
(Effect of the invention) The effect of stabilizing the shape of the cohesive zone is due to the reduction of Si in hot metal and the effect of Si
This appears in variations in concentration. With this invention, 5 in hot metal
It showed a decrease of i-0.1%, and the stabilization effect of the furnace condition resulted in a decrease of the blast furnace fuel ratio by 3 kg/tpig.

なお、きめ細かいO/C分布の制御による安定した融着
帯形状の管理によって増産、減産に移行する不安定な局
面においても安定した高炉操業を維持することが出来た
Furthermore, by managing the stable cohesive zone shape through fine-grained O/C distribution control, it was possible to maintain stable blast furnace operation even in the unstable phase of increasing or decreasing production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は信号の処理フロー、制御の方法等本発明の全体
構成を示す説明図、 第2図は本発明の実施例を示し、第2図(A)は実施し
た高炉の炉腹部に設置されたゾンデの位置とファイバー
スコープによって観察された融着帯の位置および本発明
によって推定した融着帯形状を示す図、第2図(B)は
ファイバースコープによって観察された炉装入物の分布
状態と観察位置との対比を示す説明図、 第3図は本発明によって計算された炉内各位置における
ガス温度と実測点において測定されたガス温度を示すグ
ラフ、 第4図は本発明によって070分布を制御し、炉腹部に
設置されたゾンデの計測情報を用いて推定したあとの二
種類の融着帯形状を比較して示す図、第5図は本発明に
おける融着帯形状推定方法を示す説明図である。 出 願 人  新日本!!鐵株式会社 代理人弁理士  青 柳    稔 (A) 第 (B) 2図
Fig. 1 is an explanatory diagram showing the overall configuration of the present invention, including signal processing flow and control method. Fig. 2 shows an embodiment of the present invention, and Fig. 2 (A) shows the installation in the belly of the blast furnace in which it was implemented. Figure 2 (B) shows the position of the sonde, the position of the cohesive zone observed by the fiberscope, and the shape of the cohesive zone estimated by the present invention. Figure 2 (B) shows the distribution of the furnace charge observed by the fiberscope. An explanatory diagram showing the comparison between the state and the observation position. Fig. 3 is a graph showing the gas temperature at each position in the furnace calculated by the present invention and the gas temperature measured at the actual measurement point. Fig. 4 is a graph showing the gas temperature at each position in the furnace calculated by the present invention. Figure 5 shows a comparison of two types of cohesive zone shapes after controlling the distribution and estimating them using measurement information from a sonde installed in the reactor belly. FIG. Applicant: New Japan! ! Tetsu Corporation Patent Attorney Minoru Aoyagi (A) Figure 2 (B)

Claims (1)

【特許請求の範囲】[Claims] 高炉の炉腹部あるいはそれ以下の部分から炉内に1個ま
たは複数個のゾンデを挿通し、該ゾンデから得られるガ
ス・固体温度、ガス組成の実測値から融着帯の上側およ
び下側の位置を求めるとともに、該融着帯の位置が高炉
操業上最適な位置を占めるように、高炉の半径方向の鉱
石層厚とコークス層厚の比の分布および粒度分布を制御
することを特徴とする高炉融着帯位置の制御方法。
One or more sondes are inserted into the blast furnace from the belly or lower part of the blast furnace, and the upper and lower positions of the cohesive zone are determined from the actual measured values of gas/solid temperature and gas composition obtained from the sonde. and controlling the distribution of the ratio of the ore layer thickness to the coke layer thickness and the particle size distribution in the radial direction of the blast furnace so that the position of the cohesive zone occupies an optimal position for blast furnace operation. Method for controlling cohesive zone position.
JP21773485A 1985-09-30 1985-09-30 Method for controlling position of welded zone of blast furnace Granted JPS6277413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21773485A JPS6277413A (en) 1985-09-30 1985-09-30 Method for controlling position of welded zone of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21773485A JPS6277413A (en) 1985-09-30 1985-09-30 Method for controlling position of welded zone of blast furnace

Publications (2)

Publication Number Publication Date
JPS6277413A true JPS6277413A (en) 1987-04-09
JPS6361367B2 JPS6361367B2 (en) 1988-11-29

Family

ID=16708910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21773485A Granted JPS6277413A (en) 1985-09-30 1985-09-30 Method for controlling position of welded zone of blast furnace

Country Status (1)

Country Link
JP (1) JPS6277413A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333505A (en) * 1991-01-18 1992-11-20 Nippon Steel Corp Method for measuring starting line of dripping in softened fusing zone in blast furnace with radioisotope
JP2002276930A (en) * 2001-03-22 2002-09-25 Sumitomo Metal Ind Ltd Method for estimating temperature of heat exchange region

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333505A (en) * 1991-01-18 1992-11-20 Nippon Steel Corp Method for measuring starting line of dripping in softened fusing zone in blast furnace with radioisotope
JP2002276930A (en) * 2001-03-22 2002-09-25 Sumitomo Metal Ind Ltd Method for estimating temperature of heat exchange region
JP4622128B2 (en) * 2001-03-22 2011-02-02 住友金属工業株式会社 Temperature estimation method for heat exchange area

Also Published As

Publication number Publication date
JPS6361367B2 (en) 1988-11-29

Similar Documents

Publication Publication Date Title
JP3033466B2 (en) Blast furnace operation method
JP6248550B2 (en) How to determine blast furnace operating conditions
US4197495A (en) System for controlling the charge distribution and flow in blast furnace operations using magnetic sensors positioned within the charge
JPS6277413A (en) Method for controlling position of welded zone of blast furnace
US4150973A (en) Method of controlling molten steel temperature and carbon content in oxygen converter
JP2727563B2 (en) Blast furnace operation method
JPH0689393B2 (en) Method for estimating molten iron C concentration in iron-containing cold material melting method
JPS6277414A (en) Operating method for blast furnace
JP2897363B2 (en) Hot metal production method
CN104805240A (en) Method for judging liquid permeability of lower part of blast furnace
JPS6119712A (en) Detecting device of thickness of layer of charged burden
JPH0625368B2 (en) Blast furnace operation method
JPS5839710A (en) Operating method for blast furnace
JPS6115905A (en) Method for operating blast furnace
JPH0627284B2 (en) Blast furnace operation method
JPS61117208A (en) Operating method of blast furnace
JPS6191307A (en) Detection of descending of charge in blast furnace
JPH06299215A (en) Operation of blast furnace
RU2025495C1 (en) Method to check heat exchange in a blast furnace
JPH05239522A (en) Production of molten iron
JPS621809A (en) Method for operating blast furnace
JPH0417607A (en) Method for operating blast furnace
JPH02190412A (en) Method for operating smelting reduction furnace
JP2006342382A (en) Method for evaluating gas permeability of lower part in blast furnace, and blast furnace operating method
CN116745436A (en) Method and device for detecting residual quantity of liquid and melt and operation method of vertical furnace

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term