JP2006342382A - Method for evaluating gas permeability of lower part in blast furnace, and blast furnace operating method - Google Patents

Method for evaluating gas permeability of lower part in blast furnace, and blast furnace operating method Download PDF

Info

Publication number
JP2006342382A
JP2006342382A JP2005167833A JP2005167833A JP2006342382A JP 2006342382 A JP2006342382 A JP 2006342382A JP 2005167833 A JP2005167833 A JP 2005167833A JP 2005167833 A JP2005167833 A JP 2005167833A JP 2006342382 A JP2006342382 A JP 2006342382A
Authority
JP
Japan
Prior art keywords
blast furnace
gas
furnace
gas flow
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005167833A
Other languages
Japanese (ja)
Inventor
Yasuhei Nouchi
泰平 野内
Michitaka Sato
道貴 佐藤
Tatsuro Ariyama
達郎 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005167833A priority Critical patent/JP2006342382A/en
Publication of JP2006342382A publication Critical patent/JP2006342382A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Blast Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating the gas permeability of the lower part in a blast furnace where the actual gas flow rate of the wall part in a blast furnace can be measured, thus the gas permeability of the lower part in the blast furnace can be correctly evaluated, and to provide a blast furnace operating method using the method for evaluating the gas permeability of the lower part in a blast furnace. <P>SOLUTION: A method for measuring a gas flow rate characterized in that a tracer gas blown from a blast tuyere in a blast furnace is detected at a position in the upper part of the blast tuyere, and, based on the time from the blowing of the tracer gas to its detection, the gas flow rate in the furnace is measured is used. Desirably, the detection of the tracer gas is performed at a position below the bosh of the blast furnace, the gas permeability at the lower part of the blast furnace is evaluated using the gas flow rate in the furnace measured using the method for measuring a gas flow rate, and a difference in pressure between the blast tuyere measured with a manometer installed in the body of the blast furnace and the tracer gas detection position, and operating conditions are changed using the method for evaluating the gas permeability of the lower part in a blast furnace. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は高炉下部の通気性評価方法と、これを用いた高炉操業方法に関する。   The present invention relates to a method for evaluating the permeability of the lower part of a blast furnace and a blast furnace operating method using the same.

高炉における生産性向上は、コスト削減だけでなく二酸化炭素削減からも重要な課題である。図3に高炉の断面の概略図を示す。図3(a)において、高炉10の上部は鉱石1とコークス2との交互装入により形成された塊状帯3であり、下部はコークス充填層4からなる鉱石の融液が滴下する滴下帯5である。6は融着層である。また図3(b)は図1(a)の羽口7とレースウェイ8付近の拡大図である。高炉10は巨大な向流充填層反応容器であり、反応効率の面からは全断面積で均一な反応が望ましい。しかし、コークス充填層4が容器内を降下する場合、炉壁による整列効果により炉壁部には空隙率が大きくガスが流れやすい空隙大部分9が形成され、さらに高炉10は反応ガスである熱風を炉外周部から羽口7を通じて吹き込む構造となっているため、炉壁部をガスが選択的に流れやすい特性(炉壁流化)がある。   Improving productivity in the blast furnace is an important issue not only from cost reduction but also from carbon dioxide reduction. FIG. 3 shows a schematic diagram of a cross section of the blast furnace. In FIG. 3A, the upper part of the blast furnace 10 is a massive band 3 formed by alternately charging ores 1 and coke 2, and the lower part is a dripping band 5 where a melt of ore comprising a coke packed bed 4 is dripped. It is. Reference numeral 6 denotes a fusion layer. FIG. 3B is an enlarged view of the vicinity of the tuyere 7 and the raceway 8 of FIG. The blast furnace 10 is a huge counter-current packed bed reaction vessel, and a uniform reaction is desirable over the entire cross-sectional area in terms of reaction efficiency. However, when the coke packed bed 4 descends in the vessel, a large portion of the void 9 having a high porosity and easy gas flow is formed in the furnace wall due to the alignment effect by the furnace wall, and further, the blast furnace 10 is hot air that is a reactive gas. Is blown from the outer periphery of the furnace through the tuyere 7, so that the gas easily flows selectively through the furnace wall (furnace wall flow).

上記の炉壁流化は、鉄鉱石が溶け落ちる以前の領域である塊状帯3では、鉱石1とコークス2の層厚比や鉱石粒径分布などを半径方向で制御(装入物分布制御)することによりある程度の補正が可能であるが、コークスしか存在しない下部の領域である滴下帯5での炉壁流化は不可避である。そこで送風ガス速度(羽口前ガス速度)を上昇させ(国内高炉では通常150〜250m/s)コークスの存在しない領域であるレースウェイ8を介して炉中心部方向に極力ガスを押し込む構造としている。十分な送風機能力と熱風炉耐圧があれば羽口7の径を絞ることにより羽口前速度の上昇は理論上可能であるが、その場合はレースウェイ8内を旋回するコークスの粉化が増大してしまい、滴下帯5の通気悪化による炉壁流化や生産減が発生する。そのため高強度コークスの使用と高羽口ガス速度上昇の併用が高生産性には不可欠である。   The above furnace wall fluidization controls the layer thickness ratio of the ore 1 and coke 2 and the ore particle size distribution in the radial direction in the massive zone 3 before the iron ore melts down (charge distribution control). However, it is inevitable that the furnace wall be fluidized in the dripping zone 5, which is the lower region where only coke is present. Therefore, the blast gas velocity (gas velocity in front of the tuyere) is increased (usually 150 to 250 m / s in domestic blast furnaces), and the gas is pushed as far as possible toward the center of the furnace through the raceway 8 where coke does not exist. . It is theoretically possible to increase the speed of the tuyere by reducing the diameter of the tuyere 7 if there is sufficient blowing function and hot-blast furnace pressure resistance, but in this case, the coke powder turning in the raceway 8 will increase in powder. As a result, furnace wall flow and production decrease due to deterioration in ventilation of the dripping zone 5 occur. Therefore, the combined use of high strength coke and high tuyere gas velocity is essential for high productivity.

コークス強度は事前に測定可能であり、冷間強度や反応後強度を指標とした操業も行なわれている。しかし高炉内におけるコークス粉化機構は複雑であることから炉下部通気性をこれらの強度のみに基づいて制御することは困難であり、コークス強度の下限を設定して操業しても、高炉下部滴下帯5の通気性悪化とそれに伴う炉壁流化を完全に回避することは不可能である。滴下帯5の通気性が突然悪化すると、圧力損失によるコークスと溶融滴下物の吹き上げを引き起こし操業不調の原因となるため、滴下帯5の通気性は常時監視する必要がある。   Coke strength can be measured in advance, and operations using cold strength and post-reaction strength as an index are also performed. However, because the coke pulverization mechanism in the blast furnace is complex, it is difficult to control the lower part air permeability based only on these strengths. It is impossible to completely avoid the deterioration of the permeability of the belt 5 and the accompanying flow of the furnace wall. If the air permeability of the dripping zone 5 suddenly deteriorates, the coke and molten dripping material are blown up due to pressure loss, causing malfunction of the operation. Therefore, it is necessary to constantly monitor the air permeability of the dripping zone 5.

炉下部通気性を評価する方法として、炉下部の圧力測定結果を用いる手法が知られており、炉下部の通気性が悪化したと思われる場合には一時的な減産(送風量減)を行うことで操業不調の発生を回避することができる。また、通気性の悪化が頻発する場合は、コークス強度下限値の引き上げをおこなうことで対応できるが、この場合にはコストの上昇となる(例えば、特許文献1参照。)。
特開2003−306708号公報
A method using pressure measurement results at the lower part of the furnace is known as a method for evaluating the lower part breathability. If it is thought that the lower part breathability has deteriorated, temporary production reduction (decrease in air flow) is performed. Therefore, it is possible to avoid the occurrence of malfunctions. Further, when the air permeability frequently deteriorates, it can be dealt with by raising the coke strength lower limit value, but in this case, the cost increases (see, for example, Patent Document 1).
JP 2003-306708 A

しかし、炉下部の圧力測定結果を用いる手法では、炉下部の通気性の正確な評価が困難であるという問題がある。電気抵抗値算出には電圧と電流値の測定が必要であるように、正確な通気抵抗測定にはガス流速と圧力損失(圧力差)の両方の測定値が必要である。従来技術では炉壁部圧力損失のみ実測値を用い、炉壁部のガス流速については送風量からの推定値を用いていた。しかしレースウェイからのガスの分配は不均一かつ不安定であるうえ、ガス温度についても推定値を用いざるを得ないため、炉壁部の実際のガス流速は推定値とは異なるものであると考えられる。   However, the method using the pressure measurement result at the lower part of the furnace has a problem that it is difficult to accurately evaluate the air permeability at the lower part of the furnace. Just as measurement of electric resistance value requires measurement of voltage and current value, accurate measurement of ventilation resistance requires measurement values of both gas flow velocity and pressure loss (pressure difference). In the prior art, only the measured value of the furnace wall pressure loss was used, and the estimated value from the blown amount was used for the gas flow velocity in the furnace wall. However, the distribution of gas from the raceway is uneven and unstable, and the estimated gas temperature must be used, so the actual gas flow velocity in the furnace wall is different from the estimated value. Conceivable.

したがって本発明の目的は、このような従来技術の課題を解決し、高炉炉壁部の実際のガス流速を測定可能とし、これにより高炉下部の通気性を正確に評価可能な、高炉下部通気性評価方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art and to measure the actual gas flow rate in the blast furnace wall, thereby accurately evaluating the permeability of the lower part of the blast furnace. To provide an evaluation method.

また本発明の他の目的は、上記の高炉下部通気性評価方法を用いた高炉操業方法を提供することにある。   Another object of the present invention is to provide a blast furnace operating method using the above blast furnace lower air permeability evaluation method.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)、高炉の送風羽口より吹込まれたトレーサーガスを前記送風羽口上部位置で検出し、前記トレーサーガスの吹込みから検出までの時間に基づき炉内ガス流速を測定することを特徴とするガス流速の測定方法。
(2)、トレーサーガスの検出を高炉の炉腹以下の位置で行なうことを特徴とする(1)に記載のガス流速の測定方法。
(3)、(1)または(2)に記載のガス流速の測定方法を用いて測定した炉内ガス流速と、高炉の炉体に設置した圧力計により測定した送風羽口とトレーサーガス検出位置との圧力差を用いて高炉下部の通気性を評価することを特徴とする高炉下部通気性評価方法。
(4)、(3)に記載の高炉下部通気性評価方法を用いて操業条件を変更することを特徴とする高炉操業方法。
The features of the present invention for solving such problems are as follows.
(1) The tracer gas blown from the blower tuyere of the blast furnace is detected at the upper position of the blower tuyere, and the gas flow rate in the furnace is measured based on the time from the blowing of the tracer gas to the detection. To measure the gas flow rate.
(2) The method for measuring a gas flow rate according to (1), wherein the tracer gas is detected at a position below the blast furnace.
(3) In-furnace gas flow rate measured using the gas flow rate measurement method described in (1) or (2), and a blower tuyere and tracer gas detection position measured by a pressure gauge installed in the furnace body of the blast furnace The blast furnace lower part breathability evaluation method characterized by evaluating the blast furnace lower part breathability using a pressure difference with the blast furnace.
(4) A blast furnace operating method characterized by changing operating conditions using the blast furnace lower part air permeability evaluation method described in (3).

本発明によれば、炉下部の通気性悪化を正確に検知可能となり、通気性悪化に起因する操業不調をほぼ確実に回避可能となる。また、高強度を有する過剰に高品質のコークスを使用する必要がなくなり溶銑コスト削減が可能となる。さらに増産期には炉下部通気性に余裕がある時点で生産量を増加させる操業が可能となり、トラブルの発生無く高炉の生産性を向上させることができる。   According to the present invention, it becomes possible to accurately detect the deterioration of the air permeability in the lower part of the furnace, and it is possible to almost certainly avoid the malfunction of operation due to the deterioration of the air permeability. Further, it is not necessary to use an excessively high quality coke having a high strength, and the hot metal cost can be reduced. In addition, during the production increase period, it becomes possible to increase the production volume when there is room in the furnace bottom air permeability, and the productivity of the blast furnace can be improved without any trouble.

本発明者らは高炉下部の通気性を正確に評価するためには、炉壁部分のガス流速の実測が不可欠であると考えた。そして、羽口からトレーサーガスを吹き込み、ガス吹込み位置よりも上部でそのガスを検出し、吹込みガスを検出するまでに要する時間(採取した時間遅れ)から炉壁ガス流速を測定可能であることを見出し、また、測定した炉壁ガス流速を用いて炉下部通気性を示す通気性指数を計算し、計算の結果に基づいて、高炉に装入する原料の品質や高炉操業条件を操作する高炉操業方法を見出して、本発明を完成した。本発明は、高炉の送風羽口より吹込まれたトレーサーガスを前記送風羽口上部位置で検出し、前記トレーサーガスの吹込みから検出までの時間に基づき炉内ガス流速を測定することを特徴とするガス流速の測定方法である。トレーサーガスの検出を高炉の炉腹以下の位置で行なうことが好ましい。また、上記のガス流速の測定方法を用いて測定した炉内ガス流速と、高炉の炉体に設置した圧力計により測定した送風羽口とトレーサーガス検出位置との圧力差を用いて高炉下部の通気性を評価することを特徴とする高炉下部通気性評価方法である。さらに、前記の高炉下部通気性評価方法を用いて操業条件を変更することを特徴とする高炉操業方法である。   The present inventors thought that in order to accurately evaluate the air permeability at the bottom of the blast furnace, actual measurement of the gas flow rate in the furnace wall portion was indispensable. Then, the tracer gas is blown from the tuyere, the gas is detected above the gas blowing position, and the furnace wall gas flow velocity can be measured from the time required to detect the blown gas (collected time delay). The air permeability index indicating the air permeability in the lower part of the furnace is calculated using the measured furnace wall gas flow rate, and the quality of the raw materials charged in the blast furnace and the operating conditions of the blast furnace are controlled based on the calculation result. A blast furnace operation method was found and the present invention was completed. The present invention is characterized in that the tracer gas blown from the blower tuyere of the blast furnace is detected at the upper position of the blower tuyere and the gas flow rate in the furnace is measured based on the time from the blowing of the tracer gas to the detection. This is a method for measuring the gas flow rate. The detection of the tracer gas is preferably performed at a position below the blast furnace belly. In addition, the gas flow rate in the furnace measured using the gas flow rate measurement method described above, and the pressure difference between the blower tuyere and the tracer gas detection position measured by a pressure gauge installed in the furnace body of the blast furnace, It is a blast furnace lower part air permeability evaluation method characterized by evaluating air permeability. Furthermore, the blast furnace operating method is characterized in that the operating conditions are changed using the blast furnace lower air permeability evaluation method.

図面を用いて本発明を説明する。図1は高炉の断面の概略図であり、図1に示すように、炉内ガスをガス採取管11で採取してガス採取管11に接続したガス分析器12によりモニターしながら、トレーサーガス13を羽口7から吹き込み、吹込まれたガスがガス採取管11で採取されるまでの時間(時間遅れ)を測定する。そして、羽口とガス採取管11までの距離と、時間遅れとから炉内ガス流速を計算する。ガス採取管11は高炉の滴下帯5に対応する、高炉の炉腹または朝顔位置に設置することが望ましい。また羽口7とガス採取管11位置との圧力差は、羽口7での圧力損失やレースウェイ8内コークス燃焼による圧力変動が大きいので、送風圧ではなく炉体に圧力計14を設置して、測定した値を使用することが望ましい。トレーサーガス13としては、不活性ガスを用いることが好ましく、ヘリウムガス、アルゴンガス等を用いることが好ましい。また、トレーサーガスは間欠的に吹込むことが好ましい。   The present invention will be described with reference to the drawings. FIG. 1 is a schematic view of a cross section of a blast furnace. As shown in FIG. 1, a tracer gas 13 is collected while a furnace gas is collected by a gas sampling pipe 11 and monitored by a gas analyzer 12 connected to the gas sampling pipe 11. Is blown from the tuyere 7 and the time (time delay) until the blown gas is collected by the gas sampling tube 11 is measured. Then, the gas flow rate in the furnace is calculated from the distance from the tuyere to the gas sampling tube 11 and the time delay. It is desirable to install the gas sampling tube 11 at the blast furnace or morning glory position corresponding to the dripping zone 5 of the blast furnace. In addition, the pressure difference between the tuyere 7 and the gas sampling tube 11 position is greatly affected by pressure loss at the tuyere 7 and coke combustion in the raceway 8, so a pressure gauge 14 is installed in the furnace body instead of the blowing pressure. It is desirable to use the measured value. As the tracer gas 13, it is preferable to use an inert gas, and it is preferable to use helium gas, argon gas, or the like. Moreover, it is preferable to inject tracer gas intermittently.

炉内の通気性を示す通気性指数をガス流速と圧力損失から算出する。通気性指数の算出方法は任意であるが、算出方法は簡便な程望ましく、たとえば、ΔPを圧力差(差圧)、vをガス流速として、従来用いられているK値を改良した、下記式(A)を用いることができる。   The air permeability index indicating the air permeability in the furnace is calculated from the gas flow rate and the pressure loss. Although the calculation method of the air permeability index is arbitrary, the calculation method is preferably as simple as possible. For example, ΔP is a pressure difference (differential pressure), v is a gas flow rate, and the conventionally used K value is improved. (A) can be used.

K’=ΔP/v1.7(kg/cm2)/(m/s)1.7・・・(A)
通気性指数を用いて高炉下部の通気性を評価する。本発明のガス流速の測定方法を用いて算出された通気性指数を用いることで、高炉下部の通気性を正確に評価することができる。
K ′ = ΔP / v 1.7 (kg / cm 2 ) / (m / s) 1.7 (A)
The air permeability at the bottom of the blast furnace is evaluated using the air permeability index. By using the air permeability index calculated using the gas flow rate measuring method of the present invention, the air permeability in the lower part of the blast furnace can be accurately evaluated.

本発明の高炉下部通気性評価方法を用いれば、高炉下部の通気性を正確に評価することができるので、得られた通気性指数に基づいて操業条件を変更して高炉操業を行なうことで、通気性悪化に起因する操業不調をほぼ確実に回避することが可能となる。   By using the blast furnace lower air permeability evaluation method of the present invention, it is possible to accurately evaluate the air permeability of the lower blast furnace, so by changing the operating conditions based on the obtained air permeability index, It is possible to almost certainly avoid malfunctions due to deterioration in air permeability.

内容積4000m3級の高炉において、図1と同様の設備を設置して、通気性の評価を行なった。 In a blast furnace having an internal volume of 4000 m 3, the same equipment as that shown in FIG. 1 was installed and air permeability was evaluated.

当該高炉は通常、コークス比は360kg/t、微粉炭吹き込み量は140kg/t、還元材比は500kg/tで操業を行なうものであり、コークス冷間強度指数は84を下限値として管理しており、炉下部の通気性は炉壁部圧力損失のみを測定して算出したK値を用いてモニターし、K値が上昇した場合は減産を行ない、8700t/dの維持を生産目標としているものであった(従来K値判定)。   The blast furnace is normally operated with a coke ratio of 360 kg / t, a pulverized coal injection rate of 140 kg / t, and a reducing material ratio of 500 kg / t, and the coke cold strength index is controlled with 84 as the lower limit. The air permeability at the bottom of the furnace is monitored using the K value calculated by measuring only the furnace wall pressure loss. If the K value rises, the production is reduced and the production target is maintained at 8700 t / d. (Conventional K value judgment).

上記の従来K値判定による操業を6ヶ月行ない、6ヶ月目以降、炉内のガス流速を測定して上記の式(A)を用いたK’による炉下部の通気性判定に切り替えた。高炉操業に使用した冷間コークスの強度指数と、生産量の変化を図2に示す。K’の値から通気性の余力を判定して、通気性を維持しながら積極的に生産量をふやすことにより約300t/dの増産が可能となった。   The operation by the conventional K value determination was performed for 6 months, and after the 6th month, the gas flow rate in the furnace was measured and switched to the determination of the lower part of the furnace by K ′ using the above formula (A). Fig. 2 shows the strength index of cold coke used for blast furnace operation and changes in production volume. By determining the remaining capacity of air permeability from the value of K ′ and actively increasing the production volume while maintaining the air permeability, it was possible to increase production by about 300 t / d.

本発明の一実施形態を説明する高炉の断面の概略図。The schematic of the section of the blast furnace explaining one embodiment of the present invention. 高炉操業に使用した冷間コークスの強度指数と、生産量の変化を示すグラフ。A graph showing the strength index of cold coke used for blast furnace operation and changes in production volume. 高炉の断面の概略図。Schematic of the cross section of a blast furnace.

符号の説明Explanation of symbols

1 鉱石
2 コークス
3 塊状帯
4 コークス充填層
5 滴下帯
6 融着層
7 羽口
8 レースウェイ
9 空隙大部分
10 高炉
11 ガス採取管
12 ガス分析器
13 トレーサーガス
14 圧力計
DESCRIPTION OF SYMBOLS 1 ore 2 coke 3 lump band 4 coke packed bed 5 drip zone 6 fusion layer 7 tuyere 8 raceway 9 most of voids 10 blast furnace 11 gas sampling pipe 12 gas analyzer 13 tracer gas 14 pressure gauge

Claims (4)

高炉の送風羽口より吹込まれたトレーサーガスを前記送風羽口上部位置で検出し、前記トレーサーガスの吹込みから検出までの時間に基づき炉内ガス流速を測定することを特徴とするガス流速の測定方法。   Tracer gas blown from the blast furnace tuyere is detected at the upper position of the blower tuyere, and the gas flow rate in the furnace is measured based on the time from the introduction of the tracer gas to the detection. Measuring method. トレーサーガスの検出を高炉の炉腹以下の位置で行なうことを特徴とする請求項1に記載のガス流速の測定方法。   2. The method for measuring a gas flow rate according to claim 1, wherein the tracer gas is detected at a position below the blast furnace. 請求項1または請求項2に記載のガス流速の測定方法を用いて測定した炉内ガス流速と、高炉の炉体に設置した圧力計により測定した送風羽口とトレーサーガス検出位置との圧力差を用いて高炉下部の通気性を評価することを特徴とする高炉下部通気性評価方法。   The pressure difference between the gas flow velocity in the furnace measured using the gas flow velocity measuring method according to claim 1 or 2, and the pressure between the blower tuyere and the tracer gas detection position measured by a pressure gauge installed in the furnace body of the blast furnace. A method for evaluating the permeability of the lower part of a blast furnace, wherein the permeability of the lower part of the blast furnace is evaluated using 請求項3に記載の高炉下部通気性評価方法を用いて操業条件を変更することを特徴とする高炉操業方法。   A blast furnace operating method, wherein operating conditions are changed using the blast furnace lower air permeability evaluation method according to claim 3.
JP2005167833A 2005-06-08 2005-06-08 Method for evaluating gas permeability of lower part in blast furnace, and blast furnace operating method Pending JP2006342382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005167833A JP2006342382A (en) 2005-06-08 2005-06-08 Method for evaluating gas permeability of lower part in blast furnace, and blast furnace operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005167833A JP2006342382A (en) 2005-06-08 2005-06-08 Method for evaluating gas permeability of lower part in blast furnace, and blast furnace operating method

Publications (1)

Publication Number Publication Date
JP2006342382A true JP2006342382A (en) 2006-12-21

Family

ID=37639557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005167833A Pending JP2006342382A (en) 2005-06-08 2005-06-08 Method for evaluating gas permeability of lower part in blast furnace, and blast furnace operating method

Country Status (1)

Country Link
JP (1) JP2006342382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295277A (en) * 2018-11-14 2019-02-01 钢铁研究总院 A kind of on-line monitoring method and device of converter bottom blowing gas-feeding element air permeability effect

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295277A (en) * 2018-11-14 2019-02-01 钢铁研究总院 A kind of on-line monitoring method and device of converter bottom blowing gas-feeding element air permeability effect

Similar Documents

Publication Publication Date Title
EP3190194B1 (en) Method for detecting air flow distribution in blast furnace
JP6248550B2 (en) How to determine blast furnace operating conditions
KR101412403B1 (en) Dropping judgment method of charging material into blast furnace
CN104537177B (en) Cohesive zone softening face method for determining position and device in a kind of blast furnace
JP2006342382A (en) Method for evaluating gas permeability of lower part in blast furnace, and blast furnace operating method
US8192521B2 (en) Method of suppressing slag foaming in continuous melting furnace
JP2012087375A (en) Method for operating blast furnace
KR101440602B1 (en) Device and method for sensing temperature of melting furnace
JP2007186759A (en) Method for operating blast furnace
JP4438646B2 (en) Gas sampling device, cohesive zone position determining method, and blast furnace operating method
JP5277636B2 (en) How to operate a vertical furnace
TWI481722B (en) Method for determining permeability of lower part of a blast furnace and system using the same
WO2022168503A1 (en) Method for detecting height of molten material and method for operating blast furnace
JPH0913110A (en) Method for evaluating ventilation of charged material layer in vertical type furnace
JP2007031811A (en) Method for evaluating condition of tuyere and lower part of blast furnace
KR101891196B1 (en) Gas detector And Operating method using the same
JP2897363B2 (en) Hot metal production method
Mirkovic et al. Monitoring the Blast furnace working state by a combination of innovative measurement techniques
CN104805240A (en) Method for judging liquid permeability of lower part of blast furnace
JP2003306708A (en) Method for stably operating blast furnace
JPH0610289B2 (en) Blast furnace operation method
KR20000028284A (en) Method for deciding ventilation inside melting furnace
JP2007284725A (en) Blast furnace operation method
JP2001263960A (en) Blast furnace wall brick-supporting structure and method of operating the blast furnace
JPS59104408A (en) Detection of bonded zone by fusion of blast furnace

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20060921

Free format text: JAPANESE INTERMEDIATE CODE: A7421