JP2007284725A - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP2007284725A
JP2007284725A JP2006111150A JP2006111150A JP2007284725A JP 2007284725 A JP2007284725 A JP 2007284725A JP 2006111150 A JP2006111150 A JP 2006111150A JP 2006111150 A JP2006111150 A JP 2006111150A JP 2007284725 A JP2007284725 A JP 2007284725A
Authority
JP
Japan
Prior art keywords
raceway
blast furnace
hopper
coke
tuyere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006111150A
Other languages
Japanese (ja)
Other versions
JP4778351B2 (en
Inventor
Yoshiyuki Matsui
良行 松井
Muneyoshi Sawayama
宗義 沢山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006111150A priority Critical patent/JP4778351B2/en
Publication of JP2007284725A publication Critical patent/JP2007284725A/en
Application granted granted Critical
Publication of JP4778351B2 publication Critical patent/JP4778351B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable blast furnace operation method by controlling a race way depth in the suitable range corresponding to the operational condition of the blast furnace. <P>SOLUTION: An inverted conical hopper 1 is supposed, in which the horizontal section of the race way 2 is an exhaust port of coke as powdery material and a high speed descending zone of the coke between a bosh part 3 and a suspected stagnation zone 5 formed on a furnace center coke 4 is a hopper part 6. A pulsating frequency f of the coke exhausting flowing rate from the hopper 1 by calculating the following formula 1, is controlled to ≤0.002 Hz. The formula 1 is f=πUγ<SB>d</SB>[(Z<SB>0</SB>-Z<SB>6</SB>)tanθ]<SP>2</SP>/[W(γ<SB>s</SB>-γ<SB>d</SB>)]. wherein, U is an average mass speed of the powdery material; Z<SB>0</SB>is a height of the hopper part; Z<SB>4</SB>is a distance from the upper end surface of the hopper part to the top point of a sliding line; θ is a half opening angle of the hopper part; W is a volume of a compacted powdery material layer determined by the filling-up height when the powdery material pressure is equaled to the ultimate pressure; γ<SB>s</SB>is a bulk density of the compacted powdery material layer; and γ<SB>d</SB>is a bulk density of the powdery material layer when the layer is in a fluidized state. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高炉操業においてレースウェイ深度を制御する技術に関する。   The present invention relates to a technique for controlling a raceway depth in blast furnace operation.

高炉は、その上部から鉄鉱石および還元材であるコークス等を装入し、下部から熱風を吹き込んで、鉄鉱石の還元、溶解等の一連の反応を行わせ、銑鉄を製造するものである。高炉内で半径方向に適正なガス流速分布が得られるように炉内装入物の粒度を調整し、送風条件を適切に制御することで、鉄鉱石の還元、溶解等の一連の反応が効率よく進行し、低還元材比で効率よく操業可能となる。
高炉下部の側壁には、周方向に複数の羽口が形成されており、この羽口を介して、熱風炉、熱風管、熱風環状管、熱風支管を経由してきた熱風を送風するようになっている。さらに、この羽口からは微粉炭などの補助還元材を吹き込むようにしている。
The blast furnace is charged with iron ore and a reducing material such as coke, and blown with hot air from the bottom to cause a series of reactions such as reduction and melting of the iron ore to produce pig iron. A series of reactions such as iron ore reduction and dissolution can be efficiently performed by adjusting the particle size of the furnace interior so that an appropriate gas flow velocity distribution in the radial direction can be obtained in the blast furnace and appropriately controlling the blowing conditions. It progresses and it becomes possible to operate efficiently with a low reducing material ratio.
A plurality of tuyere are formed on the side wall of the lower part of the blast furnace, and hot air that has passed through the hot stove, hot air pipe, hot air annular pipe, and hot air branch pipe is blown through the tuyere. ing. Further, an auxiliary reducing material such as pulverized coal is blown from the tuyere.

高炉内で羽口前には、羽口からの送風によって、レースウェイと呼ばれるコークスが著しく疎な状態で存在する空洞部分が形成されている。この羽口近傍のレースウェイでは高炉に装入されたコークスの大部分と羽口から噴射された微粉炭などの補助還元材とが燃焼しており、炉内で必要な還元ガスと鉄鉱石等の溶解および反応に必要な熱の大部分がこの部分から供給されている。   In the blast furnace, in front of the tuyere, a hollow portion in which coke called a raceway exists in an extremely sparse state is formed by blowing air from the tuyere. In the raceway near the tuyere, most of the coke charged into the blast furnace and auxiliary reducing materials such as pulverized coal injected from the tuyere are combusted. The reducing gas required in the furnace, iron ore, etc. Most of the heat required for dissolution and reaction is supplied from this part.

ここで、レースウェイの大きさおよび形状を正確に把握することは困難であるため、従来より、高炉径方向でレースウェイ最深部と羽口との間の距離をレースウェイ深度とし、レースウェイの大きさや形状を代表する値として取り扱ってきている。   Here, since it is difficult to accurately grasp the size and shape of the raceway, the distance between the deepest part of the raceway and the tuyere is the raceway depth in the blast furnace radial direction. It has been treated as a representative value for size and shape.

そして、レースウェイの大きさおよび形状(レースウェイ深度)は、高炉内における装入物の降下状況等に強く影響し、延いては高炉の安定性や生産性に対して極めて重大な影響を与えると考えられている。   The size and shape of the raceway (raceway depth) has a strong influence on the state of charge drop in the blast furnace, which in turn has a very significant impact on the stability and productivity of the blast furnace. It is believed that.

そこで、発明者らは、マイクロ波を利用して操業中にオンラインにてレースウェイ深度を測定する装置(特許文献1参照)、および前記測定装置等により実測したレースウェイ深度をもとに、レースウェイの崩壊を防ぐべく羽口からの燃料吹込み量を調整する高炉操業方法(特許文献2参照)を提案した。   Therefore, the inventors have used a device for measuring the raceway depth online during operation using microwaves (see Patent Document 1), and the raceway depth measured based on the raceway depth actually measured by the measurement device or the like. A blast furnace operating method (see Patent Document 2) that adjusts the amount of fuel injected from the tuyere to prevent the way from collapsing was proposed.

上記特許文献1に開示した測定装置により操業中にレースウェイ深度を精度良く測定できるようになり、上記特許文献2に開示した方法により、実測のレースウェイ深度に基づいて燃料吹込み量を調整することで、レースウェイの崩壊または縮小、延いては羽口破損をより確実に防止することができるようになった。   The raceway depth can be accurately measured during operation by the measuring device disclosed in Patent Document 1, and the fuel injection amount is adjusted based on the actually measured raceway depth by the method disclosed in Patent Document 2. As a result, it was possible to more reliably prevent the raceway from collapsing or shrinking, and eventually the tuyere breakage.

しかしながら、高炉操業条件を変更した場合などにおいては、装入物の降下状況等に悪影響を与えない適正なレースウェイ深度の範囲が変化すると考えられるが、上記測定装置および操業方法のみでは、高炉操業条件に対応した適正なレースウェイ深度の範囲を予め定量的に把握することができず、レースウェイ深度をより定量的に制御する方法が要請されていた。
特開2005−99006号公報 特開2005−97733号公報
However, when the blast furnace operation conditions are changed, it is considered that the range of the appropriate raceway depth that does not adversely affect the charge descent situation, etc. will change, but the blast furnace operation only with the above measuring device and operation method. The range of the appropriate raceway depth corresponding to the conditions cannot be quantitatively grasped in advance, and a method for more quantitatively controlling the raceway depth has been demanded.
JP 2005-99006 A JP 2005-97733 A

そこで、本発明は、装入物の降下状況等に悪影響を与えることなく、高炉操業条件に対応した適正な範囲にレースウェイ深度を制御することにより安定した高炉操業方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a stable blast furnace operation method by controlling the raceway depth within an appropriate range corresponding to the blast furnace operation conditions without adversely affecting the descending state of the charge. To do.

請求項1に記載の発明は、周方向に複数の羽口が設けられ、かつこの羽口の近傍にレースウェイが形成されている高炉の操業方法において、レースウェイの脈動周波数が0.002Hz以下となるようにレースウェイ深度を制御することを特徴とする高炉操業方法である。   The invention according to claim 1 is a blast furnace operating method in which a plurality of tuyere are provided in the circumferential direction and a raceway is formed in the vicinity of the tuyere, and the pulsation frequency of the raceway is 0.002 Hz or less. The blast furnace operating method is characterized in that the raceway depth is controlled so that

請求項2に記載の発明は、前記レースウェイの脈動周波数として、レースウェイ水平断面を粉体としてのコークスの排出口とし、レースウェイより上方の高炉朝顔部と炉芯コークス斜面上に形成された擬停滞域との間のコークスの高速降下域をホッパ部とする逆円錐ホッパを想定し、下記式1にて算出した、当該逆円錐ホッパからのコークスの排出流量の脈動周波数fを用いる請求項1に記載の高炉操業方法である。
式1 f=πUγ[(Z−Z)tanθ]/[W(γ−γ)]
ここに、U:粉体の平均質量速度、Z:ホッパ部高さ、Z:ホッパ部上端面からすべり線頂点までの距離、θ:ホッパ部の開き半角、W:粉体圧が極限圧力に等しくなったときの充填高さから決定される圧密粉体層の体積、γ:圧密粉体層の嵩密度、γ:流動状態になったときの粉体層の嵩密度である。
The invention described in claim 2 is formed on the blast furnace morning glory and the core coke slope above the raceway, with the raceway horizontal section as the pulsation frequency of the raceway, with the coke discharge port as powder. Assuming an inverted conical hopper whose hopper portion is a high-speed descent region of coke between the quasi-stagnation area, the pulsation frequency f of the discharge flow rate of coke from the inverted conical hopper calculated by the following equation 1 is used. 1 is a method for operating a blast furnace according to 1.
Formula 1 f = πUγ d [(Z 0 −Z 4 ) tan θ] 2 / [W (γ s −γ d )]
Here, U: average mass velocity of powder, Z 0 : hopper height, Z 4 : distance from the top surface of the hopper to the top of the slip line, θ: half angle of opening of hopper, W: limit of powder pressure The volume of the compacted powder layer determined from the filling height when equal to the pressure, γ s : the bulk density of the compacted powder layer, and γ d : the bulk density of the powder layer when in a fluid state .

請求項3に記載の発明は、下記式2で定義される、羽口に接続する熱風支管内における熱風の圧力変動に基づく風圧変動指数PIを、所定値以下に調整することによって行う請求項1に記載の高炉操業方法である。
式2 PI=(Σi=1,n|PBi−PBi−1|)/n
ここに、PBi:i分における熱風圧力瞬時値である。
Invention of Claim 3 is performed by adjusting the wind pressure fluctuation | variation index PI based on the pressure fluctuation of the hot air in the hot air branch pipe connected to a tuyere defined by following formula 2 to below a predetermined value. The blast furnace operating method described in 1.
Formula 2 PI = (Σ i = 1, n | P Bi −P Bi−1 |) / n
Here, P Bi is the hot air pressure instantaneous value at i minutes.

請求項4に記載の発明は、レースウェイ深度を1.15〜2.5mの範囲で制御する請求項1〜3のいずれか1項に記載の高炉操業方法である。   Invention of Claim 4 is a blast furnace operating method of any one of Claims 1-3 which controls raceway depth in the range of 1.15-2.5m.

本発明によれば、レースウェイの脈動周波数が所定の臨界値(0.002Hz)以下となるようにレースウェイ深度を制御することで、装入物の降下状況が良好に維持されるため、長期安定操業を確保しつつ低還元材比、高生産性の高炉操業が実現できるとともに、コークスの降下速度の脈動による炉壁耐火物の磨耗も抑制されるため、高炉寿命の延長にもつながる。   According to the present invention, since the raceway depth is controlled so that the pulsation frequency of the raceway is equal to or lower than a predetermined critical value (0.002 Hz), the charge descent condition is maintained well, so that While ensuring stable operation, blast furnace operation with a low reductant ratio and high productivity can be realized, and the wear of the furnace wall refractory due to the pulsation of the coke descending speed is suppressed, leading to an extension of the blast furnace life.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

〔実施形態1〕
本発明は、周方向に複数の羽口が設けられ、かつこの羽口の近傍にレースウェイが形成されている高炉の操業方法において、レースウェイの脈動周波数が0.002Hz以下となるようにレースウェイ深度を制御することを特徴とする。
Embodiment 1
The present invention provides a method for operating a blast furnace in which a plurality of tuyere are provided in the circumferential direction and a raceway is formed in the vicinity of the tuyere so that the pulsation frequency of the raceway is 0.002 Hz or less. It is characterized by controlling the way depth.

ここで、レースウェイの脈動周波数を0.002Hz以下としたのは以下の理由による。   Here, the reason why the pulsation frequency of the raceway is set to 0.002 Hz or less is as follows.

すなわち、内容積4550mの高炉の一つの羽口において、羽口径を順次変更して羽口前ガス流速を変化させることによりレースウェイ深度を意図的に変化させ、各レースウェイ深度におけるレースウェイの脈動周波数を測定する実験を行った。なお、レースウェイ深度の測定は、上記特許文献1に開示したマイクロ波を利用したレースウェイ深度測定装置を上記羽口に設置して行った。また、レースウェイの脈動周波数は、レースウェイの崩壊周期の逆数で求められ、レースウェイの崩壊周期は、上記レースウェイ深度の経時変化から求めた。図1に、上記測定結果から得られた、レースウェイ深度とレースウェイの脈動周波数との関係を示す。同図から明らかなように、レースウェイ深度を深い側から浅くしていくと、所定の臨界値(1.15m)までは、レースウェイの脈動周波数はほぼ一定(0.002Hz以下)の低い値に維持されているのに対し、その臨界値よりさらに浅くすると、レースウェイの脈動周波数は急激に上昇することがわかった。したがって、装入物の降下状況等を悪化させることなく、長期に安定した高炉操業が実施できる臨界値として、レースウェイの脈動周波数を0.002Hz以下に規定した。 That is, in one tuyere of a blast furnace with an internal volume of 4550 m 3, the raceway depth is intentionally changed by sequentially changing the tuyere diameter and changing the gas flow velocity before the tuyere, and the raceway at each raceway depth is changed. An experiment was conducted to measure the pulsation frequency. The raceway depth was measured by installing the raceway depth measurement device using the microwave disclosed in Patent Document 1 in the tuyere. Further, the pulsation frequency of the raceway was obtained by the reciprocal of the decay period of the raceway, and the decayway of the raceway was obtained from the change over time in the raceway depth. FIG. 1 shows the relationship between the raceway depth and the raceway pulsation frequency obtained from the above measurement results. As is clear from the figure, when the raceway depth is decreased from the deep side, the pulsation frequency of the raceway is a low value that is almost constant (0.002 Hz or less) up to a predetermined critical value (1.15 m). However, it was found that the pulsation frequency of the raceway suddenly increased when it was shallower than the critical value. Therefore, the pulsation frequency of the raceway is defined to be 0.002 Hz or less as a critical value that allows stable blast furnace operation for a long period of time without deteriorating the descending state of the charge.

本発明を実際の高炉操業に適用するには、複数の羽口のうちいずれか1つまたは複数の羽口に、例えば、上記実験で説明したように、上記特許文献1に開示したマイクロ波を利用したレースウェイ深度測定装置を設置し、この測定装置で測定されたレースウェイ深度の経時変化からレースウェイの脈動周波数を算出し、その脈動周波数が0.002Hz以下となるように、羽口径、風温、羽口ガス圧力、燃料吹込み量等を適宜調整してレースウェイ深度を制御するようにすればよい。   In order to apply the present invention to actual blast furnace operation, for example, the microwave disclosed in Patent Document 1 is applied to any one or a plurality of tuyere of the tuyere as described in the above experiment. Install the used raceway depth measurement device, calculate the raceway pulsation frequency from the change over time of the raceway depth measured by this measurement device, and so that the pulsation frequency is 0.002 Hz or less, the tuyere diameter, The raceway depth may be controlled by appropriately adjusting the air temperature, tuyere gas pressure, fuel injection amount, and the like.

〔実施形態2〕
上記実施形態1では、レースウェイの脈動周波数として、羽口に設置したレースウェイ深度測定装置を用いて実測する例を示したが、レースウェイおよびその上方の領域を粉体貯槽(ホッパ)とみなし、理論解析に基づく推定式にて算出した当該ホッパからの粉体排出流量の脈動周波数を用いてもよい。以下、この手段について詳細に説明する。
[Embodiment 2]
In the first embodiment, as an example, the raceway pulsation frequency is measured using a raceway depth measurement device installed at the tuyere, but the raceway and the region above the raceway are regarded as a powder storage tank (hopper). Alternatively, the pulsation frequency of the powder discharge flow rate from the hopper calculated by an estimation formula based on theoretical analysis may be used. Hereinafter, this means will be described in detail.

図2に示すように、レースウェイ2の水平断面を粉体としてのコークスの排出口とし、レースウェイ2より上方の朝顔部3と炉芯コークス4斜面上に形成された擬停滞域5との間のコークスの降下域をホッパ部6とする逆円錐ホッパ1を想定する。   As shown in FIG. 2, the horizontal cross section of the raceway 2 is used as a coke discharge port as powder, and the morning glory 3 above the raceway 2 and the pseudo-stagnation zone 5 formed on the slope of the core coke 4 are formed. Assume an inverted conical hopper 1 in which the coke descending zone is the hopper portion 6.

そして、理論解析に基づく推定式である下記式1(日高ら:化学工学論文集、第20巻、第3号(1994)、p.397)により当該逆円錐ホッパ1からのコークスの排出流量の脈動周波数fを算出する。
式1 f=πUγ[(Z−Z)tanθ]/[W(γ−γ)]
ここに、U:粉体の平均質量速度、Z:ホッパ部高さ、Z:ホッパ部上端面からすべり線頂点までの距離、θ:ホッパ部の開き半角、W:粉体圧が極限圧力に等しくなったときの充填高さから決定される圧密粉体層の体積、γ:圧密粉体層の嵩密度、γ:流動状態になったときの粉体層の嵩密度である。
Then, the coke discharge flow rate from the inverted cone hopper 1 according to the following formula 1 (Hidaka et al .: Chemical Engineering Papers, Vol. 20, No. 3 (1994), p. 397) which is an estimation formula based on theoretical analysis. The pulsation frequency f of is calculated.
Formula 1 f = πUγ d [(Z 0 −Z 4 ) tan θ] 2 / [W (γ s −γ d )]
Here, U: average mass velocity of powder, Z 0 : hopper height, Z 4 : distance from the top surface of the hopper to the top of the slip line, θ: half angle of opening of hopper, W: limit of powder pressure The volume of the compacted powder layer determined from the filling height when equal to the pressure, γ s : the bulk density of the compacted powder layer, and γ d : the bulk density of the powder layer when in a fluid state .

上記式1における各変数の値は以下のようにして求めることができる。   The value of each variable in the above equation 1 can be obtained as follows.

粉体の平均質量速度Uは、羽口から吹き込まれた熱風のうち吹込み燃料を燃焼する分を除いた熱風により燃焼されるコークスの質量より求めることができる。   The average mass velocity U of the powder can be obtained from the mass of the coke burned by the hot air excluding the amount of the hot air blown from the tuyere for burning the blown fuel.

ホッパ部高さZは、レースウェイ2からホッパ部上端面6aまでの高さと、レースウェイ深度DRWと、炉芯コークス4斜面上に形成される擬停滞域5の斜面角度φとから幾何学的に求めることができる。なお、擬停滞域5の斜面角度φは、擬停滞域5の斜面が塑性理論から導かれる速度特性線に対応する(高橋ら:化学工学、第38号(1974)、p.746)として推定することができ、本高炉ではφ=80.2°が得られた。 The hopper height Z 0 is calculated from the height from the raceway 2 to the hopper top end surface 6a, the raceway depth DRW, and the slope angle φ V of the pseudo-stagnation zone 5 formed on the slope of the core coke 4 It can be obtained geometrically. Note that the slope angle φ V of the pseudo-stagnation zone 5 corresponds to the velocity characteristic line derived from the plastic theory by the slope of the pseudo-stagnation zone 5 (Takahashi et al .: Chemical Engineering, No. 38 (1974), p. 746). It can be estimated that φ V = 80.2 ° was obtained in this blast furnace.

ホッパ部上端面6aからすべり線7の頂点7aまでの距離Zは以下のようにして求めることができる。すなわち、すべり線頂点7aはホッパ部6高さ方向の粉体圧分布が極大値を示す点であるが、青木らの方法(青木ら:「粉粒体の貯槽と供給装置」(1963)、日刊工業新聞社)を用いてホッパ部6高さ方向の粉体圧分布を計算した結果、φ=80.2°のとき(Z−Z)/Z=0.2において粉体圧は極大値を示すことがわかった。よって、本高炉ではZ=0.8Zとなる。 Distance Z 4 from hopper upper end surface 6a to the apex 7a of slip lines 7 can be obtained as follows. That is, the slip line vertex 7a is a point where the powder pressure distribution in the height direction of the hopper 6 shows a maximum value, but the method of Aoki et al. (Aoki et al .: “Powder storage and supply device” (1963), As a result of calculating the powder pressure distribution in the height direction of the hopper section 6 using Nikkan Kogyo Shimbun), when φ V = 80.2 °, the powder was in (Z 0 −Z 4 ) / Z 0 = 0.2 It was found that the pressure showed a maximum value. Thus, the Z 4 = 0.8Z 0 in this blast furnace.

ホッパ部6の開き半角θは、擬停滞域5の斜面角度φよりθ=90°−φで求めることができ、本高炉ではθ=9.8°となる。 Half angle theta opening of the hopper section 6 may be determined by the slope angle phi V than θ = 90 ° -φ V pseudo stagnant zones 5, in this blast furnace becomes θ = 9.8 °.

粉体圧が極限圧力に等しくなったときの充填高さから決定される圧密粉体層の体積Wは、すべり線頂点7aを含む水平面からレースウェイ2水平断面までの間の円錐台の体積として求めることができる。   The volume W of the compacted powder layer determined from the filling height when the powder pressure becomes equal to the ultimate pressure is the volume of the truncated cone between the horizontal plane including the slip line vertex 7a and the horizontal cross section of the raceway 2. Can be sought.

圧密粉体層の嵩密度γは、別途、コークスを密充填した充填層の嵩密度を実測して求めることができる。 The bulk density γ s of the compacted powder layer can be obtained by actually measuring the bulk density of the packed bed in which the coke is densely packed.

流動状態になったときの粉体層の嵩密度γは、レースウェイの形状を球体に近似し、レースウェイから放出される全ガス量とレースウェイの表面積から、レースウェイ表面から放出されるガスの空塔速度URWを算出し、下式3によって求めることができる。
式3 γ=γ[1−(URW/Uumf]
ここに、Uumf:コークスの流動化開始速度である。
The bulk density γ d of the powder layer when it is in a fluidized state approximates the shape of the raceway to a sphere, and is released from the raceway surface from the total amount of gas released from the raceway and the surface area of the raceway. The superficial velocity U RW of the gas is calculated and can be obtained by the following formula 3.
Formula 3 γ d = γ s [1- (U RW / U umf ) 2 ]
Here, U umf : fluidization start speed of coke.

ここで、レースウェイ深度DRWを順次変化させ、上記のようにして算出した脈動周波数fの逆数1/fであるレースウェイ崩壊周期と、上記実施形態1で説明したマイクロ波による実測に基づくレースウェイ崩壊周期との関係を図3に示す。同図から明らかなように、計算値と実測値はほぼ一致することが確認された。 Here, the raceway depth D RW is sequentially changed, and the raceway decay period which is the inverse 1 / f of the pulsation frequency f calculated as described above, and the race based on the actual measurement using the microwave described in the first embodiment. The relationship with the way collapse period is shown in FIG. As is clear from the figure, it was confirmed that the calculated value and the actually measured value almost coincided.

したがって、本実施形態により、レースウェイ深度を実測することなく、計算によりレースウェイの脈動周波数を精度良く予測することが可能となり、高炉操業条件を変更した場合でも、適正なレースウェイ深度の範囲を事前に精度良く設定できる。   Therefore, according to the present embodiment, it is possible to accurately predict the pulsation frequency of the raceway by calculation without actually measuring the raceway depth, and even when the blast furnace operating conditions are changed, an appropriate range of the raceway depth is set. Can be set with high accuracy in advance.

〔実施形態3〕
上記実施形態1では、羽口近傍にマイクロ波を利用したレースウェイ深度測定装置を用いてレースウェイの脈動周波数を実測し、この実測された脈動周波数に基づいてレースウェイ深度を制御する例を示したが、これに代えて、羽口に接続する熱風支管内における熱風の圧力変動に基づく風圧変動指数PIを用いてレースウェイ深度を制御するようにしてもよい。なお、風圧変動指数PIは下記式2にて定義される。
[Embodiment 3]
In the first embodiment, an example is shown in which the raceway pulsation frequency is measured using a raceway depth measurement device using microwaves near the tuyere, and the raceway depth is controlled based on the measured pulsation frequency. However, instead of this, the raceway depth may be controlled using the wind pressure fluctuation index PI based on the pressure fluctuation of the hot air in the hot air branch pipe connected to the tuyere. The wind pressure fluctuation index PI is defined by the following formula 2.

式2 PI=(Σi=1,n|PBi−PBi−1|)/n
ここに、PBi:i分における熱風圧力瞬時値(gf/cm[ただし、1gf/cm=98.0665Pa])である。
Formula 2 PI = (Σ i = 1, n | P Bi −P Bi−1 |) / n
Here, P Bi is an instantaneous value of hot air pressure (gf / cm 2 [where 1 gf / cm 2 = 98.0665 Pa]) in i minutes.

すなわち、図4に示すように、レースウェイ深度と風圧変動指数PIとは強い相関関係を示すことがわかった。したがって、本発明を適用しようとする高炉に対して一定期間レースウェイ深度を実測し、風圧変動指数PIとの関係式を求めておく。そして、以後はその関係式を用いて、レースウェイの脈動周波数が0.002Hz以下となるレースウェイ深度(1.15m以上)に対応する風圧変動指数PI(本高炉では10gf/cm以下)となるようにレースウェイ深度の制御を行えばよい。これにより、レースウェイ深度は、本発明適用に際して一定期間のみ実測すれば以後はレースウェイ深度を実測しなくても、風圧変動指数PIを介して間接的にレースウェイ深度を制御することができる。 That is, as shown in FIG. 4, it was found that the raceway depth and the wind pressure fluctuation index PI showed a strong correlation. Therefore, the raceway depth is measured for a certain period for the blast furnace to which the present invention is applied, and a relational expression with the wind pressure fluctuation index PI is obtained. Thereafter, using the relational expression, the wind pressure fluctuation index PI 0 (10 gf / cm 2 or less in this blast furnace) corresponding to the raceway depth (1.15 m or more) at which the pulsation frequency of the raceway is 0.002 Hz or less is used. The raceway depth may be controlled so that Thus, if the raceway depth is measured only for a certain period when the present invention is applied, the raceway depth can be indirectly controlled via the wind pressure fluctuation index PI without actually measuring the raceway depth thereafter.

上記実施形態1〜3では、レースウェイ深度を制御する指標として、レースウェイの脈動周波数fまたは風圧変動指数PIを用いる例を示したが、これらを指標として制御を行う際に、レースウェイ深度を1.15〜2.5mの範囲で制御することが望ましい。すなわち、レースウェイ深度が1.15m未満に浅くなると、図1および図4に示すように、レースウェイの脈動および風圧変動が著しくなり、操業トラブルが発生しやすくなり、他方、レースウェイ深度が2.5mを超えて深くなると、レースウェイの脈動および風圧変動は十分に小さくなるものの、荷下がり(装入物の降下)が不良となる可能性が高まるためである。   In the first to third embodiments, the example in which the raceway pulsation frequency f or the wind pressure fluctuation index PI is used as an index for controlling the raceway depth has been described. It is desirable to control in the range of 1.15 to 2.5 m. That is, when the raceway depth becomes shallower than 1.15 m, as shown in FIG. 1 and FIG. 4, the pulsation and wind pressure fluctuation of the raceway become remarkable, and the operation trouble is likely to occur, while the raceway depth is 2 This is because, if the depth exceeds 0.5 m, the pulsation and wind pressure fluctuation of the raceway are sufficiently reduced, but the possibility that the unloading (the lowering of the load) becomes defective increases.

レースウェイ深度とレースウェイの脈動周波数との関係を示すグラフ図である。It is a graph which shows the relationship between a raceway depth and the pulsation frequency of a raceway. レースウェイおよびその上方を逆円錐ホッパとみなした概念図である。It is the conceptual diagram which considered the raceway and the upper direction as the reverse cone hopper. マイクロ波による実測に基づく脈動周波数と推定式で計算された脈動周波数の関係を示すグラフ図である。It is a graph which shows the relationship between the pulsation frequency based on the measurement by a microwave, and the pulsation frequency calculated with the estimation formula. レースウェイ深度と風圧変動指数PIとの関係を示すグラフ図である。It is a graph which shows the relationship between a raceway depth and the wind pressure fluctuation index PI.

符号の説明Explanation of symbols

1…逆円錐ホッパ
2…レースウェイ
3…朝顔部
4…炉芯コークス
5…擬停滞域
6…ホッパ部
6a…上端面
7…すべり線
7a…頂点
DESCRIPTION OF SYMBOLS 1 ... Reverse cone hopper 2 ... Raceway 3 ... Morning glory part 4 ... Core core coke 5 ... Pseudo-stagnation zone 6 ... Hopper part 6a ... Upper end surface 7 ... Slip line 7a ... Vertex

Claims (4)

周方向に複数の羽口が設けられ、かつこの羽口の近傍にレースウェイが形成されている高炉の操業方法において、レースウェイの脈動周波数が0.002Hz以下となるようにレースウェイ深度を制御することを特徴とする高炉操業方法。   In a blast furnace operating method in which a plurality of tuyere are provided in the circumferential direction and a raceway is formed in the vicinity of the tuyere, the raceway depth is controlled so that the pulsation frequency of the raceway is 0.002 Hz or less. A method of operating a blast furnace, characterized by: 前記レースウェイの脈動周波数として、レースウェイ水平断面を粉体としてのコークスの排出口とし、レースウェイより上方の高炉朝顔部と炉芯コークス斜面上に形成された擬停滞域との間のコークスの高速降下域をホッパ部とする逆円錐ホッパを想定し、下記式1にて算出した、当該逆円錐ホッパからのコークスの排出流量の脈動周波数fを用いる請求項1に記載の高炉操業方法。
式1 f=πUγ[(Z−Z)tanθ]/[W(γ−γ)]
ここに、U:粉体の平均質量速度、Z:ホッパ部高さ、Z:ホッパ部上端面からすべり線頂点までの距離、θ:ホッパ部の開き半角、W:粉体圧が極限圧力に等しくなったときの充填高さから決定される圧密粉体層の体積、γ:圧密粉体層の嵩密度、γ:流動状態になったときの粉体層の嵩密度である。
As the pulsation frequency of the raceway, the horizontal cross section of the raceway is used as a coke discharge port as powder, and the coke between the blast furnace morning glory above the raceway and the pseudo stagnation zone formed on the core coke slope The blast furnace operating method according to claim 1, wherein a pulsation frequency f of the discharge flow rate of coke from the inverted conical hopper calculated by the following equation 1 is used assuming an inverted conical hopper having a high speed descending region as a hopper portion.
Formula 1 f = πUγ d [(Z 0 −Z 4 ) tan θ] 2 / [W (γ s −γ d )]
Here, U: average mass velocity of powder, Z 0 : hopper height, Z 4 : distance from the top surface of the hopper to the top of the slip line, θ: half angle of opening of hopper, W: limit of powder pressure The volume of the compacted powder layer determined from the filling height when equal to the pressure, γ s : the bulk density of the compacted powder layer, and γ d : the bulk density of the powder layer when in a fluid state .
下記式2で定義される、羽口に接続する熱風支管内における熱風の圧力変動に基づく風圧変動指数PIを、所定値以下に調整することによって行う請求項1に記載の高炉操業方法。
式2 PI=(Σi=1,n|PBi−PBi−1|)/n
ここに、PBi:i分における熱風圧力瞬時値である。
The blast furnace operating method according to claim 1, wherein the wind pressure fluctuation index PI defined by the following formula 2 is adjusted to a predetermined value or less based on the pressure fluctuation of the hot air in the hot air branch pipe connected to the tuyere.
Formula 2 PI = (Σ i = 1, n | P Bi −P Bi−1 |) / n
Here, P Bi is the hot air pressure instantaneous value at i minutes.
レースウェイ深度を1.15〜2.5mの範囲で制御する請求項1〜3のいずれか1項に記載の高炉操業方法。   The blast furnace operating method according to any one of claims 1 to 3, wherein the raceway depth is controlled in a range of 1.15 to 2.5 m.
JP2006111150A 2006-04-13 2006-04-13 Blast furnace operation method Expired - Fee Related JP4778351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006111150A JP4778351B2 (en) 2006-04-13 2006-04-13 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006111150A JP4778351B2 (en) 2006-04-13 2006-04-13 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2007284725A true JP2007284725A (en) 2007-11-01
JP4778351B2 JP4778351B2 (en) 2011-09-21

Family

ID=38756788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111150A Expired - Fee Related JP4778351B2 (en) 2006-04-13 2006-04-13 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP4778351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020108987A1 (en) * 2018-11-27 2020-06-04 Tata Steel Ijmuiden B.V. Method and system for raceway depth control in a blast furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305105A (en) * 1994-05-02 1995-11-21 Nippon Steel Corp Method for evaluating raceway condition of blast furnace
JP2005097738A (en) * 2003-08-29 2005-04-14 Kobe Steel Ltd Method for operating blast furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305105A (en) * 1994-05-02 1995-11-21 Nippon Steel Corp Method for evaluating raceway condition of blast furnace
JP2005097738A (en) * 2003-08-29 2005-04-14 Kobe Steel Ltd Method for operating blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020108987A1 (en) * 2018-11-27 2020-06-04 Tata Steel Ijmuiden B.V. Method and system for raceway depth control in a blast furnace

Also Published As

Publication number Publication date
JP4778351B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
EP3190194A1 (en) Method for detecting air flow distribution in blast furnace
JP4855002B2 (en) Blast furnace operation method with pulverized coal injection
EP2410065B1 (en) Blast furnace operation method
JP4778351B2 (en) Blast furnace operation method
JP2007031040A (en) Flow rate control device for distribution of coal particulates
JP5779839B2 (en) Blast furnace operation method
JP2020094240A (en) Oxygen blast furnace system and operation method of oxygen blast furnace
JP5068116B2 (en) Slag forming control method for continuous melting furnace
JP2007277630A (en) Method for controlling injection of fine powdery coal into blast furnace
JP2003306708A (en) Method for stably operating blast furnace
JP2019019347A (en) Method of operating blast furnace
JP7468775B2 (en) How molten iron is produced
JP6737107B2 (en) Blast furnace operation method
JP2009235437A (en) Method for controlling blast furnace operation at blowing-stop time in large reduction of charged material level
KR101891196B1 (en) Gas detector And Operating method using the same
JPS621809A (en) Method for operating blast furnace
JP2000178615A (en) Method for controlling flow of molten iron and slag on furnace hearth part in blast furnace
RU2241764C1 (en) Method for regulating of fuel consuming rate for dispensing of fuel into blast furnace tuyeres
JP2006342382A (en) Method for evaluating gas permeability of lower part in blast furnace, and blast furnace operating method
JP2000008105A (en) Control of distribution of charged material from furnace top of blast furnace
JPS6277414A (en) Operating method for blast furnace
JP2011231350A (en) Method for operating blast furnace
JPH0570814A (en) Method for operating blast furnace
JP2008223120A (en) Method for evaluating furnace wall surface state at upper part of blast furnace shaft
JPH0136523B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees