JP2007277630A - Method for controlling injection of fine powdery coal into blast furnace - Google Patents

Method for controlling injection of fine powdery coal into blast furnace Download PDF

Info

Publication number
JP2007277630A
JP2007277630A JP2006105019A JP2006105019A JP2007277630A JP 2007277630 A JP2007277630 A JP 2007277630A JP 2006105019 A JP2006105019 A JP 2006105019A JP 2006105019 A JP2006105019 A JP 2006105019A JP 2007277630 A JP2007277630 A JP 2007277630A
Authority
JP
Japan
Prior art keywords
pressure
pressure loss
blast furnace
pulverized coal
calibration curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006105019A
Other languages
Japanese (ja)
Other versions
JP4448499B2 (en
Inventor
Kenichi Kawano
健一 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006105019A priority Critical patent/JP4448499B2/en
Publication of JP2007277630A publication Critical patent/JP2007277630A/en
Application granted granted Critical
Publication of JP4448499B2 publication Critical patent/JP4448499B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the desired injection quantity can not be obtained when a calibration curve for deciding a targeted value for inner pressure in a tank corresponding to the injection quantity of fine powdery coal is used beyond the actual total pressure loss. <P>SOLUTION: When the fine powdery coal in the pressurized tank 7 is injected into a blast furnace 1 by supplying the pressurized gas into the pressurized tank 7 for storing the fine powdery coal; in a control method, with which the calibration curve, as a function of the relation between the targeted fine powdery coal quantity and the pressure loss from the pressurizing tank 7 to the blast furnace 1, is set and the pressure loss amount is obtained from this calibration curve and the targeted fine powdery coal quantity, and the pressurizing tank pressure is adjusted to a value adding the pressure in the furnace near a tuyere to the obtained pressure loss amount, the pressure loss value from the pressurizing tank 7 to the blast furnace 1 is obtained at the pre-setting timing during injecting the fine powdery coal into the blast furnace 1. Then, when this obtained pressure loss value is out of the pre-setting range and generates this value continuously for the number of times of the pre-set number or more, the average value of the pressure loss value continuously generated is obtained, and the above calibration curve is renewed by parallel shifting to the position passing this obtained average pressure loss value and the point of the injection targeted fine powdery coal quantity at this time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高炉への微粉炭の吹き込み制御方法に関する。   The present invention relates to a method for controlling the injection of pulverized coal into a blast furnace.

高炉操業にあっては、コークス代替として、安価で燃焼性がよく発熱量の高い補助燃料としての微粉炭を高炉の羽口部より熱風炉からの熱風と共に吹き込み、溶銑製造コストの低減化および生産性の向上を図っている。   In blast furnace operation, as an alternative to coke, pulverized coal as auxiliary fuel with low cost, good flammability and high calorific value is blown in along with hot air from the hot blast furnace from the tuyere of the blast furnace to reduce hot metal production costs and produce The improvement of the nature is aimed at.

高炉に対する微粉炭吹き込み制御技術としては、例えば特許文献1に開示されているように、高炉の羽口部に取り付けられている微粉炭吹き込みバーナーと、微粉炭が貯留され、高炉より高い圧力に保持されているフィードタンク(フィードタンク)とを接続する吹き込み管を通して行われ、該フィードタンクの微粉炭は、該フィードタンクに加圧ラインから供給される加圧用窒素ガスのガス圧を調節することにより噴出量が調節される。前記吹き込み管の配管途中には搬送ガスラインが接続され、該搬送ガスラインから供給される搬送ガスにより微粉炭は該吹き込み管内を加速されて前記微粉炭吹き込みバーナーに吹き込まれる。   As a pulverized coal injection control technology for a blast furnace, for example, as disclosed in Patent Document 1, a pulverized coal injection burner attached to a tuyere of a blast furnace and pulverized coal are stored and maintained at a higher pressure than the blast furnace. The pulverized coal in the feed tank is adjusted by adjusting the gas pressure of nitrogen gas for pressurization supplied from the pressurization line to the feed tank. The amount of eruption is adjusted. A carrier gas line is connected in the middle of the blowing pipe, and the pulverized coal is accelerated in the blowing pipe by the carrier gas supplied from the carrier gas line and blown into the pulverized coal blowing burner.

微粉炭の吹き込み制御において、前記フィードタンク内の圧力設定は、粉粒体の吹き込み制御方法である高炉の通常操業状態での一点を仮定し、その状態における炉内圧力(羽口前圧力)、配管長などの配管抵抗等を基にして、微粉炭の管詰まりが生じない管内最低流速、ノズル先端速度及び固気比となる圧力損失を演算し、微粉炭吹き込み量とフィードタンク内の圧力関係を求めるようにしている。   In the control of pulverized coal injection, the pressure setting in the feed tank assumes one point in the normal operation state of the blast furnace, which is a method of controlling the injection of powder, and the pressure in the furnace in that state (pressure before tuyere), Based on pipe resistance such as pipe length, calculate the minimum pipe flow velocity at which pulverized coal does not clog, the nozzle tip speed and the pressure loss that becomes the solid-gas ratio, and the relationship between the pulverized coal injection amount and the pressure in the feed tank Asking for.

この微粉炭吹き込み量とフィードタンク内の圧力関係は、制御装置に検量線として記憶され、微粉炭の吹き込み量の目標値に対応して該フィードタンク内の圧力としてフィードタンク圧力目標値を設定し、該フィードタンク内の計測圧力が該フィードタンク圧力目標値となるように、前記加圧ラインからフィードタンクに供給されるガス量を調節する。   The relationship between the pulverized coal injection amount and the pressure in the feed tank is stored as a calibration curve in the control device, and the feed tank pressure target value is set as the pressure in the feed tank corresponding to the target value of the pulverized coal injection amount. The amount of gas supplied from the pressurization line to the feed tank is adjusted so that the measured pressure in the feed tank becomes the feed tank pressure target value.

また、フィードタンク内の圧力と炉内圧力との差圧が一定となるように、前記吹き込み管の途中に設けた吹き込み量調節弁を制御することで、高炉の圧力変動、吹き込み管の磨耗などの特性変化といった外乱要素が生じた場合でも微粉炭の安定吹き込みを行えるようにしている。
特開2004−035913号公報
In addition, by controlling the blowing amount adjustment valve provided in the middle of the blowing pipe so that the differential pressure between the pressure in the feed tank and the furnace pressure is constant, the pressure fluctuation of the blast furnace, the wear of the blowing pipe, etc. Even when a disturbance element such as a characteristic change occurs, pulverized coal can be stably injected.
JP 2004-035913 A

従来の微粉炭の吹き込み制御において、高炉の圧力変動などに対しては吹き込み量調節弁の弁開度を調節することにより、微粉炭のバーナー吹き込み量を調節できるものの、フィードタンク圧力を決定する検量線は上述のように、高炉の通常操業状態での一点を仮定して得られたトータル圧力損失を考慮して決定されているため、高炉の操業状況、微粉炭の炭種などの変化によりトータル圧力損失が変わっていても、実際とは異なったトータル圧力損失を考慮してフィードタンク圧力が決定される。   In conventional pulverized coal injection control, the amount of pulverized coal burner injection can be adjusted by adjusting the valve opening of the injection amount control valve for fluctuations in blast furnace pressure, etc., but the calibration determines the feed tank pressure. As described above, the line is determined in consideration of the total pressure loss obtained by assuming one point in the normal operating state of the blast furnace. Even if the pressure loss changes, the feed tank pressure is determined in consideration of the total pressure loss different from the actual pressure loss.

このため、吹き込み管のトータル圧力損失パターンに合った複数の検量線を予め用意し、吹き込み管のトータル圧力損失パターンに最も近い検量線に置換することも行われているが、このような検量線は実際のトータル圧力損失に対応したものではないので、微粉炭を適切な量で吹き込めるとは限らない。   For this reason, a plurality of calibration curves suitable for the total pressure loss pattern of the blowing tube are prepared in advance and replaced with the calibration curve closest to the total pressure loss pattern of the blowing tube. Does not correspond to the actual total pressure loss, so pulverized coal may not be blown in an appropriate amount.

また、吹き込み管のトータル圧力損失に合った検量線を複数用意しない場合には、その都度検量線の設定を変更する作業が必要となる。   In addition, when a plurality of calibration curves suitable for the total pressure loss of the blow-in pipe are not prepared, it is necessary to change the setting of the calibration curve each time.

さらに、従来では吹き込み管の途中に吹き込み量調節弁を設けているが、吹き込み管内を気体搬送される微粉炭により吹き込み量調節弁が摩耗を受ける。   Furthermore, conventionally, a blow amount adjustment valve is provided in the middle of the blow pipe, but the blow amount adjustment valve is worn by the pulverized coal that is gas-conveyed in the blow pipe.

本発明は、このような問題を解決するためになされたもので、吹き込み管のトータル圧力損失の変化に対して瞬時に最適な粉粒体の吹き込み量を求めることができ、吹き込み管の途中で微粉炭などの粉粒体の流量を調節することを不要とし、また既存の設備に対しては大掛かりな設備改造を不要とし、ソフト的に対応できる高炉への微粉炭の吹き込み制御方法を提供することを目的とする。   The present invention has been made to solve such a problem, and it is possible to instantaneously determine the optimum amount of powder and granule in response to the change in the total pressure loss of the blowing tube. Providing a method for controlling the injection of pulverized coal into a blast furnace that does not require adjustment of the flow rate of pulverized coal and other granular materials, and does not require major equipment modifications to existing facilities. For the purpose.

本発明の目的を実現する方法は、微粉炭貯蔵した加圧タンクに加圧気体を供給して該加圧タンク内の該微粉炭を高炉に吹き込むに際し、前記微粉炭の目標供給量と前記加圧タンクと高炉までの圧力損失を関数とする検量線を設定し、この検量線と吹き込み目標微粉炭量により圧力損失量を求め、この求めた圧力損失量に羽口近傍の炉内圧力を加算した値に前記加圧タンク圧力を調整する制御方法において、高炉に微粉炭を吹き込んでいる最中に、前記加圧タンクと高炉までの圧力損失値を予め設定したタイミングで求め、この求めた圧力損失値が予め設定した範囲外で、且つ、予め設定した回数以上連続して発生した場合に、その連続して発生した圧力損失値の平均値を求め、この求めた平均圧力損失値とその際の吹き込み目標微粉炭量の点を通る位置に前記検量線を平行移動して更新することを特徴とする。   The method for realizing the object of the present invention is to supply a pressurized gas to a pressurized tank in which pulverized coal is stored and blow the pulverized coal in the pressurized tank into a blast furnace. Set a calibration curve as a function of the pressure loss between the pressure tank and the blast furnace, obtain the pressure loss amount from this calibration curve and the target pulverized coal amount, and add the pressure inside the furnace near the tuyere to this calculated pressure loss amount. In the control method of adjusting the pressurized tank pressure to the value obtained, while the pulverized coal is being blown into the blast furnace, the pressure loss value to the pressurized tank and the blast furnace is obtained at a preset timing, and the obtained pressure If the loss value is out of the preset range and occurs continuously for the preset number of times, the average value of the continuously generated pressure loss values is obtained. Point of blast coal target And updates to translate the calibration curve at a position passing through.

本発明の方法によれば、検量線を吹き込み管のトータル圧力損失にフィットするように更新するので、粉粒体の種類などの環境が変化しても微粉炭などの粉粒体を所望する吹き込み量で高炉などの粉粒体吹き込み先装置に吹き込むことができる。   According to the method of the present invention, the calibration curve is updated so as to fit the total pressure loss of the blowing tube, so that the desired blowing material such as pulverized coal even if the environment such as the type of the granular material changes. The amount can be blown into a powder blow destination device such as a blast furnace.

また、配管系や計装系に大幅な改修を加えることなくソフト的な対応で対処することが可能となる。   In addition, it is possible to cope with a software response without significantly modifying the piping system and the instrumentation system.

以下本発明を図面に示す実施例に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

図1は、本発明の一実施例を示す粉粒体の吹き込み制御装置の配管系及び計装系のブロック図を示す。   FIG. 1 is a block diagram of a piping system and an instrumentation system of a granular material blowing control apparatus according to an embodiment of the present invention.

図1において、粉粒体の吹き込み制御方法である高炉1には複数の羽口2が設けられ、環状管3から延びる複数のブローパイプ4が前記羽口2に接続され、不図示の熱風炉からの高温ガスが環状管3を経て各ブローパイプ4から各羽口2に供給される。各羽口2には、微粉炭吹き込みバーナー5が取り付けられている。この微粉炭吹き込みバーナー5には、吹き込み管6の一端側が取り付けられている。   In FIG. 1, a blast furnace 1 that is a method for controlling the blowing of granular material is provided with a plurality of tuyere 2, and a plurality of blow pipes 4 extending from an annular tube 3 are connected to the tuyere 2, and a hot stove (not shown) From each blow pipe 4 is supplied to each tuyere 2 through the annular pipe 3. A pulverized coal blowing burner 5 is attached to each tuyere 2. One end side of the blowing pipe 6 is attached to the pulverized coal blowing burner 5.

フィードタンク7は、不図示の微粉炭ホッパー等からなる微粉炭補給装置の最下位に配置され、該微粉炭ホッパーから微粉炭が補給される。微粉炭の補給はフィードタンク7内の微粉炭が空になると行われ、その際排圧弁21が開いてフィードタンク7内が大気に開放され、微粉炭の補給が行われる。   The feed tank 7 is disposed at the lowest position of a pulverized coal replenishing device including a pulverized coal hopper (not shown) and the pulverized coal is replenished from the pulverized coal hopper. The pulverized coal is replenished when the pulverized coal in the feed tank 7 is emptied. At this time, the exhaust pressure valve 21 is opened, the inside of the feed tank 7 is opened to the atmosphere, and the pulverized coal is replenished.

また、フィードタンク7には吹き込み管6の他端側が接続され、フィードタンク7内に不図示の加圧ガス源からの加圧窒素ガスが加圧ライン8を介して供給される。その際、前記排圧弁21は閉じられ、フィードタンク7の内圧は高炉1の炉内圧よりも高い圧力に保持される。   The feed tank 7 is connected to the other end of the blowing pipe 6, and pressurized nitrogen gas from a pressurized gas source (not shown) is supplied into the feed tank 7 through the pressurized line 8. At that time, the exhaust pressure valve 21 is closed, and the internal pressure of the feed tank 7 is maintained at a pressure higher than the internal pressure of the blast furnace 1.

加圧ライン8には加圧調節弁22が設けられ、この加圧調節弁22の弁開度を調節することにより、フィードタンク7から吹き込み管6に噴出される微粉炭の量を調節可能とする。吹き込み管6の途中に搬送ガスライン9を接続しており、フィードタンク7から加圧して排出された微粉炭を搬送ガスライン9から吹き込み管6に供給された搬送ガスによって加速し高炉1の微粉炭吹き込みバーナー5に吹き込む。加圧調節弁22は、圧力調節計20により弁開度が調節され、前記排圧弁21は圧力調節計20から圧力調節信号が出力されると閉じられる。なお、搬送ガスライン9から吹き込み管6に供給される搬送ガスは搬送ガス調節弁29で流量調節され、吹き込み管6内を搬送される微粉炭が配管閉塞を発生させないように流量調節されている。   A pressurization control valve 22 is provided in the pressurization line 8, and the amount of pulverized coal ejected from the feed tank 7 to the blow-in pipe 6 can be adjusted by adjusting the valve opening degree of the pressurization control valve 22. To do. A carrier gas line 9 is connected in the middle of the blowing pipe 6, and the pulverized coal discharged by pressurization from the feed tank 7 is accelerated by the carrier gas supplied from the carrier gas line 9 to the blowing pipe 6, and the fine powder of the blast furnace 1 is used. Blow into the charcoal burner 5. The opening of the pressurizing control valve 22 is adjusted by the pressure controller 20, and the exhaust pressure valve 21 is closed when a pressure control signal is output from the pressure controller 20. The flow rate of the carrier gas supplied from the carrier gas line 9 to the blowing pipe 6 is adjusted by the carrier gas control valve 29, and the flow rate is adjusted so that the pulverized coal conveyed in the blowing pipe 6 does not cause the pipe clogging. .

フィードタンク7はロードセルなどの荷重検出器23により重量が検出される構成となっており、荷重検出器23によりフィードタンク7に補給された微粉炭の重量を検出する。荷重検出器23で検出した補給された微粉炭の重量検出値は、重量調節計24に出力される。   The feed tank 7 is configured such that the weight is detected by a load detector 23 such as a load cell, and the weight of the pulverized coal supplied to the feed tank 7 is detected by the load detector 23. The weight detection value of the supplied pulverized coal detected by the load detector 23 is output to the weight controller 24.

一方、高炉1の羽口2には炉内圧力を検出する炉内圧力センサ25が取り付けられ、炉内圧力センサ25で検出した炉内圧力(羽口圧力)検出値を炉内圧力変換器26により出力信号(炉内圧力信号)Pfに変換し、この炉内圧力信号Pfを後記する検量線自動調整装置52に出力すると共に、圧力調節計20に出力する。   On the other hand, an in-furnace pressure sensor 25 for detecting the in-furnace pressure is attached to the tuyere 2 of the blast furnace 1, and the detected value of the in-furnace pressure (tuyere pressure) detected by the in-furnace pressure sensor 25 is converted into the in-furnace pressure converter 26. Is converted into an output signal (in-furnace pressure signal) Pf, and the in-furnace pressure signal Pf is output to the calibration curve automatic adjusting device 52 described later and also output to the pressure controller 20.

また、フィードタンク7内の圧力をタンク内圧センサ27により検出し、タンク内圧センサ27で検出したタンク内圧検出値をタンク圧力変換器28により出力信号(タンク内圧信号)Ptに変換し、このタンク内圧信号Ptを検量線自動調整装置52に出力すると共に、圧力調節計20に出力する。   Further, the pressure in the feed tank 7 is detected by the tank internal pressure sensor 27, and the tank internal pressure detection value detected by the tank internal pressure sensor 27 is converted into an output signal (tank internal pressure signal) Pt by the tank pressure converter 28. The signal Pt is output to the calibration curve automatic adjusting device 52 and also output to the pressure controller 20.

本実施例において、圧力調節計20は、関数発生器51で算出されたタンク内圧目標値ΔPsにタンク内圧信号Ptを一致させるように加圧調節弁22を制御するのではなく、タンク内圧目標値ΔPsに炉内圧力信号Pfを加えた信号Pstにタンク内圧信号Ptを一致させるように加圧調節弁22を制御している。すなわち、吹き込み管6のトータル圧力損失を考慮してタンク内圧を決定している。   In this embodiment, the pressure controller 20 does not control the pressurization control valve 22 so that the tank internal pressure signal Pt matches the tank internal pressure target value ΔPs calculated by the function generator 51, but does not control the tank internal pressure target value. The pressurization control valve 22 is controlled so that the tank internal pressure signal Pt matches the signal Pst obtained by adding the furnace pressure signal Pf to ΔPs. That is, the tank internal pressure is determined in consideration of the total pressure loss of the blowing pipe 6.

本実施例における関数発生器51は、高炉操業における実際の吹き込み管のトータル圧力損失に対応して検量線を更新するようにしており、該実際の吹き込み管のトータル圧力損失は、検量線自動調整装置52により演算される。   The function generator 51 in this embodiment updates the calibration curve corresponding to the actual total pressure loss of the blow-in pipe in the blast furnace operation, and the actual total pressure loss of the blow-in pipe is automatically adjusted by the calibration curve. Calculated by the device 52.

検量線自動調整装置52は、入力されるタンク内圧信号Ptと炉内圧力信号Pfとの差(ΔP=Pt−Pf)として得られるフィードタンク7の圧力と粉粒体の吹き込み制御方法である高炉1の炉内圧力との差圧、すなわち吹き込み管のトータル圧力損失ΔPを演算する。   The calibration curve automatic adjusting device 52 is a blast furnace which is a method for controlling the pressure of the feed tank 7 and the injection of granular material obtained as a difference (ΔP = Pt−Pf) between the tank internal pressure signal Pt and the furnace internal pressure signal Pf. The differential pressure from the pressure in the furnace of 1, that is, the total pressure loss ΔP of the blow-in pipe is calculated.

フィードタンク7に微粉炭を補給する毎に検量線自動調整装置52で演算したトータル圧力損失ΔPに応じて検量線の更新を行なっても良いが、本実施例では連続する複数回の微粉炭補給毎のトータル圧力損失の変化が規定値を超えている場合に検量線の更新を行うようにしており、図2はその動作を示すフローチャートである。   The calibration curve may be updated in accordance with the total pressure loss ΔP calculated by the calibration curve automatic adjustment device 52 every time pulverized coal is replenished to the feed tank 7, but in this embodiment, a plurality of continuous pulverized coal replenishments. The calibration curve is updated when the change in total pressure loss for each time exceeds a specified value, and FIG. 2 is a flowchart showing the operation.

図2において、検量線の更新のための演算がスタートすると、ステップ(以下Sとする)1において、3〜10分間ピッチ(本例では5分間ピッチ)タンク内圧信号Ptと炉内圧力信号Pfとの差であるΔP=Pt−Pfを演算し、ステップ2に進む。   In FIG. 2, when the calculation for updating the calibration curve is started, in step (hereinafter referred to as S) 1, the tank internal pressure signal Pt and the furnace internal pressure signal Pf with a pitch of 3 to 10 minutes (in this example, a pitch of 5 minutes) ΔP = Pt−Pf, which is the difference between the two, is calculated and the process proceeds to Step 2

ステップ2では、予め設定しているフィードタンクと高炉との設定圧力差ΔP2と、ステップ1で得られたΔP1との差圧ΔPt=ΔP2−ΔP1を算定する。すなわち、フィードタンク7に加える圧力の増減圧分を演算する。   In Step 2, a differential pressure ΔPt = ΔP2−ΔP1 between the preset pressure difference ΔP2 between the feed tank and the blast furnace and ΔP1 obtained in Step 1 is calculated. That is, the pressure increase / decrease amount applied to the feed tank 7 is calculated.

ステップ3では、ステップ2において算定したフィードタンク7の増減圧分ΔPtが検量線を更新しなければならないほどの値になっているか否かを判定する閾値(α、−α)と比較し、これを連続してN回以上満足しているか否かを判定する。   In step 3, the increase / decrease amount ΔPt of the feed tank 7 calculated in step 2 is compared with thresholds (α, −α) for determining whether or not the calibration curve needs to be updated. It is determined whether or not it is satisfied N times or more continuously.

ステップ3において、ΔPt>α、ΔPt<−αの要件を満足するが連続するN回以上の要件が満たされていない場合には、ここまでのステップを連続するN回、例えば連続して3回以上の要件を満たすまで繰り返し行う。   In Step 3, when the requirements of ΔPt> α and ΔPt <−α are satisfied but the requirement of N or more times in succession is not satisfied, the above steps are repeated N times, for example, 3 times in succession. Repeat until the above requirements are met.

そして、ステップ3の要件を全て満たすとステップ4に進む。すなわち、ステップ3の要件を全て満たすということは、トータル圧力損失の変動が一時的なものではなく、確実に変わっていると判断する。   Then, when all the requirements of Step 3 are satisfied, the process proceeds to Step 4. That is, satisfying all the requirements of Step 3 determines that the fluctuation of the total pressure loss is not temporary but has changed reliably.

ステップ4において、N回分のΔPtの平均値ΔPqを算定し、ステップ5に進む。   In step 4, the average value ΔPq of ΔPt for N times is calculated, and the process proceeds to step 5.

ステップ5では、ステップ4で求めたΔPqにゲインβを掛けたΔPr(ΔPr=β×ΔPq)を算定し、ステップS6に進む。   In step 5, ΔPr (ΔPr = β × ΔPq) obtained by multiplying ΔPq obtained in step 4 by gain β is calculated, and the process proceeds to step S6.

ステップ6では、ステップ5で算定したΔPrにステップ2で用いたΔP2を加えたΔP3(ΔP3=ΔP2+ΔPr)を算定し、ステップS7に進む。   In Step 6, ΔP3 (ΔP3 = ΔP2 + ΔPr) obtained by adding ΔP2 used in Step 2 to ΔPr calculated in Step 5 is calculated, and the process proceeds to Step S7.

ステップS7では、検量線をステップS6で求めたΔP3を通る位置に並行移動した検量線に置き換え終了する。   In step S7, the calibration curve is replaced with a calibration curve moved in parallel to the position passing ΔP3 obtained in step S6.

以上のように、本実施例において検量線を逐次更新することにより、フィードタンク圧力と炉内圧力との差圧、すなわち吹き込み管のトータル圧力損失ΔPに、微粉炭の吹き込み量SV‐フィードタンク内圧目標値ΔPsとの関数を設定した検量線を自動でフィッテングさせるもので、例えば図1に示すように、更新前の検量線を検量線自動調整装置52で演算したΔPにフィッテングさせたものを更新後の検量線とするもので、高炉の状況、吹き込み管の状態、使用する微粉炭の炭種の拡大に伴う吹き込み管のトータル圧力損失パターンの多様性に対して適合した検量線を常に提供することが可能となった。   As described above, by sequentially updating the calibration curve in this embodiment, the differential pressure between the feed tank pressure and the furnace pressure, that is, the total pressure loss ΔP of the blow pipe, is added to the pulverized coal injection amount SV-feed tank internal pressure. A calibration curve in which a function with the target value ΔPs is set is automatically fitted. For example, as shown in FIG. 1, a calibration curve before update is fitted to ΔP calculated by the calibration curve automatic adjustment device 52. This calibration curve will be used later, and always provides a calibration curve that matches the blast furnace status, the condition of the blown pipe, and the diversity of the total pressure loss pattern of the blown pipe as the coal type of the pulverized coal used increases. It became possible.

上記した実施例は、高炉1の羽口2より微粉炭を吹き込む場合を例にしているが、本発明はこれに限定されるものではなく、他の粉粒体の吹き込み制御方法に対して粉粒体を吹き込む場合にも適用できることは云うまでも無いことである。   In the above-described embodiment, pulverized coal is blown from the tuyere 2 of the blast furnace 1, but the present invention is not limited to this. Needless to say, the present invention can be applied to the case of blowing particles.

本発明を実施例を示す吹き込み制御装置の配管系及び計装系のブロック図。The block diagram of the piping system and instrumentation system of the blowing control apparatus which shows an embodiment of the present invention. 図1の吹き込み制御装置における検量線更新処理を示すフローチャート。The flowchart which shows the calibration curve update process in the blowing control apparatus of FIG.

符号の説明Explanation of symbols

1 高炉
2 羽口
3 環状管
4 ブローパイプ
5 微粉炭吹き込みバーナー
6 吹き込み管
7 フィードタンク
8 加圧ライン
9 搬送ガスライン
20 圧力調節計
21 排圧弁
22 加圧調節弁
23 荷重検出器
24 重量調節計
25 炉内圧力センサ
26 炉内圧力変換器
27 タンク内圧センサ
28 タンク圧力変換器
29 搬送ガス調節弁
51 関数発生器
52 検量線自動調整装置



DESCRIPTION OF SYMBOLS 1 Blast furnace 2 Tuyere 3 Annular pipe 4 Blow pipe 5 Pulverized coal injection burner 6 Blow pipe 7 Feed tank 8 Pressurization line 9 Carrier gas line 20 Pressure regulator 21 Exhaust pressure valve 22 Pressure regulator 23 Load detector 24 Weight controller 25 In-furnace pressure sensor 26 In-furnace pressure converter 27 Tank internal pressure sensor 28 Tank pressure converter 29 Carrier gas control valve 51 Function generator 52 Automatic calibration curve adjustment device



Claims (1)

微粉炭貯蔵した加圧タンクに加圧気体を供給して該加圧タンク内の該微粉炭を高炉に吹き込むに際し、前記微粉炭の目標供給量と前記加圧タンクと高炉までの圧力損失を関数とする検量線を設定し、この検量線と吹き込み目標微粉炭量により圧力損失量を求め、この求めた圧力損失量に羽口近傍の炉内圧力を加算した値に前記加圧タンク圧力を調整する制御方法において、
高炉に微粉炭を吹き込んでいる最中に、前記加圧タンクと高炉までの圧力損失値を予め設定したタイミングで求め、この求めた圧力損失値が予め設定した範囲外で、且つ、予め設定した回数以上連続して発生した場合に、その連続して発生した圧力損失値の平均値を求め、この求めた平均圧力損失値とその際の吹き込み目標微粉炭量の点を通る位置に前記検量線を平行移動して更新することを特徴とする高炉への微粉炭の吹き込み制御方法。

When a pressurized gas is supplied to a pressurized tank that stores pulverized coal and the pulverized coal in the pressurized tank is blown into a blast furnace, the target supply amount of the pulverized coal and the pressure loss to the pressurized tank and blast furnace are a function. A calibration curve is set, and the pressure loss is calculated from the calibration curve and the target pulverized coal quantity. The pressure tank pressure is adjusted to the value obtained by adding the pressure in the furnace near the tuyere to the calculated pressure loss. In the control method to
While the pulverized coal was being blown into the blast furnace, the pressure loss value to the pressurized tank and the blast furnace was obtained at a preset timing, and the obtained pressure loss value was outside the preset range and preset. If it occurs continuously more than the number of times, the average value of the continuously generated pressure loss value is obtained, and the calibration curve is passed to the position passing through the obtained average pressure loss value and the point of the target pulverized coal amount at that time. A method for controlling the injection of pulverized coal into a blast furnace, wherein the blast furnace is renewed by translating.

JP2006105019A 2006-04-06 2006-04-06 Control method of pulverized coal injection into blast furnace Expired - Fee Related JP4448499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006105019A JP4448499B2 (en) 2006-04-06 2006-04-06 Control method of pulverized coal injection into blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006105019A JP4448499B2 (en) 2006-04-06 2006-04-06 Control method of pulverized coal injection into blast furnace

Publications (2)

Publication Number Publication Date
JP2007277630A true JP2007277630A (en) 2007-10-25
JP4448499B2 JP4448499B2 (en) 2010-04-07

Family

ID=38679373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006105019A Expired - Fee Related JP4448499B2 (en) 2006-04-06 2006-04-06 Control method of pulverized coal injection into blast furnace

Country Status (1)

Country Link
JP (1) JP4448499B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101576280B (en) * 2009-06-09 2012-09-05 西安诺奇新能源股份有限公司 Distributed coal water slurry virtual central heat supply system and heat supply method
US8665437B2 (en) 2008-06-06 2014-03-04 Siemens Vai Metals Technologies Gmbh Method of controlling a transformation process of charge material to a product
CN113088590A (en) * 2021-04-09 2021-07-09 南京工程学院 Intelligent anti-blocking device and method for large-scale blast furnace injection system based on spectrum analysis
CN113106177A (en) * 2021-04-09 2021-07-13 南京工程学院 Anti-blocking and blockage-removing control device and method based on differential type large-scale blast furnace injection system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8665437B2 (en) 2008-06-06 2014-03-04 Siemens Vai Metals Technologies Gmbh Method of controlling a transformation process of charge material to a product
CN101576280B (en) * 2009-06-09 2012-09-05 西安诺奇新能源股份有限公司 Distributed coal water slurry virtual central heat supply system and heat supply method
CN113088590A (en) * 2021-04-09 2021-07-09 南京工程学院 Intelligent anti-blocking device and method for large-scale blast furnace injection system based on spectrum analysis
CN113106177A (en) * 2021-04-09 2021-07-13 南京工程学院 Anti-blocking and blockage-removing control device and method based on differential type large-scale blast furnace injection system
CN113106177B (en) * 2021-04-09 2022-06-17 南京工程学院 Anti-blocking and blockage-removing control device and method based on differential type large-scale blast furnace injection system

Also Published As

Publication number Publication date
JP4448499B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
RU2461777C2 (en) Solid particle injection system
US9573775B2 (en) Powder supply apparatus and powder supply method
US20150021358A1 (en) Powder supply device and powder supply method
JP4448499B2 (en) Control method of pulverized coal injection into blast furnace
WO2012115061A1 (en) Powder supply apparatus and powder supply method
JPWO2006087803A1 (en) Gas heating value control method and gas heating value control device
JP2007031758A (en) Method for operating blast furnace while blowing pulverized coal
TWI689596B (en) A process for pressurising bulk material in an apparatus, an apparatus for pressurising bulk material in a hopper and uses of a valve arrangement with a control unit
KR20110133003A (en) Control systems and methods for controlling a dry feed system to convey a solid fuel
KR100862773B1 (en) Apparatus for controling pressure and air flow of feed hopper for feeding pulverizer coal
JPH01230706A (en) Method for blowing powdered coal into blast furnace
JP2742001B2 (en) Pulverized coal injection control method
KR100843837B1 (en) Apparatus for controlling input of fine coal using air density
JPH048337B2 (en)
JPS5881907A (en) Control process for blowing powder coal
JP3844858B2 (en) Blast furnace operating method with pulverized coal fuel injection.
JP4778351B2 (en) Blast furnace operation method
KR100973896B1 (en) An apparatus for controlling the inject of pulverized coal according to blower temperature
JP7210125B2 (en) Combustion equipment
KR20110072623A (en) Apparatus for controlling pulverized coal injection
KR101008097B1 (en) Pulverized coal injection control Method by the amount of the blowing air into the blast furnace
JP2014088219A (en) Powder supply device and powder supply method
KR102040186B1 (en) Apparatus and methods for mixing by-product gas
KR100920641B1 (en) An apparatus for controlling the injected oxygen according to deviation of feed dust coal
JP5264301B2 (en) Sludge incineration method using fluidized bed incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4448499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees