JP3844858B2 - Blast furnace operating method with pulverized coal fuel injection. - Google Patents

Blast furnace operating method with pulverized coal fuel injection. Download PDF

Info

Publication number
JP3844858B2
JP3844858B2 JP28477497A JP28477497A JP3844858B2 JP 3844858 B2 JP3844858 B2 JP 3844858B2 JP 28477497 A JP28477497 A JP 28477497A JP 28477497 A JP28477497 A JP 28477497A JP 3844858 B2 JP3844858 B2 JP 3844858B2
Authority
JP
Japan
Prior art keywords
furnace
pulverized coal
coal fuel
blast furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28477497A
Other languages
Japanese (ja)
Other versions
JPH11124609A (en
Inventor
茂 小谷
和彦 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP28477497A priority Critical patent/JP3844858B2/en
Publication of JPH11124609A publication Critical patent/JPH11124609A/en
Application granted granted Critical
Publication of JP3844858B2 publication Critical patent/JP3844858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高炉の羽口から微粉炭燃料を吹き込み、高い操業効率で高炉を操業する方法に関する。
【0002】
【従来の技術】
銑鋼一貫製鉄では、高炉の操業効率を向上させることが製鉄コストを低減させる上で最重要課題の1つになっている。また、オイルショック以降、重油消費量を削減して製銑コストを下げるため、重油に替えて微粉炭を炉内に吹き込む微粉炭燃料吹込み操業が採用されている。
しかし、突如として炉体の熱負荷バランスの乱れ等から高炉の炉壁に付着物が付着成長することがある。炉壁で付着物が付着成長すると、高炉内のガス流れが著しく乱され、燃料比の上昇や操業効率の低下等を招き易い。その結果、製銑コストが上昇し、ときには炉況不調につながる引き金にもなることもある。
【0003】
付着物を除去する手段としては、短期間だけ燃料比を上昇させ且つ微粉炭比を下げて高炉の通気性を確保するため、操業効率を一時的に低下させるクリーニング操業(cas操業)や、高炉を休風して装入物の炉内レベルを下げ、高炉内の炉壁に付着した付着物を機械的に直接取り除く方法等が採用されている。
操業効率を保ったままで炉内付着物を除去する手段としては、炉内円周方向に関して熱風の流量を制御することが特開平6−256821号公報で紹介されている。この方法では、高炉の羽口ごとに接続された熱風支管に熱風制御弁を設け、高炉操業時に羽口上部の炉壁に付着物が形成して温度低下を生じた際、温度低下を生じた個所に対応する少なくとも二つ以上の熱風支管の熱風制御弁の開度を大きくしている。
【0004】
【発明が解決しようとする課題】
しかし、高炉の操業効率を向上させるためには、高炉内の炉壁に生成した付着物を除去するよりも、炉壁に付着物の付着・成長がない条件下で高炉を操業する方が重要である。この点、現状のクリーニング操業は、高炉内の炉壁に付着物が付着・成長することを前提とし、付着・成長した付着物を除去するに止まっている。また、休風による機械的手段で高炉内の炉壁に付着した付着物を除去する方法では、休風までの期間に高炉の操業効率が低下する。
これに対し、熱風制御弁により熱風の流量を円周方向に関して制御する特開平6−256821号公報の方法は、高炉の操業効率を維持しながら付着物の成長を抑えることできることから、有利な方法といえる。しかし、羽口ごとに接続された熱風支管に熱風制御弁を設けることを必要とするため、熱風制御弁及びその制御機構に掛かるコストが高くなる。
本発明は、このような問題を解消すべく案出されたものであり、炉内温度の円周方向分布に応じて微粉炭燃料の吹込み量を炉体円周方向で制御することにより、炉壁への付着物の生成を抑制し、付着物を還元除去しながら高効率で高炉を操業することを目的とする。
【0005】
【課題を解決するための手段】
本発明の高炉操業方法は、その目的を達成するため、円周方向に沿って高炉に複数個設けられた羽口に接続されたダウン管に挿入した吹込みランスから微粉炭燃料を炉内に吹き込む際、高さ方向に関して複数段で且つ各段において円周方向に等間隔で高炉の炉壁に埋め込まれた温度検出手段で炉内円周方向の温度情報を取り出し、炉内温度の円周方向に関する偏差量を求め、当該偏差量に基づいて各吹込みランスから炉内に吹き込まれる微粉炭燃料の吹込み量を、温度が高い方位の羽口では微粉炭燃料の吹込み量が多くなるように、温度が低い方位の羽口では逆に吹込み量が少なくなるように制御することを特徴とする。
微粉炭燃料の吹込み量を炉体円周方向に制御する偏差量の指標は、各高さレベルの炉壁に埋め込まれた温度検出手段で得られた温度情報に各高さレベルごとの重み係数を乗じて温度データとし、炉体円周方向を等間隔で複数に分割した各方位で高さ方向の温度データを合計して炉体温度分布の偏差量を指数化して求められる。
【0006】
【作用】
微粉炭燃料の吹込み量を高くした高炉操業下では、ある方位のみ微粉炭燃料の吹込み量が少ないアンバランスな状況が発生した場合、その方位における単位鉱石量当りの羽口前炭素供給量、換言すると羽口前炭素消費量が減少する。実際の高炉を想定した模型実験結果(「鉄と鋼」第73巻(1987)第1996頁)によると、ある方位(I)での羽口前炭素の消費を完全に停止した場合、装入物の降下速度分布は、炉下部では通常通りに炭素が消費されている方位(II)で大きいが、炉上部では逆に炭素消費を完全に停止した方位(I)で大きくなるとされている。そのため、炉上部から炉下部までの滞留時間は、炭素消費を完全に停止した方位(I)で大きくなる。
これらの結果から、微粉炭燃料の吹込み量が少ない方位(I)では、長い滞留時間に応じて固体の加熱時間が長くなり、炉上部から炉下部までのトータルでみた放散熱量が大きくなる。しかし、局部的にみた場合には、降下速度の大きな炉上部で熱的に不足する状況が発生し、炉体内壁に付着物が生成・成長する傾向が予測される。
【0007】
そこで、本発明においては、炉体温度の円周方向バランスに基づいて、温度が高い方位の羽口では微粉炭燃料の吹込み量を多くし、温度が低い方位の羽口では逆に吹込み量を少なくする。吹き込まれた微粉炭燃料は付着物の周辺に局部的なガス流れを発生させ、この周辺ガス流によって付着物が還元・溶融によって炉壁から除去される。このようにして、炉体円周方向に関して微粉炭燃料の吹込み量を制御することにより、単位鉱石量当りの羽口前炭素消費量を増加し、降下速度の円周方向分布を適正状態に修正する。
【0008】
【実施の形態】
本発明に従った設備構成では、高炉1の全ての炉体温度が検出されるように、高炉1の内部に熱電対温度計2を高さ方向に関して複数段,各高さレベルごとに炉体円周方向に関して複数個設けている。
高炉1の下部には円周方向に沿って複数個の羽口3が設けられており、各羽口3は、送風支管4を介して環状管5に接続されている。送風支管4には、羽口3の近傍で開口する微粉炭燃料吹込み用のダウン管6が送入されている。ダウン管6は、微粉炭燃料吹込み用の各支管7を介して分配器8に接続されている。分配器8には、微粉炭燃料の吹込み流量を測定する測定器9が設けられている。分配器8は配管10でフィードタンク11に接続されており、流量調整器12を備えたキャリアガス供給管13が配管10の途中に開口している。
【0009】
フィードタンク11には、リザーバタンク14から微粉炭供給管15を経て微粉炭が送り込まれる。フィードタンク11は、微粉炭が燃焼しない雰囲気に内部を維持すると共に、内部から配管10を経て微粉炭を送り出すために、流量調整器16を備えた加圧窒素ガス供給管17が接続されている。
フィードタンク11から送り出された微粉炭は、キャリアガス供給管13から送り込まれるエア等のキャリアガスによって配管10内を気送され、分配器8に送り込まれ、微粉炭燃料吹込み用の各支管7に分配される。各支管7に分配された微粉炭燃料は、測定器9で流量が測定され、流量調整器18で支管7を通過する微粉炭燃料の流量が調整される。そして、微粉炭燃料は、ダウン管6を経て吹込みランス19から送風支管4に吹き込まれ、熱風と共に高炉1内に吹き込まれる。
【0010】
熱電対温度計2で検出される温度は、温度管理システム20に入力される。温度管理システム20では、入力された温度情報から8時間平均値温度データを算出し、8時間平均値温度データに基づいて炉体の円周方向に関する熱負荷の偏差を判定する。判定結果は、温度管理システム20から微粉炭吹込み量管理システム21に出力される。微粉炭吹込み量管理システム21では、各支管7内を気送される微粉炭の流量を調整する。
次いで、高さ方向に3段で複数の熱電対温度計2を内部に設けた高炉1について、炉内温度分布の偏差量を判定する方法を説明する。炉体の各高さレベルでの90度方位ごとに分割し、各方位の炉体に設けた複数の熱電対温度計2で検出された温度情報を1分データとして90度方位ごとに8時間平均化した。得られた平均値を図2で(a)〜(c)に示す。
【0011】
(a)は、グランドレベルから25620mmの高さにあるS−3ステーブレベルに設置した熱電対温度計2の温度指示値から得られた平均値である。(b)は、グランドレベルから20425mmの高さにあるS−1ステーブレベルに設置した熱電対温度計2の温度指示値から得られた平均値である。(c)は、グランドレベルから17810mmの高さにあるB−2ステーブレベルに設置した熱電対温度計2の温度指示値から得られた平均値である。なお、(a)〜(c)の平均値は、炉体に埋め込んだ熱電対温度計2で得られる温度情報と連動し、8時間間隔で或いは過去8時間のデータを基にして恒常的に更新される。
【0012】
具体的には、S−3ステーブレベルの炉体内部に円周方向に等間隔で埋め込んだ12個の熱電対温度計2に炉体の0度側から時計回りに番号1,2・・を付し、0度から90度の方位にある1〜3番の1分データから8時間平均値をとり、1〜3番の三つで平均した値をT−S−3−1とする。
同様にして、90度から180度をT−S−3−2,180度から270度をT−S−3−3,270度から0度をT−S−3−4とする。このようにして求められた4つの平均値T−S−3−1〜T−S−3−4をグラフ化すると図2(a)になる。図2(b),(c)も同様にS−1ステーブレベル,B−2ステーブレベルで得られた4つの平均値T−S−1−1〜T−S−1−4,T−B−2−1〜T−B−2−4をグラフ化したものである。
【0013】
それぞれの平均値に(0.5〜1.0)の重み係数A,B,Cを乗じ、各方位での高さ方向を合計すると図2(d)の結果が得られる。これが、炉体温度の円周方向分布を指数化したものになる。なお、重み係数A〜Cは、高炉操業時に炉体の高さ方向に関する温度分布が円周方向に関する温度分布に影響する割合を意味し、たとえば高位置にあるS−3ステーブレベルでは係数が1に近く、変動の大きいS−1ステーブレベルやB−2ステーブレベルでは0.5に近い係数を用いて感度を下げる。具体的には、0度から90度をt1 とし、t1 =(T−S−3−1)*A+(T−S−1−1)*B+(T−B−2−1)*Cとしてt1 を求める。同様に、90度から180度をt2 ,180度から270度をt3 ,270度から0度をt4 とする。
【0014】
温度管理システム20では、このようにして各段に複数配置された熱電対温度計2で検出した温度情報に基づき、指数化された炉体温度の円周方向分布を計算し、炉体温度分布に関する各4方位の指数の平均値を微粉炭吹込み量管理システム21に出力する。微粉炭吹込み量管理システム21では、入力された各4方位の指数の平均値に対して、それぞれの方位の指数の偏差に比例させた開度に流量調整器18を調整する。これにより、各支管7を流れる微粉炭燃料の流量が炉内温度バランスに応じて制御される。
具体的には、高炉1に対する微粉炭燃料の全吹込み量をMpcとし、高炉1の0度から90度方位の範囲にある支管7を通過する微粉炭燃料の流量をMpc1 とすると、
pc1 =Mpc*t1 /(t1 +t2 +t3 +t4
となる。
【0015】
同様に、高炉1の90度から180度方位の範囲にある支管7を通過する微粉炭燃料の流量Mpc2 ,高炉1の180度から270度方位の範囲にある支管7を通過する微粉炭燃料の流量Mpc3 ,高炉1の270度から0度方位の範囲にある支管7を通過する微粉炭燃料の流量Mpc4 は、それぞれ次式で求められる。
pc2 =Mpc*t2 /(t1 +t2 +t3 +t4
pc3 =Mpc*t3 /(t1 +t2 +t3 +t4
pc4 =Mpc*t4 /(t1 +t2 +t3 +t4
このようにして、各支管7を通過する微粉炭燃料の流量を炉内温度の円周方向分布に応じて制御しながら微粉炭燃料を高炉1に吹き込む。たとえば、図3の期間2における微粉炭燃料の吹込み実績が図2(e)であったものを、図2(f)のように流量制御すると、炉体の温度分布が改善される。また、高炉1の操業効率を低下させることなく、炉壁に対する付着物の付着・成長が防止され、付着物が除去される。
【0016】
本発明に従った微粉炭燃料の吹込み量制御は、微粉炭吹込み量が150kg/トンを超える多量の微粉炭燃料を吹き込む高炉操業に特に有効である。このような高吹込み量では、高炉に吹き込まれた微粉炭の全量が送風される熱風に含まれている酸素によって燃焼できず、炉壁に付着物を付着・成長させ易い。そこで、炉内の円周方向に沿った温度バランスから付着物の付着・成長状況を判定し、判定結果に応じて微粉炭燃料の吹込み量を制御することにより、温度分布のバランスが良好な方向に改善される。その結果、高炉の操業効率を低下させることなく、炉体の不活性や炉壁への付着物の生成が防止され、しかも高炉の炉壁に付着している付着物も除去される。この点、微粉炭吹込み量が150kg/トンを下回る高炉操業では、吹き込まれた微粉炭の全量が燃焼する炉内環境に維持されることから、微粉炭燃料の吹込み量を高炉の円周方向に制御することによる効果は小さくなる。
【0017】
【実施例】
高さ方向に関して3段で、且つ各段で12個の熱電対温度計2を円周方向に等間隔で炉壁に埋め込んだ高炉1を用いて、微粉炭燃料を吹き込みながら高炉操業した。このときの炉体温度分布を指数化した4方位別の指数と高炉操業指標の推移を図3に示す。
期間1は、本発明に従って微粉炭燃料の吹込み量を制御する前の状態を示し、平成8年11月18日から微粉炭燃料の吹込み量を制御した。期間2では、炉体温度分布を指数化した4方位別の指数に基づいて支管7を通過する微粉炭燃料の流量を制御した。制御の結果、温度管理システム20で指数化した指数が小さい0〜90度方位及び90〜180度方位の指数が上昇し、指数が大きい180〜270度及び270〜0度方位の指数が減少した。このことから、炉体円周方向に関する温度分布の偏差が減少していることが判る。また、温度分布の偏差が改善されていく過程で、生産量の減少や燃料比の増加を招いていないことが判る。このことから、高炉の操業効率を低下させることなく、炉体円周方向に関して温度分布が均一化され、炉内全域が活性化されていることが確認される。
【0018】
【発明の効果】
以上に説明したように、本発明の高炉操業方法では、微粉炭燃料の吹込み量を炉体円周方向に関して制御することにより、炉体温度分布の円周方向偏差が小さくなり、炉壁への付着物生成が抑制され、長期間にわたって操業効率を高位に安定維持することが可能となる。炉壁に付着物が生成した場合でも、高炉の稼動を止める休風等を必要とすることなく、またクリーニング操業のように操業効率を著しく低下させることなく、付着物を除去することができる。しかも、炉体に対する付着物の生成・成長が防止されることから、高炉内荷下り不調をもたらすスリップ,吹抜け等のトラブルの発生を抑制して高炉操業が安定化され、炉体寿命も長くなる。
【図面の簡単な説明】
【図1】 本発明を実施する設備構成の全体図
【図2】 実炉において支管を通過する微粉炭燃料の流量の円周方向バランスを管理する例を説明する図
【図3】 微粉炭燃料の流量を円周方向に制御することにより炉体温度の円周方向バランスが改善されたことを示すグラフ
【符号の説明】
1:高炉 2:熱電対温度計 3:羽口 4:送風支管 5:環状管
6:ダウン管 7:微粉炭燃料供給用の支管 8:分配器 9:測定器
10:配管 11:フィードタンク 12,16,18:流量調整器
13:キャリアガス供給管 14:リザーバタンク 15:微粉炭供給管
17:加圧窒素ガス供給管 19:吹込みランス 20:温度管理システム
21:微粉炭吹込み量の管理システム
[0001]
[Industrial application fields]
The present invention relates to a method for operating a blast furnace with high operational efficiency by blowing pulverized coal fuel from a tuyere of a blast furnace.
[0002]
[Prior art]
In integrated steelmaking, improving the operating efficiency of the blast furnace is one of the most important issues in reducing the cost of steelmaking. In addition, since the oil shock, in order to reduce heavy oil consumption and reduce ironmaking costs, pulverized coal fuel injection operation has been adopted in which pulverized coal is injected into the furnace instead of heavy oil.
However, the deposit may suddenly grow on the furnace wall of the blast furnace due to the disturbance of the thermal load balance of the furnace body. When deposits grow on the furnace wall, the gas flow in the blast furnace is significantly disturbed, which tends to increase the fuel ratio and decrease the operation efficiency. As a result, the ironmaking cost increases and sometimes triggers the furnace condition.
[0003]
As a means for removing deposits, a cleaning operation (cas operation) for temporarily reducing the operation efficiency in order to increase the fuel ratio for a short period of time and lower the pulverized coal ratio to ensure the air permeability of the blast furnace, Is used to reduce the level of the charge in the furnace, and mechanically remove the deposits adhering to the furnace wall in the blast furnace.
As means for removing deposits in the furnace while maintaining the operation efficiency, controlling the flow rate of hot air in the circumferential direction of the furnace is introduced in Japanese Patent Laid-Open No. 6-256821. In this method, a hot air control valve was provided in the hot air branch pipe connected to each tuyere of the blast furnace, and when the temperature decreased due to the formation of deposits on the furnace wall at the top of the tuyere during blast furnace operation, the temperature dropped. The opening degree of the hot air control valve of at least two or more hot air branch pipes corresponding to the location is increased.
[0004]
[Problems to be solved by the invention]
However, in order to improve the operation efficiency of the blast furnace, it is more important to operate the blast furnace under conditions where there is no adhesion or growth of deposits on the furnace wall, rather than removing deposits generated on the furnace wall in the blast furnace. It is. In this regard, the current cleaning operation is based on the assumption that deposits adhere and grow on the furnace wall in the blast furnace, and only removes the deposits that have adhered and grown. Moreover, in the method of removing the deposits adhering to the furnace wall in the blast furnace by the mechanical means by resting wind, the operation efficiency of the blast furnace is lowered during the period until resting wind.
On the other hand, the method of Japanese Patent Laid-Open No. 6-256821 that controls the flow rate of hot air in the circumferential direction by a hot air control valve is advantageous because it can suppress the growth of deposits while maintaining the operation efficiency of the blast furnace. It can be said. However, since it is necessary to provide a hot-air control valve in the hot-air branch pipe connected for every tuyere, the cost concerning a hot-air control valve and its control mechanism becomes high.
The present invention has been devised to solve such problems, and by controlling the amount of pulverized coal fuel injected in the circumferential direction of the furnace body according to the circumferential distribution of the temperature in the furnace, The purpose is to operate the blast furnace with high efficiency while suppressing the generation of deposits on the furnace wall and reducing and removing deposits.
[0005]
[Means for Solving the Problems]
In order to achieve the object of the blast furnace operating method of the present invention, pulverized coal fuel is introduced into the furnace from a blowing lance inserted into a down pipe connected to a tuyere provided in the blast furnace along the circumferential direction. When blowing, temperature information in the circumferential direction of the furnace is taken out by temperature detection means embedded in the furnace wall of the blast furnace at a plurality of stages in the height direction and at equal intervals in the circumferential direction, and the circumference of the furnace temperature is obtained. The amount of deviation regarding the direction is obtained, and the amount of pulverized coal fuel injected into the furnace from each injection lance is calculated based on the amount of deviation. Thus, in the tuyere in the direction where the temperature is low, conversely, the amount of blowing is controlled to be small .
The index of deviation that controls the amount of pulverized coal fuel injected in the circumferential direction of the furnace body is a weight for each height level to the temperature information obtained by the temperature detection means embedded in the furnace wall at each height level. The temperature data is obtained by multiplying the coefficient, and the temperature data in the height direction in each direction obtained by dividing the circumferential direction of the furnace body into a plurality of equal intervals is summed to obtain an index of the deviation of the furnace temperature distribution.
[0006]
[Action]
Under blast furnace operation where the amount of pulverized coal fuel is increased, if an unbalanced situation occurs where the amount of pulverized coal fuel injected is low in only one direction, the carbon supply before tuyere per unit ore in that direction In other words, the carbon consumption before the tuyere decreases. According to the results of a model experiment assuming an actual blast furnace (“Iron and Steel” Vol. 73 (1987), p. 1996), if the consumption of carbon in front of the tuyere in a certain direction (I) is completely stopped, It is said that the descending speed distribution of objects is large in the direction (II) where carbon is consumed as usual in the lower part of the furnace, but conversely, in the upper part of the furnace, it becomes larger in the direction (I) where carbon consumption is completely stopped. Therefore, the residence time from the upper part of the furnace to the lower part of the furnace becomes large in the direction (I) in which the carbon consumption is completely stopped.
From these results, in the direction (I) where the amount of pulverized coal fuel injected is small, the heating time of the solid becomes longer according to the long residence time, and the total amount of heat dissipated from the upper part of the furnace to the lower part of the furnace becomes large. However, when viewed locally, a situation where heat is insufficient at the upper part of the furnace where the descending speed is large occurs, and a tendency for deposits to be generated and grown on the wall of the furnace body is predicted.
[0007]
Therefore, in the present invention, based on the circumferential balance of the furnace body temperature, the amount of pulverized coal fuel is increased at the tuyere in the high temperature direction, and conversely in the tuyere at the low temperature direction. Reduce the amount. The injected pulverized coal fuel generates a local gas flow around the deposit, and the deposit is removed from the furnace wall by reduction and melting by this peripheral gas flow. In this way, by controlling the amount of pulverized coal fuel injected in the circumferential direction of the furnace body, the carbon consumption before the tuyere per unit ore is increased, and the circumferential distribution of the descent speed is set to an appropriate state. Correct it.
[0008]
Embodiment
In the equipment configuration according to the present invention, a thermocouple thermometer 2 is provided in a plurality of stages in the height direction in the blast furnace 1 so that all furnace temperatures of the blast furnace 1 are detected. A plurality are provided in the circumferential direction.
A plurality of tuyere 3 are provided along the circumferential direction at the lower part of the blast furnace 1, and each tuyere 3 is connected to the annular pipe 5 through the blower branch pipe 4. A down pipe 6 for blowing pulverized coal fuel that opens near the tuyere 3 is fed into the blower branch pipe 4. The down pipe 6 is connected to a distributor 8 through each branch pipe 7 for blowing pulverized coal fuel. The distributor 8 is provided with a measuring device 9 for measuring the flow rate of the pulverized coal fuel. The distributor 8 is connected to the feed tank 11 by a pipe 10, and a carrier gas supply pipe 13 having a flow rate regulator 12 is opened in the middle of the pipe 10.
[0009]
The pulverized coal is fed into the feed tank 11 from the reservoir tank 14 through the pulverized coal supply pipe 15. The feed tank 11 is connected to a pressurized nitrogen gas supply pipe 17 provided with a flow rate regulator 16 in order to maintain the inside in an atmosphere in which pulverized coal does not burn and to send the pulverized coal from the inside through the pipe 10. .
The pulverized coal sent out from the feed tank 11 is sent through the pipe 10 by a carrier gas such as air sent from the carrier gas supply pipe 13, sent into the distributor 8, and each branch pipe 7 for blowing pulverized coal fuel. Distributed to. The flow rate of the pulverized coal fuel distributed to each branch pipe 7 is measured by the measuring device 9, and the flow rate of the pulverized coal fuel passing through the branch tube 7 is adjusted by the flow rate regulator 18. Then, the pulverized coal fuel is blown into the blower branch pipe 4 from the blower lance 19 through the down pipe 6 and blown into the blast furnace 1 together with hot air.
[0010]
The temperature detected by the thermocouple thermometer 2 is input to the temperature management system 20. The temperature management system 20 calculates 8-hour average value temperature data from the input temperature information, and determines the deviation of the thermal load in the circumferential direction of the furnace body based on the 8-hour average value temperature data. The determination result is output from the temperature management system 20 to the pulverized coal injection amount management system 21. In the pulverized coal injection amount management system 21, the flow rate of the pulverized coal fed through each branch pipe 7 is adjusted.
Next, a method of determining the deviation amount of the temperature distribution in the furnace for the blast furnace 1 provided with a plurality of thermocouple thermometers 2 in three stages in the height direction will be described. Divided into 90 degree azimuths at each height level of the furnace body, and temperature information detected by a plurality of thermocouple thermometers 2 provided in the furnace body of each azimuth as 1 minute data for 8 hours per 90 degree azimuth Averaged. The average values obtained are shown in FIGS.
[0011]
(A) is an average value obtained from the temperature indication value of the thermocouple thermometer 2 installed at the S-3 stave level at a height of 25620 mm from the ground level. (B) is an average value obtained from the temperature indication value of the thermocouple thermometer 2 installed at the S-1 stave level at a height of 20425 mm from the ground level. (C) is an average value obtained from the temperature indication value of the thermocouple thermometer 2 installed at the B-2 stave level at a height of 17810 mm from the ground level. The average values of (a) to (c) are linked with the temperature information obtained by the thermocouple thermometer 2 embedded in the furnace body, and are constantly at intervals of 8 hours or based on data of the past 8 hours. Updated.
[0012]
Specifically, the numbers 1, 2,... Clockwise from the 0 degree side of the furnace body to 12 thermocouple thermometers 2 embedded at equal intervals in the circumferential direction inside the furnace body at the S-3 stave level. The average value for 8 hours is taken from the 1-minute data of No. 1 to 3 in the direction from 0 to 90 degrees, and the average value of the three of No. 1 to 3 is taken as TS-3-1.
Similarly, 90 degrees to 180 degrees are set to TS-3-2, 180 degrees to 270 degrees are set to TS-3-3, and 270 degrees to 0 degrees are set to TS-3-4. FIG. 2A is a graph of the four average values TS- 3-1 to TS- 3-4 obtained in this way. 2 (b) and 2 (c) similarly show the four average values TS-1-1-1 to TS-1-4, TB obtained at the S-1 stave level and the B-2 stave level. 2-1 to TB-2-4 are graphed.
[0013]
When the average values are multiplied by weighting factors A, B, and C of (0.5 to 1.0) and the height directions in the respective directions are summed, the result shown in FIG. 2D is obtained. This is an index of the circumferential distribution of the furnace temperature. The weighting factors A to C mean the rate at which the temperature distribution in the height direction of the furnace body affects the temperature distribution in the circumferential direction during blast furnace operation. For example, the coefficient is 1 at the S-3 stave level at the high position. For the S-1 stave level and the B-2 stave level, which have a large fluctuation, the sensitivity is lowered using a coefficient close to 0.5. Specifically, t 1 is defined as 0 to 90 degrees, and t 1 = (TS−3-1) * A + (TS−1-1) * B + (T−B−2-1) * Find t 1 as C. Similarly, 90 ° to 180 ° is t 2 , 180 ° to 270 ° is t 3 , and 270 ° to 0 ° is t 4 .
[0014]
The temperature management system 20 calculates the circumferential distribution of the indexed furnace temperature based on the temperature information detected by the thermocouple thermometers 2 arranged in plural in each stage in this way, and the furnace temperature distribution. The average value of the indices in each of the four directions is output to the pulverized coal injection amount management system 21. In the pulverized coal injection amount management system 21, the flow rate regulator 18 is adjusted to an opening degree proportional to the deviation of the index of each direction with respect to the input average value of the index of each four direction. Thereby, the flow volume of the pulverized coal fuel which flows through each branch pipe 7 is controlled according to the furnace temperature balance.
Specifically, if the total amount of pulverized coal fuel injected into the blast furnace 1 is M pc and the flow rate of the pulverized coal fuel passing through the branch pipe 7 in the range of 0 ° to 90 ° azimuth of the blast furnace 1 is M pc1 ,
M pc1 = M pc * t 1 / (t 1 + t 2 + t 3 + t 4 )
It becomes.
[0015]
Similarly, the flow rate M pc2 of the pulverized coal fuel passing through the branch pipe 7 in the range of 90 ° to 180 ° of the blast furnace 1 and the pulverized coal fuel passing through the branch pipe 7 of the blast furnace 1 in the range of 180 ° to 270 ° azimuth. The flow rate M pc3 of the blast furnace 1 and the flow rate M pc4 of the pulverized coal fuel passing through the branch pipe 7 in the range of 270 ° to 0 ° direction of the blast furnace 1 are obtained by the following equations, respectively.
M pc2 = M pc * t 2 / (t 1 + t 2 + t 3 + t 4 )
M pc3 = M pc * t 3 / (t 1 + t 2 + t 3 + t 4 )
M pc4 = M pc * t 4 / (t 1 + t 2 + t 3 + t 4 )
In this manner, the pulverized coal fuel is blown into the blast furnace 1 while controlling the flow rate of the pulverized coal fuel that passes through each branch pipe 7 according to the circumferential distribution of the furnace temperature. For example, if the flow rate of the pulverized coal fuel in the period 2 of FIG. 3 is controlled as shown in FIG. 2F, the temperature distribution of the furnace body is improved. Moreover, adhesion and growth of the deposits on the furnace wall are prevented and the deposits are removed without reducing the operation efficiency of the blast furnace 1.
[0016]
The pulverized coal fuel injection amount control according to the present invention is particularly effective for blast furnace operation in which a large amount of pulverized coal fuel injection amount exceeding 150 kg / ton is injected. With such a high blowing amount, the entire amount of pulverized coal blown into the blast furnace cannot be burned by the oxygen contained in the hot air being blown, and deposits tend to adhere and grow on the furnace wall. Therefore, the adhesion / growth status of deposits is determined from the temperature balance along the circumferential direction in the furnace, and the amount of pulverized coal fuel injection is controlled according to the determination result, so that the balance of temperature distribution is good. Improve in direction. As a result, the inactivation of the furnace body and the generation of deposits on the furnace wall are prevented without lowering the operation efficiency of the blast furnace, and the deposits adhering to the furnace wall of the blast furnace are also removed. In this regard, in blast furnace operation where the pulverized coal injection rate is less than 150 kg / ton, the entire amount of pulverized coal injected is maintained in the furnace environment where combustion occurs. The effect of controlling in the direction is reduced.
[0017]
【Example】
A blast furnace operation was performed while blowing pulverized coal fuel using a blast furnace 1 in which 12 thermocouple thermometers 2 were embedded in the furnace wall at equal intervals in the circumferential direction in three stages in the height direction. FIG. 3 shows the transition of the index for each of the four directions and the blast furnace operation index obtained by indexing the furnace temperature distribution at this time.
Period 1 shows a state before controlling the injection amount of pulverized coal fuel according to the present invention, and the injection amount of pulverized coal fuel was controlled from November 18, 1996. In the period 2, the flow rate of the pulverized coal fuel passing through the branch pipe 7 was controlled based on the index for each of the four directions obtained by indexing the furnace body temperature distribution. As a result of the control, the index of 0-90 degrees azimuth and the index of 90-180 degrees azimuth with a small index indexed by the temperature management system 20 increased, and the indices of 180-270 degrees and 270-0 degrees azimuth with large indices decreased. . From this, it can be seen that the deviation of temperature distribution in the circumferential direction of the furnace body decreases. It can also be seen that there is no decrease in production or increase in fuel ratio in the process of improving the temperature distribution deviation. From this, it is confirmed that the temperature distribution is made uniform in the circumferential direction of the furnace body and the entire interior of the furnace is activated without reducing the operation efficiency of the blast furnace.
[0018]
【The invention's effect】
As described above, in the blast furnace operating method of the present invention, by controlling the amount of pulverized coal fuel injected in the circumferential direction of the furnace body, the circumferential deviation of the furnace body temperature distribution is reduced, and Therefore, it becomes possible to stably maintain the operation efficiency at a high level for a long period of time. Even when deposits are generated on the furnace wall, the deposits can be removed without the need for a wind or the like to stop the operation of the blast furnace and without significantly reducing the operation efficiency as in the cleaning operation. In addition, since the generation and growth of deposits on the furnace body are prevented, the occurrence of slips and blowouts that cause malfunctions in the blast furnace are suppressed, and the operation of the blast furnace is stabilized and the life of the furnace body is extended. .
[Brief description of the drawings]
FIG. 1 is an overall view of an equipment configuration for carrying out the present invention. FIG. 2 is a diagram for explaining an example of managing the circumferential balance of the flow rate of pulverized coal fuel passing through a branch pipe in an actual furnace. Showing that the balance of the furnace body temperature in the circumferential direction has been improved by controlling the flow rate of the pipe in the circumferential direction.
1: blast furnace 2: thermocouple thermometer 3: tuyere 4: blower branch pipe 5: annular pipe 6: down pipe 7: branch pipe for supplying pulverized coal fuel 8: distributor 9: measuring instrument 10: piping 11: feed tank 12 16, 18: Flow rate regulator 13: Carrier gas supply pipe 14: Reservoir tank 15: Pulverized coal supply pipe 17: Pressurized nitrogen gas supply pipe 19: Blowing lance 20: Temperature management system 21: Pulverized coal blowing amount Management system

Claims (2)

円周方向に沿って高炉に複数個設けられた羽口に接続されたダウン管に挿入した吹込みランスから微粉炭燃料を炉内に吹き込む際、高さ方向に関して複数段で且つ各段において円周方向に等間隔で高炉の炉壁に埋め込まれた温度検出手段で炉内円周方向の温度情報を取り出し、炉内温度の円周方向に関する偏差量を求め、当該偏差量に基づいて各吹込みランスから炉内に吹き込まれる微粉炭燃料の吹込み量を、温度が高い方位の羽口では微粉炭燃料の吹込み量が多くなるように、温度が低い方位の羽口では逆に吹込み量が少なくなるように制御することを特徴とする微粉炭燃料吹込みを伴った高炉操業方法。When the pulverized coal fuel is blown into the furnace from the blowing lance inserted into the down pipe connected to the tuyere provided in the blast furnace along the circumferential direction, the pulverized coal fuel has a plurality of stages in the height direction and is circular in each stage. Temperature detection means embedded in the furnace wall of the blast furnace at equal intervals in the circumferential direction retrieves the temperature information in the circumferential direction of the furnace , obtains a deviation amount in the circumferential direction of the furnace temperature, and determines each blow based on the deviation amount. The amount of pulverized coal fuel that is blown into the furnace from the lance lance is reversed when the tuyeres at low temperatures are used, so that the amount of pulverized coal fuel increases at the tuyeres with higher temperatures. A method for operating a blast furnace with pulverized coal fuel injection, characterized in that the amount is controlled to be small . 各高さレベルの炉壁に埋め込まれた温度検出手段で得られた温度情報に各高さレベルごとの重み係数を乗じて温度データとし、炉体円周方向を等間隔で複数に分割した各方位で高さ方向の温度データを合計して炉体温度分布の偏差量を指数化し、求められた指数に基づいて各吹込みランスから炉内に吹き込まれる微粉炭燃料の吹込み量を制御する請求項1記載の高炉操業方法。  The temperature information obtained by the temperature detection means embedded in the furnace wall of each height level is multiplied by a weighting factor for each height level to obtain temperature data, and the furnace body circumferential direction is divided into a plurality at equal intervals. The temperature data in the azimuth direction and the height direction are summed to index the deviation amount of the furnace temperature distribution, and the amount of pulverized coal fuel injected from each injection lance into the furnace is controlled based on the obtained index. The blast furnace operating method according to claim 1.
JP28477497A 1997-10-17 1997-10-17 Blast furnace operating method with pulverized coal fuel injection. Expired - Fee Related JP3844858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28477497A JP3844858B2 (en) 1997-10-17 1997-10-17 Blast furnace operating method with pulverized coal fuel injection.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28477497A JP3844858B2 (en) 1997-10-17 1997-10-17 Blast furnace operating method with pulverized coal fuel injection.

Publications (2)

Publication Number Publication Date
JPH11124609A JPH11124609A (en) 1999-05-11
JP3844858B2 true JP3844858B2 (en) 2006-11-15

Family

ID=17682847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28477497A Expired - Fee Related JP3844858B2 (en) 1997-10-17 1997-10-17 Blast furnace operating method with pulverized coal fuel injection.

Country Status (1)

Country Link
JP (1) JP3844858B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854200B2 (en) * 2011-09-22 2016-02-09 Jfeスチール株式会社 Blast furnace operation method
JP6382145B2 (en) * 2015-04-15 2018-08-29 株式会社Ihi環境エンジニアリング Fuel supply apparatus and fuel supply method
CN114807475A (en) * 2022-05-30 2022-07-29 李观升 Novel-structure coal injection device of blast furnace iron-making energy-saving low-carbon powder making and injection system
CN115386664B (en) * 2022-08-30 2023-07-14 鞍钢股份有限公司 Method for improving tuyere temperature uniformity by adjusting flow of pulverized coal branch pipe of blast furnace

Also Published As

Publication number Publication date
JPH11124609A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
JP3844858B2 (en) Blast furnace operating method with pulverized coal fuel injection.
EP2410065B1 (en) Blast furnace operation method
WO1999023262A1 (en) Method of operating blast furnace
JP2007277630A (en) Method for controlling injection of fine powdery coal into blast furnace
JPH10310808A (en) Operation of blast furnace
JP5724654B2 (en) Apparatus and method for injecting reducing material into blast furnace
KR101191969B1 (en) Control device and control method for reduction gas of pig iron manufacturing equipment
BR202021023679Y1 (en) CONSTRUCTIVE ARRANGEMENT APPLIED IN FEEDER EQUIPMENT FOR BLAST FURNACE
JPH09209008A (en) Method for protecting furnace bottom part of blast furnace
JP2921392B2 (en) Blast furnace operation method
JP2004300504A (en) Method for controlling heat load in circumferential direction of blast furnace in blowing of pulverized fine coal
JPH062885B2 (en) Blast furnace charging method for fine-grained sintered ore
JP3796059B2 (en) Temperature control method in blast furnace raceway
JPH04301013A (en) Method for operating blast furnace
JP3016948B2 (en) Blast furnace operation method
KR101525190B1 (en) METHOD FOR REMOVING EXTRANEOUS MATTER IN IN GAS DUCT OF melting FURNACE
JPS6050103A (en) Method for operating blast furnace
JP2921374B2 (en) Blast furnace operation method
KR20010062899A (en) Method for improving dedman permeability by injecting steam and oxygen in blast furnace tuyere
JP2003096511A (en) Method for operating blast furnace
JPH1150113A (en) Injection of pulverized fine coal into blast furnace
BR202021023679U2 (en) CONSTRUCTIVE ARRANGEMENT APPLIED IN FEEDER EQUIPMENT FOR Blast Furnaces
JPH05179324A (en) Operating method for blast furnace
JP2007284725A (en) Blast furnace operation method
JP2005314771A (en) Blast furnace facility and method for charging raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees