JP2005314771A - Blast furnace facility and method for charging raw material - Google Patents

Blast furnace facility and method for charging raw material Download PDF

Info

Publication number
JP2005314771A
JP2005314771A JP2004135905A JP2004135905A JP2005314771A JP 2005314771 A JP2005314771 A JP 2005314771A JP 2004135905 A JP2004135905 A JP 2004135905A JP 2004135905 A JP2004135905 A JP 2004135905A JP 2005314771 A JP2005314771 A JP 2005314771A
Authority
JP
Japan
Prior art keywords
furnace
blast furnace
raw material
cylindrical member
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004135905A
Other languages
Japanese (ja)
Inventor
Yasuhei Nouchi
泰平 野内
Takeshi Sato
健 佐藤
Michitaka Sato
道貴 佐藤
Tatsuro Ariyama
達郎 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004135905A priority Critical patent/JP2005314771A/en
Publication of JP2005314771A publication Critical patent/JP2005314771A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blast furnace facility with which only gas flowing extremely near the furnace wall in the blast furnace body can independently be controlled, and the consumption of coke can be reduced and the utilizing ratio of the gas can be improved. <P>SOLUTION: The blast furnace body 1 and a cylindrical member 14 disposed along the outer peripheral part of the furnace opening hole 1a in a piling surface of raw materials at the furnace top 2 of the blast furnace body 1, are included and the raw materials are charged from the furnace opening hole 1a in a state in which the cylindrical member 14 is arranged. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高炉炉体の炉壁極近傍のガス流制御が可能な高炉設備およびその原料装入方法に関する。   The present invention relates to a blast furnace facility capable of controlling gas flow in the vicinity of a furnace wall pole of a blast furnace body and a raw material charging method thereof.

高炉は、巨大な向流充填層反応容器であり、その炉壁の最高温度は1000℃を超える一方、20年を超える長寿命が要求される。炉内における原料降下による摩耗や熱衝撃に長時間耐え得るのは、亜鉛とアルカリ化合物により生成する炉壁付着物層が存在するためである。しかし、炉壁付着物層が厚すぎると、炉内実稼働容積減少、原料降下の不安定化、脱落時の吸熱反応による炉冷トラブルなどの原因となるため、その厚さを適切に管理することが重要である。   The blast furnace is a huge counter-current packed bed reaction vessel, and the maximum temperature of the furnace wall exceeds 1000 ° C., but a long life exceeding 20 years is required. The reason for being able to withstand long-term wear and thermal shock due to the material dropping in the furnace is that there is a furnace wall deposit layer formed by zinc and an alkali compound. However, if the furnace wall deposit layer is too thick, it will cause a decrease in the actual working volume in the furnace, destabilization of the material drop, and furnace cooling trouble due to endothermic reaction at the time of dropping. is important.

炉壁付着物厚を制御する方法としては、装入物分布による炉半径方向ガス分布制御が一般的に行われている。亜鉛やアルカリの多い安価劣質原料を使用する場合、より強い炉壁流を確保して炉壁付着物の過度な成長を抑制する必要がある。   As a method for controlling the thickness of the furnace wall deposit, gas distribution control in the furnace radial direction by charge distribution is generally performed. When using an inexpensive inferior raw material rich in zinc or alkali, it is necessary to secure a stronger furnace wall flow and suppress excessive growth of furnace wall deposits.

炉半径方向のガス流の強さは、ガス中のCO濃度(ガス利用率ηCO)により測定することができる。ガス流速が大きいほど還元ガスの反応時間が短いためηCOは小さくなる。炉壁流の強さの指数として、半径方向の最大ηCOと炉壁のηCOの差をとり、国内外の高炉における亜鉛量との関係を図5に示す。この図から、亜鉛の多い原料を使用する場合はより強い炉壁流を指向して亜鉛の過度の付着を防止していることがわかる。 The strength of the gas flow in the furnace radial direction can be measured by the CO 2 concentration in the gas (gas utilization rate η CO ). Higher gas flow velocity is greater eta CO for a short reaction time of the reducing gas decreases. As the strength index of the Rokaberyu takes the difference between the maximum eta CO and furnace wall of eta CO radial, Figure 5 shows the relationship between the zinc content in the domestic and foreign blast furnace. From this figure, it can be seen that when a raw material rich in zinc is used, a stronger furnace wall flow is directed to prevent excessive adhesion of zinc.

安価な高亜鉛原料を使用する場合、強い炉壁流が必須であるが、炉壁付近が占める面積は広いため、全体のガス利用率を低下させ、還元材比を低減しつつ付着物層厚の肥大化を避けるには、炉壁極近傍のみを低ガス利用率としつつ、それ以外のほとんどの領域を高ガス利用率にする必要がある。このため、従来は、図6に示すように、高炉炉体21の炉口22から原料を装入する際に、鉱石より通気性の良いコークスを炉壁23近傍に集中して装入することにより炉壁の通気性を確保することが行われている。   When using inexpensive high zinc raw material, a strong furnace wall flow is essential, but the area occupied by the furnace wall is large, so the overall gas utilization rate is reduced, and the deposit layer thickness is reduced while reducing the reducing material ratio. In order to avoid the enlargement of the gas, it is necessary to make only the vicinity of the furnace wall pole a low gas utilization rate and to make the other regions have a high gas utilization rate. For this reason, conventionally, as shown in FIG. 6, when charging the raw material from the furnace port 22 of the blast furnace body 21, the coke having better air permeability than the ore is concentrated and charged near the furnace wall 23. As a result, the air permeability of the furnace wall is secured.

しかしながら、このような方法を採用する場合には、炉壁近傍のガス流のみを独立に制御することはできないので、高炉全体のガス利用率が低くなり、使用するコークス量が増加してしまうため不経済である。また、使用したコークスは製鉄所外に排出される段階でCOになるため、コークス使用量の増加はCO発生量の増加に直結するといった環境問題にもなる。 However, when such a method is adopted, it is not possible to independently control only the gas flow in the vicinity of the furnace wall, so the gas utilization rate of the entire blast furnace is lowered and the amount of coke to be used is increased. It is uneconomical. In addition, since the used coke becomes CO 2 at the stage of being discharged outside the steelworks, an increase in the amount of coke used is also an environmental problem that directly leads to an increase in the amount of CO 2 generated.

一方、従来、種々の目的で、原料の装入を制御する方法が提案されているが(特許文献1,2等)、これらの技術においても炉壁近傍のガス流のみを独立に制御するということは考慮されていない。
特開昭60−93287号公報 特開平6−279819号公報
On the other hand, methods for controlling the charging of raw materials have been proposed for various purposes (Patent Documents 1, 2, etc.), but these techniques also independently control only the gas flow near the furnace wall. That is not taken into account.
JP 60-93287 A JP-A-6-279819

本発明はかかる事情に鑑みてなされたものであって、高炉炉体の炉壁極近傍のガス流のみを独立して制御することができ、コークス使用量低減およびガス利用率の向上を図ることができる高炉設備およびそのようなことが可能な高炉設備における原料装入方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and can independently control only the gas flow in the vicinity of the furnace wall pole of the blast furnace body, thereby reducing the amount of coke used and improving the gas utilization rate. It is an object of the present invention to provide a blast furnace facility capable of performing the above and a raw material charging method in such a blast furnace facility capable of such.

上記課題を解決するために、本発明は、高炉炉体と、前記高炉炉体の炉頂の原料装入堆積面に炉口外周部に沿って配置される円筒部材とを有し、前記円筒部材を配置した状態で前記炉口から原料が装入されることを特徴とする高炉設備を提供する。   In order to solve the above problems, the present invention comprises a blast furnace furnace body, and a cylindrical member disposed along a furnace port outer peripheral portion on a raw material charging deposition surface at the top of the blast furnace furnace body, and the cylinder Provided is a blast furnace facility in which a raw material is charged from the furnace port in a state where members are arranged.

また、本発明は、円筒部材を高炉炉体の炉頂の原料装入堆積面に炉口外周部に沿って配置し、その状態で、前記炉口から原料を装入することを特徴とする高炉設備における原料装入方法を提供する。   Further, the present invention is characterized in that a cylindrical member is disposed on the raw material charging and deposition surface at the top of the blast furnace body along the outer periphery of the furnace port, and in this state, the raw material is charged from the furnace port. A raw material charging method in a blast furnace facility is provided.

本発明によれば、炉頂の原料装入堆積面に炉口外周部に沿って円筒部材を配置し、その状態で炉口から原料を装入するようにしたので、装入原料のうちコークスを円筒部材と炉壁との間の炉壁極近傍に集中して供給することができる。したがって、炉壁極近傍のガス流のみを独立して制御することができ、炉壁流を安定して確保し、それ以外の部分を高ガス利用率とすることができるので、炉壁への亜鉛等の付着を防止しつつ高炉全体のガス利用率を向上させることができる。また、円筒部材と炉壁との間の炉壁極近傍のみにコークスを集中して装入するのでコークス使用量を削減することができ、溶銑コストを低減することができるとともに、発生COを削減することができる。 According to the present invention, the cylindrical member is disposed along the outer periphery of the furnace port on the raw material charging and deposition surface at the top of the furnace, and the raw material is charged from the furnace port in this state. Can be concentrated in the vicinity of the furnace wall pole between the cylindrical member and the furnace wall. Therefore, only the gas flow in the vicinity of the furnace wall pole can be controlled independently, the furnace wall flow can be secured stably, and the other portions can have a high gas utilization rate. The gas utilization rate of the entire blast furnace can be improved while preventing the adhesion of zinc or the like. Further, since coke is concentrated and charged only in the vicinity of the furnace wall pole between the cylindrical member and the furnace wall, the amount of coke used can be reduced, the hot metal cost can be reduced, and the generated CO 2 can be reduced. Can be reduced.

以下、本発明の実施形態について説明する。
図1は本発明の一実施形態に係る高炉設備の全体構造を概略的に示す模式図である。この図に示すように、この高炉設備は、高炉炉体1を有し、この高炉炉体1は、上方から順に炉頂部2、シャフト部3、炉腹部4、炉底部5となっている。そして、高炉炉体1の炉頂部2には装入装置6が設けられており、この装入装置6から炉口1aを介して高炉炉体1内に主に鉄鉱石およびコークスからなる原料7が装入される。炉底部5には、炉内反応を生じさせるための熱風を吹き込む複数の羽口8が円周状に設けられており、この羽口8は熱風送風管9から送られてきた熱風を高炉炉体1内に吹き込む。羽口8から送風される領域には羽口8から吹き込まれる衝風のエネルギーによってコークスが押しのけられてできる空間であるレースウェイ11が形成される。炉底部5に存在する湯溜まり部12には、炉内反応により生成された溶銑およびスラグが溶銑層およびスラグ層として存在し、溶銑およびスラグは出銑口13から周期的に排出される。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a schematic view schematically showing the entire structure of a blast furnace facility according to an embodiment of the present invention. As shown in this figure, this blast furnace facility has a blast furnace furnace body 1, and this blast furnace furnace body 1 has a furnace top portion 2, a shaft portion 3, a furnace belly portion 4, and a furnace bottom portion 5 in order from above. And the charging device 6 is provided in the furnace top part 2 of the blast furnace furnace body 1, The raw material 7 which consists mainly of iron ore and coke from this charging device 6 into the blast furnace furnace body 1 via the furnace port 1a. Is inserted. A plurality of tuyere 8 for blowing hot air for generating an in-furnace reaction is provided in the furnace bottom 5 in a circular shape, and the tuyere 8 sends hot air sent from a hot air blower tube 9 to the blast furnace. Blow into the body 1. In the area blown from the tuyere 8, a raceway 11 is formed, which is a space formed by the coke being pushed away by the energy of the blast blowing from the tuyere 8. Hot water and slag generated by the in-furnace reaction are present as a hot metal layer and a slag layer in the hot water pool portion 12 present in the furnace bottom 5, and the hot metal and slag are periodically discharged from the spout 13.

また、高炉炉体1の炉頂部2の原料装入堆積面7aには炉口1a外周部に沿って円筒部材14が配置される。この円筒部材14は、炉口1aから装入され、原料堆積面に差し込まれる。そして、円筒部材14と炉壁1bとの間に炉壁装入部15が形成される。この炉壁装入部15の幅は狭いほどよいが、実際には、装入原料の落下幅、炉口パネルと円筒部材14の経年変形、円筒部材14による原料降下の抑制などを勘案して決定される。具体的には400〜1500mm程度である。   A cylindrical member 14 is disposed along the outer periphery of the furnace port 1a on the raw material charging and deposition surface 7a of the top 2 of the blast furnace body 1. The cylindrical member 14 is inserted from the furnace port 1a and inserted into the raw material deposition surface. And the furnace wall insertion part 15 is formed between the cylindrical member 14 and the furnace wall 1b. The width of the furnace wall charging portion 15 is preferably as narrow as possible, but in practice, considering the fall width of the charged raw material, the aging of the furnace port panel and the cylindrical member 14, the suppression of the raw material drop by the cylindrical member 14, etc. It is determined. Specifically, it is about 400-1500 mm.

このように構成される高炉設備では、このように円筒部材14が配置された状態で原料である鉄鉱石およびコークスが装入される。コークスが装入される場合には、円筒部材14と炉壁1bとの間の炉壁装入部15に集中して供給することができる。コークスは鉄鉱石より通気性が良いので、このように炉壁極近傍部分に集中してコークスを供給することにより炉壁流を安定して確保することができる。他の部分については、コークス装入量を少なくすることによりガス利用率を高くすることができる。また、炉壁部分に集中してコークスを供給することができるのでコークス使用量自体を削減することができる。このため、コークス比と還元材比が低下し、CO排出量と溶銑コストを低下させることができる。 In the blast furnace equipment configured as described above, iron ore and coke as raw materials are charged in a state where the cylindrical member 14 is arranged in this manner. When the coke is charged, it can be concentrated and supplied to the furnace wall charging portion 15 between the cylindrical member 14 and the furnace wall 1b. Since coke has better air permeability than iron ore, the furnace wall flow can be stably ensured by supplying coke in a concentrated manner in the vicinity of the furnace wall pole. For other parts, the gas utilization rate can be increased by reducing the amount of coke charged. Further, since coke can be supplied concentrated on the furnace wall portion, the amount of coke used can be reduced. Therefore, it is possible reducing agent ratio and the coke ratio reduces reduced, CO 2 emissions and hot metal costs.

次に、本発明の効果を確認するために、4000mの高炉の1/15縮尺模型による実験を行った結果について説明する。図2に実験装置の模式図を示す。(a)は従来型のものであり、(b)は本発明の円筒部材を用いたものである。なお、この模型の炉口の直径は600mmであり、円筒部材と炉壁との間の距離は60mmが例示される。図2の(a)に示すように、従来型のものでは、鉄鉱石よりも通気性の良いコークスを炉壁部に集中させるようにコークスを装入するが、炉壁極近傍部に集中させることは困難である。これに対して図2の(b)に示すように、本発明のものでは円筒部材の存在によりコークスを炉壁極近傍部に集中させることができる。図3に模型実験による原料の堆積形状と風速測定結果を示す。 Next, in order to confirm the effect of the present invention, the results of experiments using a 1/15 scale model of a 4000 m 3 blast furnace will be described. FIG. 2 shows a schematic diagram of the experimental apparatus. (A) is a conventional type, and (b) is one using the cylindrical member of the present invention. The diameter of the furnace port of this model is 600 mm, and the distance between the cylindrical member and the furnace wall is exemplified as 60 mm. As shown in FIG. 2 (a), in the conventional type, coke is charged so as to concentrate coke having better air permeability than iron ore on the furnace wall, but it is concentrated in the vicinity of the furnace wall pole. It is difficult. On the other hand, as shown in FIG. 2B, in the present invention, coke can be concentrated in the vicinity of the furnace wall pole due to the presence of the cylindrical member. FIG. 3 shows the raw material deposition shape and the wind speed measurement result by a model experiment.

図3の(a),(b)は堆積形状測定結果であり、(a)が従来のもの、(b)が本発明の円筒部材を用いたものである。なお、これらに示すように、円筒部材を用いたものについては、円筒部材の外側に装入されるコークスの量は従来と同じコークス層厚になるように設定した。また、ここでは、円筒部材と炉壁との距離を極力小さくし、25mmになるようにした。これらに示すように、本発明の円筒部材を用いたものは、円筒部材の存在により円筒より内側に装入するコークスを減少させることができ、コークス装入量の総量を(a)の従来の場合に比べて20%削減することができた。   FIGS. 3A and 3B show the measurement results of the deposited shape, where FIG. 3A shows the conventional one, and FIG. 3B shows the one using the cylindrical member of the present invention. In addition, as shown in these figures, in the case of using a cylindrical member, the amount of coke charged to the outside of the cylindrical member was set so as to have the same coke layer thickness as before. Here, the distance between the cylindrical member and the furnace wall is made as small as possible to 25 mm. As shown in these figures, the use of the cylindrical member of the present invention can reduce the amount of coke charged inside the cylinder due to the presence of the cylindrical member, and the total amount of coke charged is the conventional amount of (a). It was possible to reduce 20% compared to the case.

一方、図3の(c),(d)は風速測定結果であり、(c)が従来のもの、(d)が本発明の円筒部材を用いたものである。これらに示すように、円筒部材を用いることにより、炉壁ガス流を従来と同等に維持しつつ、円筒より内側ではガス流を抑制することができ、ガス利用率を従来よりも高めることができていることがわかる。   On the other hand, (c) and (d) in FIG. 3 are the wind speed measurement results, (c) is the conventional one, and (d) is the one using the cylindrical member of the present invention. As shown in these figures, by using a cylindrical member, it is possible to suppress the gas flow inside the cylinder while maintaining the furnace wall gas flow equivalent to the conventional one, and to increase the gas utilization rate compared to the conventional one. You can see that

以下、本発明の実施例について説明する。
ここでは、本発明を内容積4000m級の高炉設備に適用した例を示す。この高炉設備のコークス比は360kg/t、微粉炭吹き込み量は140kg/t、還元材比は500kg/tである。この高炉設備においては、ガス利用率向上とコークス比低減を目的として炉壁のコークス量を減少させると、亜鉛の排出量が減少して原料降下不調や溶銑温後急低下などの操業不調に陥る傾向があった。
Examples of the present invention will be described below.
Here, an example in which the present invention is applied to a blast furnace facility having an internal volume of 4000 m 3 is shown. The blast furnace equipment has a coke ratio of 360 kg / t, a pulverized coal injection amount of 140 kg / t, and a reducing material ratio of 500 kg / t. In this blast furnace facility, if the amount of coke on the furnace wall is reduced for the purpose of improving the gas utilization rate and reducing the coke ratio, the zinc emission will decrease, resulting in an operational failure such as an unsatisfactory material drop or a rapid decrease after hot metal temperature. There was a trend.

このような高炉設備の高炉炉体に図1に示すように円筒部材を設置した。円筒部材は炉口半径で炉壁から10%の位置に設置した。図4に円筒部材設置前後の操業推移を示す。この図に示すように、円筒部材を設置後にガス利用率が約2%向上し、亜鉛排出量は同等に維持されていることが確認された。炉壁極近傍のガス流を維持しつつ円筒部材より内側のコークス量を減少させたため、亜鉛排出量を維持しつつガス利用率が向上したとものと考えられる。また、装入するコークス量が減ったため、コークス比と還元材比が低下し、CO排出量と溶銑コストを低減することができた。 A cylindrical member was installed in the blast furnace body of such a blast furnace facility as shown in FIG. The cylindrical member was installed at a position 10% from the furnace wall with the radius of the furnace port. FIG. 4 shows the operation transition before and after the installation of the cylindrical member. As shown in this figure, it was confirmed that the gas utilization rate was improved by about 2% after the installation of the cylindrical member, and the zinc discharge was maintained at the same level. Since the amount of coke inside the cylindrical member was reduced while maintaining the gas flow in the vicinity of the furnace wall pole, it is considered that the gas utilization rate was improved while maintaining the zinc discharge. Further, since the amount of coke to be charged was reduced, the coke ratio and the reducing material ratio were reduced, and the CO 2 emission amount and the hot metal cost could be reduced.

本発明に係る高炉設備を示す模式図。The schematic diagram which shows the blast furnace equipment concerning this invention. 本発明の効果を確認するために用いた実験装置の模式図。The schematic diagram of the experimental apparatus used in order to confirm the effect of this invention. 図2の装置での実験結果を示す図。The figure which shows the experimental result with the apparatus of FIG. 本発明の実施例における効果を示す図。The figure which shows the effect in the Example of this invention. 従来の高炉設備における炉壁ガス流と原料中亜鉛量との関係を示す図。The figure which shows the relationship between the furnace wall gas flow and the amount of zinc in a raw material in the conventional blast furnace equipment. 従来の高炉設備における原料装入状態を示す模式図。The schematic diagram which shows the raw material charging state in the conventional blast furnace equipment.

符号の説明Explanation of symbols

1……高炉炉体
1a……炉口
1b……炉壁
2……炉頂部
6……装入装置
7……原料
14……円筒部材
DESCRIPTION OF SYMBOLS 1 ... Blast furnace body 1a ... Furnace 1b ... Furnace wall 2 ... Furnace top part 6 ... Charger 7 ... Raw material 14 ... Cylindrical member

Claims (2)

高炉炉体と、前記高炉炉体の炉頂の原料装入堆積面に炉口外周部に沿って配置される円筒部材とを有し、前記円筒部材を配置した状態で前記炉口から原料が装入されることを特徴とする高炉設備。   A blast furnace furnace body, and a cylindrical member disposed along the outer periphery of the furnace mouth on the raw material charging and deposition surface at the top of the blast furnace furnace body, and the raw material is fed from the furnace mouth with the cylindrical member disposed. Blast furnace equipment characterized by being charged. 円筒部材を高炉炉体の炉頂の原料装入堆積面に炉口外周部に沿って配置し、その状態で、前記炉口から原料を装入することを特徴とする高炉設備における原料装入方法。   Raw material charging in a blast furnace facility characterized in that a cylindrical member is arranged along the outer periphery of the furnace port on the raw material charging and deposition surface at the top of the blast furnace body, and in this state, the raw material is charged from the furnace port. Method.
JP2004135905A 2004-04-30 2004-04-30 Blast furnace facility and method for charging raw material Pending JP2005314771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004135905A JP2005314771A (en) 2004-04-30 2004-04-30 Blast furnace facility and method for charging raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004135905A JP2005314771A (en) 2004-04-30 2004-04-30 Blast furnace facility and method for charging raw material

Publications (1)

Publication Number Publication Date
JP2005314771A true JP2005314771A (en) 2005-11-10

Family

ID=35442494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004135905A Pending JP2005314771A (en) 2004-04-30 2004-04-30 Blast furnace facility and method for charging raw material

Country Status (1)

Country Link
JP (1) JP2005314771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270190A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Ind Ltd Operation method of blast furnace after having lowered stock level and stopped blasting
WO2013179541A1 (en) 2012-05-28 2013-12-05 新日鐵住金株式会社 Method for charging raw material into bell-less blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270190A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Ind Ltd Operation method of blast furnace after having lowered stock level and stopped blasting
WO2013179541A1 (en) 2012-05-28 2013-12-05 新日鐵住金株式会社 Method for charging raw material into bell-less blast furnace

Similar Documents

Publication Publication Date Title
JP4697340B2 (en) Blast furnace operation method
JP4745731B2 (en) Method of melting hot metal with cupola
WO2015196887A1 (en) Continuous side-blast tin smelting technique
CN106011341B (en) The method that blast furnace process schreyerite carries high-coal ratio
CN103993116B (en) Double tower flash iron-smelting furnace and iron smelting method
CA2698888C (en) Method for manufacturing molten iron
RU2591925C2 (en) Method for direct melting
CN106086281A (en) The ironmaking of a kind of flash and the integrated apparatus of coal gas and method
CN208748139U (en) A kind of electric furnace smelting device
JP2005314771A (en) Blast furnace facility and method for charging raw material
CN202836150U (en) Deep cupola well rock wool cupola furnace
JP5023490B2 (en) Operation method for reducing coal in steelworks
CN204625746U (en) Adopt the device of winding-up shaft furnace production ferronickel water
JP5779839B2 (en) Blast furnace operation method
JP4893291B2 (en) Hot metal production method using vertical scrap melting furnace
US20180355448A1 (en) Flash ironmaking system and method
JP2011032584A (en) Method for operating blast furnace
CN103026161B (en) Remove the method and system that in smelting furnace, furnace accretion is piled up
JP2008007802A (en) Concentrate burner, and method for operating flash smelting furnace using it
CN220670180U (en) Cyclone smelting furnace
JP2002105517A (en) Method for operating blast furnace
JP4893290B2 (en) Hot metal production method using vertical scrap melting furnace
JP4992407B2 (en) Hot metal production method using vertical scrap melting furnace
CN101934283B (en) Dust suppression device and dust suppression method during molten iron open-air transportation
WO2015196888A1 (en) Continuous side-blast tin smelting apparatus