JP5854200B2 - Blast furnace operation method - Google Patents
Blast furnace operation method Download PDFInfo
- Publication number
- JP5854200B2 JP5854200B2 JP2011207264A JP2011207264A JP5854200B2 JP 5854200 B2 JP5854200 B2 JP 5854200B2 JP 2011207264 A JP2011207264 A JP 2011207264A JP 2011207264 A JP2011207264 A JP 2011207264A JP 5854200 B2 JP5854200 B2 JP 5854200B2
- Authority
- JP
- Japan
- Prior art keywords
- blast furnace
- circumferential direction
- amount
- furnace
- pulverized coal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 14
- 239000011449 brick Substances 0.000 claims description 35
- 230000004907 flux Effects 0.000 claims description 28
- 239000003245 coal Substances 0.000 claims description 27
- 238000011017 operating method Methods 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 62
- 229910052742 iron Inorganic materials 0.000 description 31
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000007664 blowing Methods 0.000 description 4
- 239000000571 coke Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 238000009933 burial Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000036555 skin type Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Manufacture Of Iron (AREA)
- Blast Furnaces (AREA)
Description
本発明は、高炉寿命の延長を図ることのできる高炉の操業方法に関するものである。 The present invention relates to a method for operating a blast furnace capable of extending the life of the blast furnace.
高炉は、炉頂より鉄鉱石、コークスおよび石灰石などの原料を装入し、下部にある複数の羽口より熱風を吹込んでコークスを燃焼させ、生じたCOガスにより鉄鉱石を加熱、還元して溶解し、炉底部に溜まった銑鉄およびスラグを取り出すトックリ型の巨大な竪型炉である。 A blast furnace is charged with raw materials such as iron ore, coke and limestone from the top of the furnace, and hot air is blown from a plurality of tuyeres at the bottom to burn the coke, and the iron ore is heated and reduced by the generated CO gas. It is a huge dredge type furnace that melts and collects pig iron and slag accumulated at the bottom of the furnace.
高炉は、鉄皮式の場合、図1に示すように、外側を鉄皮と称する厚い鉄板で覆い、その内側に鉄皮を保護するための耐火煉瓦が厚く張られ、また、鉄皮と耐火煉瓦との間には、要所々々に、内部に冷却水を通して鉄皮を冷却する銅製または鋳鋼製のステーブが配設され、鉄皮とステーブ間およびステーブとレンガ間には不定形耐火物が充填されているのが普通である。 In the case of a blast furnace, as shown in Fig. 1, the outer surface of the blast furnace is covered with a thick iron plate called an iron skin, and a refractory brick for protecting the iron skin is stretched thickly inside the blast furnace. Between the bricks, copper or cast steel staves that cool the iron skin through cooling water are arranged at various points, and irregular refractories are placed between the iron skin and the stave and between the stave and the brick. Usually it is filled.
近年、高炉操業技術等の進歩によって、高炉の寿命は20年以上にまでなってきている。しかし、高炉の寿命をさらに延長するためには、鉄皮への熱負荷を軽減し、鉄皮の損傷を極力低減してやることが重要である。しかし、高炉の炉底部側、特に熱風を吹き込む羽口の直上部は、炉内温度が2000℃を超える高温となっており、耐火煉瓦には大きな熱負荷がかかる。そのため、長年、使用し続けた場合には、鉄皮の内側に張られた耐火煉瓦は徐々に損耗したり、耐火煉瓦に亀裂が生じたりして、鉄皮に掛かる熱負荷が徐々に増大し、高炉寿命に大きな悪影響を与える。 In recent years, due to advances in blast furnace operation technology and the like, the life of blast furnaces has reached 20 years or more. However, in order to further extend the life of the blast furnace, it is important to reduce the heat load on the iron skin and to reduce damage to the iron skin as much as possible. However, the furnace bottom side of the blast furnace, particularly directly above the tuyere where hot air is blown, has a high temperature in the furnace exceeding 2000 ° C., and a large heat load is applied to the refractory brick. For this reason, if used continuously for many years, the refractory bricks stretched inside the iron skin will gradually wear out or cracks will occur in the refractory brick and the heat load on the iron skin will gradually increase. This has a major negative impact on the blast furnace life
そこで、高炉炉内に張られた耐火煉瓦内に熱電対を埋設し、温度を測定することで、耐火煉瓦の損耗状態を把握することが一般に行われている。例えば、特許文献1には、炉内方向に常時押圧力を付与した熱電対により測定した高炉炉底側壁部の温度および冷却水温度をもとに、鉄皮の膨張収縮に伴う不定形耐火物の空気層厚さを算出して炉底耐火物温度を推定し、その値に基づき前記空気層を消失させるべく、補修を行う技術が開示されている。 Therefore, it is generally performed to grasp the wear state of the refractory brick by embedding a thermocouple in the refractory brick stretched in the blast furnace furnace and measuring the temperature. For example, Patent Document 1 discloses an indeterminate refractory material associated with the expansion and contraction of the iron skin based on the temperature of the bottom wall of the blast furnace furnace and the temperature of the cooling water measured by a thermocouple with a constant pressing force in the furnace direction. A technique is disclosed in which a furnace refractory temperature is estimated by calculating the thickness of the air layer, and repair is performed in order to eliminate the air layer based on the estimated value.
また、近年では、原料コスト削減の観点から、高炉炉底部の円周方向に30数個配設された、熱風を吹き込む羽口から微粉炭等を吹き込むことで、鉱石とコークスの比である装入比(O/C)を高くした操業が行われるようになってきている(図2参照)。しかし、この高O/C操業は、高炉の安定操業を難しくするという問題がある。そこで、この問題を解決するため、特許文献2には、高炉羽口からの微粉炭吹き込みに際して、二重管または三重管ランスを用い、揮発分が低い微粉炭を内管中内部から供給するとともに、冷風を内管と外管の間から供給し、その冷風の速度および/または風量を調整変更することで、炉芯表層の温度を高める技術が開示されている。また、特許文献3には、円周方向に沿って高炉に複数個設けられた羽口から微粉炭燃料を炉内に吹き込む際、高さ方向に複数段でかつ各段において円周方向に等間隔で高炉の炉壁に埋め込まれた温度検出手段で炉内円周方向の温度情報を取り出し、炉内温度の円周方向に関する偏差量を求め、各吹込みランスからの微粉炭燃料の吹込み量を偏差量に基づいて制御する技術が開示されている。 In recent years, from the viewpoint of reducing raw material costs, 30 or more pulverized coals are blown from the tuyere where hot air is blown in the circumferential direction of the bottom of the blast furnace furnace. Operations with a high input ratio (O / C) are being carried out (see FIG. 2). However, this high O / C operation has a problem of making it difficult to stably operate the blast furnace. Therefore, in order to solve this problem, in Patent Document 2, when pulverized coal is blown from the blast furnace tuyere, a double tube or a triple tube lance is used to supply pulverized coal having a low volatile content from the inside of the inner tube. A technique is disclosed in which the temperature of the furnace core surface layer is increased by supplying cold air from between the inner tube and the outer tube and adjusting and changing the speed and / or air volume of the cold air. Further, in Patent Document 3, when pulverized coal fuel is blown into a furnace from a tuyere provided in a plurality in the blast furnace along the circumferential direction, there are a plurality of stages in the height direction and the circumferential direction in each stage. The temperature detection means embedded in the furnace wall of the blast furnace at intervals are used to extract temperature information in the circumferential direction of the furnace, determine the deviation in the circumferential direction of the furnace temperature, and inject pulverized coal fuel from each blowing lance A technique for controlling the amount based on the deviation amount is disclosed.
しかしながら、近年、コークスの使用量をより削減のため、羽口からの微粉炭吹込量を増加する傾向にあり、羽口からの微粉炭吹込によって炉内の周方向の温度分布をうまく制御できない場合には、レンガの損傷を早め、鉄皮への熱負荷を増大させるおそれがある。しかし、上記特許文献2の技術は、炉心表層部の温度を常に高温度に維持して通気性・通液性の悪化部位を解消する技術であり、高炉内部の円周方向における温度分布については考慮していない。また、特許文献3の技術は、炉内円周方向の温度情報から各吹込みランスからの微粉炭の吹込量を制御することで、炉心表層部の温度を常に高温度に維持しているが、炉内温度だけでは、炉内から鉄皮に掛かる熱負荷を評価することはできないという問題がある。 However, in recent years, there has been a tendency to increase the amount of pulverized coal injection from the tuyere in order to further reduce the amount of coke used, and when the temperature distribution in the circumferential direction in the furnace cannot be controlled well by the pulverized coal injection from the tuyere May accelerate brick damage and increase the heat load on the iron skin. However, the technique of the above-mentioned Patent Document 2 is a technique for constantly maintaining the temperature of the core surface layer portion at a high temperature to eliminate the deteriorated portion of air permeability and liquid permeability. Regarding the temperature distribution in the circumferential direction inside the blast furnace, Not considered. Moreover, although the technique of patent document 3 controls the injection quantity of the pulverized coal from each injection lance from the temperature information of the circumferential direction in a furnace, the temperature of a core surface layer part is always maintained at high temperature. There is a problem that the heat load applied from the inside of the furnace to the iron shell cannot be evaluated only by the temperature in the furnace.
本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、鉄皮が受ける熱負荷を精度よく把握し、その結果に基づいて鉄皮に掛かる熱負荷を均一化することによって、高炉寿命の延長を図ることができる高炉の操業方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to accurately grasp the heat load applied to the iron skin and to equalize the heat load applied to the iron skin based on the result. This is to propose a method of operating the blast furnace that can extend the life of the blast furnace.
発明者らは、上記課題の解決に向けて検討を重ねた。その結果、高炉内に張られた耐火煉瓦内の円周方向の複数位置に、高炉の半径方向(煉瓦の厚さ方向)に離間した1対の熱電対を埋設し、上記各位置における1対の熱電対の温度差から各位置における熱流束を求めてやれば、鉄皮に掛かる熱負荷の高炉円周方向分布を精度よく評価することができること、したがって、上記円周方向の熱流束分布に基づいて、微粉炭吹込量および/または熱風風量を制御して、上記熱流束分布を均一化してやれば、高炉円周方向の鉄皮に掛かる熱負荷も均一化し、ひいては、高炉の寿命延長を達成することができることを見出し、本発明を開発するに至った。 Inventors repeated examination toward the solution of the said subject. As a result, a pair of thermocouples spaced in the radial direction of the blast furnace (the thickness direction of the brick) are embedded in a plurality of positions in the circumferential direction in the refractory bricks stretched in the blast furnace, If the heat flux at each position is obtained from the temperature difference of the thermocouple, it is possible to accurately evaluate the blast furnace circumferential distribution of the heat load applied to the iron shell, and therefore the above-mentioned circumferential heat flux distribution Based on this, the amount of pulverized coal injection and / or the amount of hot air is controlled to make the heat flux distribution uniform so that the heat load applied to the iron core in the circumferential direction of the blast furnace becomes uniform, which in turn extends the life of the blast furnace. As a result, the present invention has been developed.
すなわち、本発明は、高炉内に張られた耐火煉瓦内の円周方向に沿った複数位置に、高炉半径方向に離間して1対の熱電対を埋設し、上記各位置における1対の熱電対の温度差から高炉円周方向の熱流束分布を求め、その熱流束分布が高炉の円周方向で均一となるよう、羽口から吹き込む微粉炭量を制御することを特徴とする高炉の操業方法を提案する。 That is, the present invention embeds a pair of thermocouples spaced apart in the blast furnace radial direction at a plurality of positions along the circumferential direction in a refractory brick stretched in the blast furnace, and a pair of thermocouples at each of the above positions. calculated heat flux distribution in the blast furnace circumferentially from the temperature difference between the pair, such that the heat flux distribution is uniform in the circumferential direction of the blast furnace, blast furnace, characterized by controlling the pulverized coal amount blown from the tuyere operation Suggest a method.
本発明の高炉の操業方法は、上記微粉炭量に代えて、または、上記微粉炭量に加えてさらに、羽口から吹き込む熱風風量を制御することを特徴とする。 The method for operating a blast furnace according to the present invention is characterized in that the amount of hot air blown from the tuyere is controlled in place of or in addition to the amount of pulverized coal.
また、本発明の高炉の操業方法は、上記微粉炭量および熱風風量を、高炉円周方向に4以上の区分に分割して個々の区分ごとに制御することを特徴とする。 The blast furnace operating method of the present invention is characterized in that the amount of pulverized coal and the amount of hot air are divided into four or more sections in the blast furnace circumferential direction and controlled for each section.
本発明によれば、高炉内に張られた耐火煉瓦内の円周方向に沿った複数位置に、高炉半径方向(煉瓦の厚さ方向)に離間した1対の熱電対を埋設し、高炉円周方向の鉄皮に掛かる熱負荷の分布を精度よく評価し、その結果に基づいて高炉の操業方法を制御し、高炉の鉄皮に掛かる熱負荷を均一化するので、従来よりも増して高炉寿命の延長が可能となる。 According to the present invention, a pair of thermocouples spaced in the blast furnace radial direction (brick thickness direction) are embedded at a plurality of positions along the circumferential direction in a refractory brick stretched in the blast furnace, The distribution of the heat load on the circumferential iron skin is accurately evaluated, and the blast furnace operating method is controlled based on the results, and the heat load on the blast furnace iron skin is made uniform. The service life can be extended.
前述したように、特許文献3に記載の発明は、円周方向に沿って高炉に複数個設けられた羽口から微粉炭を炉内に吹き込む際、高さ方向に複数段でかつ各段において円周方向に等間隔で高炉の炉壁に埋め込まれた温度検出手段で炉内円周方向の温度情報を取り出し、炉内温度の円周方向に関する偏差量を求め、その偏差量に基づいて、各吹込みランスからの微粉炭燃料の吹込み量を制御している。 As described above, in the invention described in Patent Document 3, the pulverized coal is blown into the furnace from the tuyere provided in the blast furnace along the circumferential direction. The temperature detection means embedded in the furnace wall of the blast furnace at equal intervals in the circumferential direction takes out temperature information in the circumferential direction of the furnace, obtains a deviation amount in the circumferential direction of the furnace temperature, and based on the deviation amount, The amount of pulverized coal fuel injected from each injection lance is controlled.
しかしながら、高炉の炉内温度が高いからといって、鉄皮に掛かる熱負荷が大きいとは限らない。何故ならば、耐火煉瓦の断熱性が優れていれば、耐火煉瓦内の温度は高くても、耐火煉瓦の外側の温度は低い(即ち、鉄皮への熱負荷は小さい)こともあり、逆に、耐火煉瓦に亀裂等が発生していた場合には、耐火煉瓦の温度は低くても、耐火煉瓦の外側温度が高い(即ち、鉄皮への熱負荷は大きい)こともあり得るからである。 However, just because the furnace temperature in the blast furnace is high, the heat load on the iron skin is not necessarily large. This is because if the heat resistance of the refractory bricks is excellent, the temperature inside the refractory bricks may be high, but the temperature outside the refractory bricks may be low (that is, the heat load on the iron shell may be small). In addition, if cracks occur in the refractory bricks, the temperature of the refractory bricks may be low, but the outside temperature of the refractory bricks may be high (that is, the heat load on the iron skin may be large). is there.
これに対して、熱流束は、高温から低温へと流れる熱エネルギーであるから、ステーブによる抜熱が高炉円周方向で均一であれば、熱流束が大きければ、それだけ鉄皮に掛かる熱負荷も大きいといい得る。 そこで、本発明では、炉内円周方向の温度分布の測定に代えて、炉内円周方向の熱流束分布を測定することとした。 On the other hand, heat flux is heat energy that flows from high temperature to low temperature, so if the heat removal by the stave is uniform in the circumferential direction of the blast furnace, if the heat flux is large, the heat load that is applied to the core You can get it big. Therefore, in the present invention, instead of measuring the temperature distribution in the furnace circumferential direction, the heat flux distribution in the furnace circumferential direction is measured.
ここで、熱流束q(W/m2)は、単位時間、単位面積を流れるエネルギー(熱流)量であり、例えば、x方向に距離L(m)だけ離れたA,B2点のうちのA点の温度をTA(K)、B点の温度をTB(K)とした時の熱流束は、
q=−k(dT/dx)=−k((TA−TB)/L)
(kは、熱伝導度(W/mK)であり、物質(耐火煉瓦)によって定まる物性値)
で与えられる。
Here, the heat flux q (W / m 2 ) is the amount of energy (heat flow) flowing through the unit area per unit time, for example, A of B and A2 points separated by a distance L (m) in the x direction The heat flux when the temperature at the point is T A (K) and the temperature at the point B is T B (K) is
q = -k (dT / dx) = - k ((T A -T B) / L)
(K is thermal conductivity (W / mK), a physical property value determined by the substance (refractory brick))
Given in.
上記式から、高炉内に張られた耐火煉瓦内の半径方向の異なる2つの位置に1対の熱電対を埋設しておき、その温度差を測定すれば、耐火煉瓦内を半径方向に流れる単位面積当たりの熱流束(熱量)を求めることができる。さらに、上記1対の熱電対を高炉の耐火煉瓦内の円周方向の複数位置の埋設し、それぞれの円周方向位置における熱流束を測定すれば、高炉円周方向における鉄皮に掛かる熱負荷分布を知ることができる。 From the above formula, if a pair of thermocouples are buried in two different locations in the refractory brick stretched in the blast furnace and the temperature difference between them is measured, the unit that flows in the refractory brick in the radial direction A heat flux (amount of heat) per area can be obtained. Further, if the above-mentioned pair of thermocouples are embedded at a plurality of positions in the circumferential direction in the refractory bricks of the blast furnace, and the heat flux at each circumferential position is measured, the heat load on the iron skin in the blast furnace circumferential direction You can know the distribution.
そこで、上記高炉円周方向の鉄皮に掛かる熱負荷分布に基づいて、羽口から高炉内に吹き込む微粉炭量および/または熱風風量を調整する、具体的には、鉄皮の熱負荷が大きい円周方向位置に対しては、羽口から吹き込む微粉炭量および/または羽口から吹き込む熱風の風量を減量する、あるいは、鉄皮の熱負荷が小さい円周方向位置に対しては、羽口から吹き込む微粉炭量および/または羽口から吹き込む熱風の風量を増量することで、鉄皮に掛かる熱負荷を高炉円周方向で均一化することができる。 Therefore, the amount of pulverized coal blown into the blast furnace from the tuyere and / or the amount of hot air is adjusted based on the heat load distribution applied to the iron shell in the blast furnace circumferential direction. Specifically, the heat load of the iron skin is large. For the circumferential position, reduce the amount of pulverized coal blown from the tuyere and / or the amount of hot air blown from the tuyere, or for the circumferential position where the heat load of the iron skin is small By increasing the amount of pulverized coal blown from and / or the amount of hot air blown from the tuyere, the heat load applied to the iron shell can be made uniform in the blast furnace circumferential direction.
ここで、上記1対の熱電対を埋設する高炉高さ方向位置は、鉄皮に掛かる熱負荷が最も大きい部分とすることが好ましく、例えば、炉内温度が最も高い羽口の上方約0〜10mの範囲とするのが好ましい。10mを超えると炉体冷却の影響が強くなり、測定精度に問題を生じる。なお、高さ方向の埋設位置は1箇所でもよいが、測定精度を高めるためには2箇所以上で測定するのが好ましい。 Here, the blast furnace height direction position in which the pair of thermocouples are embedded is preferably a portion having the largest heat load on the iron shell, for example, about 0 to above the tuyere having the highest furnace temperature. A range of 10 m is preferable. If it exceeds 10 m, the influence of the cooling of the furnace body becomes strong, causing a problem in measurement accuracy. In addition, although the embedding position of a height direction may be one place, in order to improve a measurement precision, it is preferable to measure in two or more places.
また、1対の熱電対を埋設する耐火煉瓦内の半径方向位置は、長期使用による耐火煉瓦の損耗を考慮して、耐火煉瓦内のステーブ側に、10〜200mm程度の距離を設けて埋設するのが好ましい。上記離間距離が10mm未満では、温度差が小さいため熱流束を精度よく測定することが難しい。一方、200mmを超えると耐火煉瓦の厚さに近づくため、耐火煉瓦の損耗により、熱電対自体が早期に消失してしまうおそれがあるからである。 In addition, the radial position in the refractory brick in which a pair of thermocouples are embedded is embedded with a distance of about 10 to 200 mm on the stave side in the refractory brick in consideration of wear of the refractory brick due to long-term use. Is preferred. If the separation distance is less than 10 mm, it is difficult to accurately measure the heat flux because the temperature difference is small. On the other hand, when the thickness exceeds 200 mm, the thickness of the refractory brick is approached, and therefore, the thermocouple itself may disappear early due to wear of the refractory brick.
また、1対の熱電対を埋設する高炉円周方向位置は、4箇所以上羽口数以下とするのが好ましい。というのは、少なくとも4箇所の熱流束が判明すれば、大まかな熱流束の分布を把握することができること、および、羽口から吹き込む微粉炭量あるいは熱風風量は、高炉円周方向で4区分程度に分割して制御している場合が多いからである。また、高炉円周方向の埋設位置の上限を羽口数としたのは、羽口ごとに微粉炭量あるいは熱風風量を制御することができる場合には、個々の羽口部近傍の熱流束に基づいて微粉炭量あるいは熱風風量を調整するのが好ましいからである。より好ましくは6〜16の範囲である。 Moreover, it is preferable that the blast furnace circumferential direction position which embeds a pair of thermocouple shall be 4 or more and the number of tuyere or less. The reason is that if at least four heat fluxes are known, the rough heat flux distribution can be grasped, and the amount of pulverized coal or hot air blown from the tuyere is about 4 sections in the blast furnace circumferential direction. This is because there are many cases where the control is divided into two. In addition, the upper limit of the burial circumferential direction is set as the number of tuyere, if the amount of pulverized coal or hot air flow can be controlled for each tuyere, based on the heat flux near each tuyere. This is because it is preferable to adjust the amount of pulverized coal or the amount of hot air. More preferably, it is the range of 6-16.
なお、高炉内に張られた耐火煉瓦内に熱電対を埋設する方法としては、ステーブとステーブの隙間、あるいは、ステーブの中央部に設けられた熱電対挿入用孔を介して行うのが好ましい。 As a method of embedding the thermocouple in the refractory brick stretched in the blast furnace, it is preferable to carry out through a gap between the stave and the stave or a thermocouple insertion hole provided in the central portion of the stave.
内容積が5000m3で、微粉炭吹き込み用ランスを設けた羽口を円周方向に30個配設した高炉の耐火煉瓦内に1対の熱電対を複数位置に埋設して、耐火煉瓦内に円周方向における熱流束分布を測定した。なお、上記熱電対の高さ方向埋設位置は、高炉内で最も高温となる羽口上方5mの位置とし、耐火煉瓦内の埋設位置は、耐火煉瓦の外側(ステーブ側)から50mmと100mm(離間距離:50mm)の位置とした。また、円周方向の埋設位置は、上記高炉では、図3に示したように、羽口からの熱風風量および微粉炭吹込量を円周方向で4ブロックに分割して制御していることから、各ブロックの円柱方向中央位置の4箇所に埋設した。
また、上記熱流束測定時における、羽口から吹き込む熱風温度は1200℃、熱風風量は6000m3/minで、ランスから羽口に吹き込む微粉炭量は、高炉円周方向で均一に500kg/t−pigであった。
Inside the refractory brick, a pair of thermocouples are buried in a plurality of locations in a refractory brick of a blast furnace having an inner volume of 5000 m 3 and 30 tuyere provided with a lance for blowing pulverized coal in the circumferential direction. The heat flux distribution in the circumferential direction was measured. The thermocouple burying position in the height direction is a position 5 m above the tuyere at the highest temperature in the blast furnace, and the burying position in the refractory brick is 50 mm and 100 mm away from the outside (stave side) of the refractory brick. The distance was 50 mm). In addition, as shown in FIG. 3, the burial position in the circumferential direction is controlled by dividing the amount of hot air from the tuyere and the amount of pulverized coal into 4 blocks in the circumferential direction as shown in FIG. Each of the blocks was embedded at four positions in the center in the column direction.
Moreover, the hot air temperature blown from the tuyere at the time of the above heat flux measurement is 1200 ° C., the hot air flow rate is 6000 m 3 / min, and the amount of pulverized coal blown from the lance to the tuyere is 500 kg / t− uniformly in the blast furnace circumferential direction. pig.
図4に、上記熱流束の測定結果を、Aブロックにおける熱流束qの値を基準(1.0)とし、B,C,D各位置の熱流束を相対値化して破線で示した。この結果から、上記高炉操業条件では、Bブロックの熱流束が最も大きく、Dブロックの熱流束が最も小さくなっていること、即ち、Bブロックの鉄皮に最も熱負荷が掛かっていることがわかった。
そこで、上記結果に基づき、Bブロックにおける微粉炭吹込量および熱風風量を削減すると共に、Dブロックにおける微粉炭吹込量および熱風風量を増量した結果、図4の実線に示したように、B〜Dブロックのすべて熱流束がAブロックの熱流束に対して±0.05の範囲内に収まっており、鉄皮に掛かる熱負荷を高炉円周方向で均一化することができた。
In FIG. 4, the measurement result of the heat flux is indicated by a broken line with relative values of the heat flux at each of the B, C, and D positions, with the value of the heat flux q in the A block as a reference (1.0). From this result, it is understood that under the above blast furnace operating conditions, the heat flux of the B block is the largest and the heat flux of the D block is the smallest, that is, the heat load is most applied to the iron skin of the B block. It was.
Therefore, based on the above results, the pulverized coal blowing amount and hot air flow rate in the B block were reduced, and the pulverized coal blowing amount and hot air flow rate in the D block were increased. As a result, as shown by the solid line in FIG. All the heat fluxes of the blocks were within the range of ± 0.05 with respect to the heat fluxes of the A block, and the heat load applied to the iron shell could be made uniform in the blast furnace circumferential direction.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011207264A JP5854200B2 (en) | 2011-09-22 | 2011-09-22 | Blast furnace operation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011207264A JP5854200B2 (en) | 2011-09-22 | 2011-09-22 | Blast furnace operation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013067834A JP2013067834A (en) | 2013-04-18 |
JP5854200B2 true JP5854200B2 (en) | 2016-02-09 |
Family
ID=48473861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011207264A Active JP5854200B2 (en) | 2011-09-22 | 2011-09-22 | Blast furnace operation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5854200B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7436831B2 (en) * | 2020-04-13 | 2024-02-22 | 日本製鉄株式会社 | Blast furnace operating method, pulverized coal injection control device, pulverized coal injection control program |
CN114934142B (en) * | 2022-05-30 | 2023-06-20 | 鞍钢股份有限公司 | A Method for Determining the Optimal Operation Furnace Type of Blast Furnace by Using the Distribution Ratio of Heat Load |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5438208A (en) * | 1977-08-31 | 1979-03-22 | Nippon Steel Corp | Blast furnace operating method |
JPS5910968B2 (en) * | 1980-08-04 | 1984-03-13 | 川崎製鉄株式会社 | Blast furnace operating method |
JPS5881907A (en) * | 1981-11-10 | 1983-05-17 | Sumitomo Metal Ind Ltd | Control process for blowing powder coal |
JPH0610289B2 (en) * | 1987-12-18 | 1994-02-09 | 日本鋼管株式会社 | Blast furnace operation method |
JP3844858B2 (en) * | 1997-10-17 | 2006-11-15 | 日新製鋼株式会社 | Blast furnace operating method with pulverized coal fuel injection. |
JPH11229014A (en) * | 1998-02-09 | 1999-08-24 | Nippon Steel Corp | Blast furnace hearth temperature detecting means and blast furnace operating method using this temperature detecting means |
JP4974351B2 (en) * | 2006-10-31 | 2012-07-11 | 日新製鋼株式会社 | Melting equipment |
-
2011
- 2011-09-22 JP JP2011207264A patent/JP5854200B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013067834A (en) | 2013-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106874648B (en) | A kind of blast furnace high thermal load regions operation type of furnace calculation method | |
JP5854200B2 (en) | Blast furnace operation method | |
Kumar et al. | Computational modeling of blast furnace cooling stave based on heat transfer analysis | |
CN103290167B (en) | Method for prolonging service life of top-bottom composite blowing converter bottom | |
CN110527769B (en) | Method for judging residual thickness of carbon brick in blast furnace hearth | |
JP6669024B2 (en) | Method of estimating hot metal flow velocity in blast furnace and operating method of blast furnace | |
CN212720899U (en) | Furnace body structure of ore-smelting electric furnace | |
CN203704662U (en) | Ferrochrome smelting furnace lining | |
Geyer et al. | Blast furnace tapping practice at ArcelorMittal South Africa, Vanderbijlpark works | |
CN107630118A (en) | The thermocouple arrangement of monitoring blast furnace taphole temperature change in real time | |
JP2669279B2 (en) | Blast furnace operation method | |
KR20130034507A (en) | Apparatus for collecting waste heat source of furnace | |
KR880002277B1 (en) | Blast furnace | |
RU2779575C1 (en) | Device for producing titanium slag in ore thermal furnace | |
KR102042698B1 (en) | Apparatus for measuring discharged amount of slag and this method | |
JPH07278627A (en) | Blast furnace bottom cooling pipe and blast furnace bottom cooling method | |
JPH01290709A (en) | Blast furnace operating method | |
JP4598710B2 (en) | Blast furnace brick wear prevention method | |
JP6036744B2 (en) | Tubular structure of vertical furnace, vertical furnace and method for producing dry distillation product | |
CN203824656U (en) | Blast furnace and COREX furnace taphole thermocouple protection device | |
TWI506140B (en) | A Method for Evaluating the Pre - Drilling Size of a New Furnace in a New Blast Furnace | |
JP2004059956A (en) | Blast furnace brick wear prevention method | |
O’Shaughnessy et al. | Tap-hole repair: the UCAR® V repair solution | |
Swartling | An experimental and numerical study of the heat flow in the blast furnace hearth | |
JP2009235437A (en) | Method for controlling blast furnace operation at blowing-stop time in large reduction of charged material level |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150729 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5854200 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |