JP6669024B2 - Method of estimating hot metal flow velocity in blast furnace and operating method of blast furnace - Google Patents

Method of estimating hot metal flow velocity in blast furnace and operating method of blast furnace Download PDF

Info

Publication number
JP6669024B2
JP6669024B2 JP2016182621A JP2016182621A JP6669024B2 JP 6669024 B2 JP6669024 B2 JP 6669024B2 JP 2016182621 A JP2016182621 A JP 2016182621A JP 2016182621 A JP2016182621 A JP 2016182621A JP 6669024 B2 JP6669024 B2 JP 6669024B2
Authority
JP
Japan
Prior art keywords
hot metal
blast furnace
brick
flow velocity
hearth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016182621A
Other languages
Japanese (ja)
Other versions
JP2018048352A (en
Inventor
浩樹 西岡
浩樹 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016182621A priority Critical patent/JP6669024B2/en
Publication of JP2018048352A publication Critical patent/JP2018048352A/en
Application granted granted Critical
Publication of JP6669024B2 publication Critical patent/JP6669024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、高炉内の最も炉底レンガの侵食が進んでいる部位近傍の溶銑の流速推定方法、および、炉底レンガの侵食の伸展を抑制するための高炉の操業方法に関するものである。   The present invention relates to a method for estimating the flow velocity of hot metal near a portion of a blast furnace where erosion of a bottom brick is most advanced, and a method of operating a blast furnace for suppressing the extension of erosion of the bottom brick.

高炉の炉底レンガは、溶融銑鉄(以下溶銑と記す)の流動に晒されており、長期間の操業の過程で徐々に侵食されていく。一方、高炉の炉底は、一旦火入れにより操業が開始されると、その後の操業期間に積替などの補修を行うことは、技術的に困難である。このため、高炉の炉底の延命を図るには、炉底レンガの侵食の伸展を抑制できるような操業を行うという対処法に限られる。一方、高炉の炉壁に関しては、ステーブ等による冷却技術および稼働中における減尺補修技術の進展により、炉壁の損耗が高炉の寿命を決めることはなくなった。   Furnace bottom bricks of a blast furnace are exposed to the flow of molten pig iron (hereinafter referred to as “hot metal”), and are gradually eroded during a long-term operation. On the other hand, once the operation of the hearth of the blast furnace is started by burning, it is technically difficult to repair such as transshipment during the subsequent operation period. Therefore, in order to extend the life of the hearth of the blast furnace, only a method of performing an operation capable of suppressing the extension of erosion of the hearth brick is limited. On the other hand, with respect to the furnace wall of a blast furnace, wear of the furnace wall no longer determines the life of the blast furnace due to the development of a cooling technique using a stave or the like and a repair technique for reducing the scale during operation.

近年、高炉の寿命(操業期間)は20年以上に及んでいる。さらにそれ以上の寿命を達成するためには、高炉の炉底の一段の長寿命化を計ることがより重要になってきている。具体的には、侵食ラインを精度よく推定することや、推定結果に基づいて侵食の伸展を効果的に抑制できる操業方法を実施することである。   In recent years, the life (operating period) of a blast furnace has been over 20 years. In order to achieve a longer service life, it has become more important to extend the life of the furnace bottom of the blast furnace by one step. Specifically, it is to accurately estimate the erosion line and to implement an operation method capable of effectively suppressing the extension of erosion based on the estimation result.

従来、炉底レンガの損耗量を推定する方法の一つとして、例えば特許文献1には、耐火レンガ内の2点に埋め込んだ熱電対の計測温度に基づいて、2点間の温度と距離およびそのレンガの熱伝導率から熱流束を計算し、炉内稼動面の温度を溶銑の凝固する温度に仮定してレンガの残存厚みを推定する方法が開示されている。   Conventionally, as one method of estimating the amount of wear of a hearth brick, for example, in Patent Document 1, based on the measured temperature of a thermocouple embedded at two points in a refractory brick, the temperature and distance between two points and A method of calculating a heat flux from the thermal conductivity of the brick and estimating the remaining thickness of the brick by assuming the temperature of the operating surface in the furnace as the temperature at which the hot metal solidifies is disclosed.

また、炉底レンガの損耗量を推定する他の方法として、特許文献2には、宇宙線ミューオンを利用して高炉炉底レンガの残存厚を計測する方法が提案されている。   As another method for estimating the amount of wear of the hearth brick, Patent Literature 2 proposes a method of measuring the remaining thickness of the blast furnace hearth brick using cosmic ray muons.

さらに、特許文献3には、炉底流れ計算に基づいて炉底レンガの平衡損耗ラインを精度よく予測し、炉底レンガの構造を適切に設計する方法が提案されている。   Further, Patent Literature 3 proposes a method of accurately predicting an equilibrium wear line of a hearth brick based on a calculation of a hearth flow, and appropriately designing a structure of the hearth brick.

特開2002−266011号公報JP-A-2002-266011 特開平08−261741号公報JP-A-08-261741 特開2011−236474号公報JP 2011-236474 A

「高炉炉床部における液流れの3次元数学モデル」、鉄と鋼、一般社団法人日本鉄鋼協会、2006年、Vol.92、No.12、p.967−975"3D Mathematical Model of Liquid Flow in Blast Furnace Hearth", Iron and Steel, Japan Iron and Steel Association, 2006, Vol. 92, No. 12, p. 967-975

しかしながら、上記特許文献1に記載された熱電対を用いた高炉の炉内状況推定方法、特許文献2に記載されたミューオン計測による高炉耐火物厚さ測定方法のいずれにおいても、レンガの残存厚を推定することはできても、レンガの侵食の伸展を効果的に抑制できる操業方法は記載されていない。また、上記特許文献3に記載された、炉底レンガの平衡損耗ラインを精度よく予測し、炉底レンガの構造を適切に設計する方法においては、与えられた操業条件において長期稼働が可能な炉底レンガ構造を設計することを目的としており、既に稼働中の高炉に対して耐火物の侵食の伸展を効果的に抑制できる操業方法を提供するものではない。   However, in any of the method for estimating the inside of a blast furnace using a thermocouple described in Patent Document 1 and the method for measuring the thickness of blast furnace refractories by muon measurement described in Patent Document 2, the residual thickness of the brick is Although it can be estimated, there is no description of an operating method that can effectively suppress the extension of brick erosion. Further, in the method of accurately predicting the equilibrium wear line of the hearth brick described in Patent Document 3 and appropriately designing the structure of the hearth brick, the furnace capable of long-term operation under given operating conditions is used. The purpose of the present invention is to design a bottom brick structure, and it does not provide an operation method capable of effectively suppressing the extension of refractory erosion in a blast furnace already in operation.

本発明は、このような観点に鑑みてなされたものであり、稼働中の高炉に対して、炉底レンガの侵食の伸展を効果的に抑制することを目的とする。   The present invention has been made in view of such a viewpoint, and an object of the present invention is to effectively suppress the erosion of hearth bricks from being extended to an operating blast furnace.

上記問題を解決するため、本発明は、高炉の炉底部に内張りされた炉底レンガの、最も侵食が進んでいる部位の溶銑の流速を推定する方法であって、高炉の炉底部に内張りされた炉底レンガの構造から、計算格子を生成し、前記炉底レンガ内に、1組当たり2点の熱電対を埋め込んで、前記2点の熱電対の計測温度に基づいて、2点間の温度と距離および前記炉底レンガの熱伝導率から熱流束を計算し、前記炉底レンガの稼動面の温度を仮定して前記炉底レンガの残存厚みを算出し、この計算を複数組の熱電対について行い前記炉底レンガの稼働面の形状を求め、現状の操業条件を設定し、炉内の炉芯コークスの下端レベルおよび形状を、前記操業条件および前記炉底レンガの損耗状況から力学的バランスに基づいて算出し、炉内の通液抵抗として反映させ、炉内に溶銑、スラグおよびコークス充填層が存在するとした場合の物質収支式、運動量収支式、および、エネルギー収支式に基づいて、炉底部における溶銑、スラグ、コークス充填層の温度分布と、溶銑およびスラグの流速分布を算出し、前記溶銑の流速分布から、最も炉底レンガの侵食が進んでいる部位近傍の溶銑の流速を推定することを特徴とする、高炉内の溶銑の流速推定方法を提供する。   In order to solve the above problems, the present invention is a method of estimating the flow velocity of hot metal at a site where erosion is progressing most, of a hearth brick lined at the hearth of a blast furnace, which is lined at the hearth of the blast furnace. A calculation grid is generated from the structure of the hearth brick, and two thermocouples are embedded in the hearth brick in a pair. Based on the measured temperature of the two thermocouples, a calculation grid is formed between the two points. Calculate the heat flux from the temperature and distance and the thermal conductivity of the hearth brick, calculate the remaining thickness of the hearth brick assuming the temperature of the operating surface of the hearth brick, and calculate the plurality of sets of thermoelectric Perform the pair to determine the shape of the operating surface of the hearth brick, set the current operating conditions, the lower end level and shape of the core coke in the furnace, mechanically from the operating conditions and the wear situation of the hearth brick Calculate based on the balance and determine the flow resistance in the furnace. The temperature of the hot metal, slag, and coke packed bed at the bottom of the furnace based on the material balance, momentum balance, and energy balance formulas when there is a packed bed of molten metal, slag, and coke in the furnace. Distribution, and calculating the flow velocity distribution of the hot metal and slag, from the flow velocity distribution of the hot metal, characterized by estimating the flow velocity of the hot metal in the vicinity of the site where the erosion of the hearth brick is most advanced, the hot metal in the blast furnace A method for estimating flow velocity is provided.

また、本発明は、上記高炉内の溶銑の流速推定方法を用いて高炉の操業条件を決定する高炉の操業方法であって、複数の異なる操業条件を設定し、前記現状の操業条件と同様の手順で溶銑の流速分布を算出し、前記複数の異なる操業条件のうち、前記最も炉底レンガの侵食が進んでいる部位近傍の溶銑の流速が最も小さくなるものを、新しい操業条件とすることを特徴とする、高炉の操業方法を提供する。   Further, the present invention is a blast furnace operating method for determining the operating conditions of the blast furnace using the flow rate estimation method of the hot metal in the blast furnace, wherein a plurality of different operating conditions are set, the same as the current operating conditions Calculate the flow velocity distribution of the hot metal in the procedure, among the plurality of different operating conditions, the one where the flow velocity of the hot metal in the vicinity of the site where the erosion of the hearth brick is progressing becomes the smallest, as a new operating condition. A method for operating a blast furnace is provided.

前記高炉の操業方法において、前記複数の異なる操業条件は、出銑口深度、出銑時のラップ時間、マッドの溶損速度、およびコークスフリースペースの有無について、いずれか単独の、または2つ以上を組み合わせた条件でもよい。   In the operating method of the blast furnace, the plurality of different operating conditions, tap hole depth, lap time at the time of tapping, mud erosion rate, and the presence or absence of coke free space, any one alone, or two or more May be combined.

本発明によれば、最もレンガの侵食が進んでいる部位の溶銑の流速を推定することができ、その推定結果を用いて、溶銑の流速を低減できる操業方法を選択することで、炉底レンガの侵食の伸展を効果的に抑制できる。   According to the present invention, it is possible to estimate the flow velocity of the hot metal in the site where the most erosion of the brick is advanced, and by using the estimation result, by selecting an operation method capable of reducing the flow rate of the hot metal, the furnace bottom brick Erosion extension can be effectively suppressed.

本発明の実施形態に係る計算手順を示す流れ図である。5 is a flowchart illustrating a calculation procedure according to the embodiment of the present invention. 炉底レンガの構造に基づいて生成した計算格子の例を示す図である。It is a figure which shows the example of the calculation grid produced | generated based on the structure of the hearth brick. 炉底に埋設する熱電対の配置例を示す平面図である。It is a top view which shows the example of arrangement | positioning of the thermocouple buried in a furnace bottom. 炉底レンガの残厚分布の例を示す平面図である。It is a top view which shows the example of the residual thickness distribution of a hearth brick. 炉底レンガ稼働面と炉芯コークス下面との位置関係を示す図である。It is a figure which shows the positional relationship between the furnace bottom brick working surface and the furnace core coke lower surface.

本発明者等は、種々の実験や高炉の解体調査を通して、高炉の炉底レンガの侵食を効果的に食い止める手段について検討を重ねた。その結果、最もレンガの侵食が進行している部位の溶銑の流速を下げることにより、稼働中の高炉に対して炉底レンガの侵食の伸展を効果的に抑制できることを見出した。本発明の骨子は、最もレンガの侵食が進行している部位の溶銑の流速を求めるとともに、種々の考えうる操業条件の中から、最もレンガの侵食が進行している部位の溶銑の流速が最も低減される条件を採択することである。   The present inventors have repeatedly studied means for effectively stopping the erosion of the bottom brick of the blast furnace through various experiments and dismantling investigations of the blast furnace. As a result, it was found that, by reducing the flow velocity of the hot metal in the portion where the erosion of the brick is progressing most, the extension of the erosion of the hearth brick can be effectively suppressed in the operating blast furnace. The gist of the present invention is to determine the flow velocity of hot metal in a portion where erosion of brick is most advanced, and among various conceivable operating conditions, the flow speed of hot metal in a portion where erosion of brick is most advanced is the most. Adopt conditions to be reduced.

以下、本発明の実施形態に係る、炉底レンガの侵食の伸展を効果的に抑制する操業方法の計算手順を、図面を参照して詳細に説明する。図1は、本発明の実施形態に係る計算手順の流れ図である。   Hereinafter, the calculation procedure of the operation method according to the embodiment of the present invention that effectively suppresses the extension of the erosion of the hearth brick will be described in detail with reference to the drawings. FIG. 1 is a flowchart of a calculation procedure according to the embodiment of the present invention.

まず、現状の高炉炉底において最もレンガの侵食が激しい箇所の溶銑の流速を、以下の手順で推定する。   First, the flow velocity of the hot metal at the place where the brick erosion is most severe in the current blast furnace hearth is estimated by the following procedure.

ステップS1
高炉の炉底部に内張りされた炉底レンガの構造から、計算格子を生成する。計算格子のサイズ等は、所望する精度や計算可能な容量等に応じて適宜決めればよい。
Step S1
A computational grid is generated from the structure of the hearth brick lined at the bottom of the blast furnace. The size and the like of the calculation grid may be appropriately determined according to the desired accuracy, the capacity that can be calculated, and the like.

ステップS2
炉底レンガ内に埋め込んだ異なる2点の熱電対の計測温度に基づいて、2点間の温度差と距離およびその炉底レンガの熱伝導率から熱流束を計算し、レンガ稼動面の温度を仮定(例えば1150℃)して、炉底レンガの残存厚みを算出する。熱電対を、2点1組をユニットとして、径方向、高さ方向の適宜位置に配置し、複数組の熱電対ユニットを対象として、炉底レンガの残存厚みを算出することにより、レンガ稼働面の形状を求めることができる。この計算は、従来公知の例えば上記特許文献1に記載された方法で行うことができるが、計算方法はこれに限定しない。
Step S2
Based on the measured temperature of two different thermocouples embedded in the hearth brick, the heat flux is calculated from the temperature difference and distance between the two points and the thermal conductivity of the hearth brick, and the temperature of the brick operating surface is calculated. Assuming (for example, 1150 ° C.), the remaining thickness of the hearth brick is calculated. The brick working surface is obtained by arranging thermocouples as a set of two points at appropriate positions in the radial direction and height direction, and calculating the remaining thickness of the hearth brick for a plurality of thermocouple units. Can be obtained. This calculation can be performed by a conventionally known method, for example, described in Patent Document 1, but the calculation method is not limited to this.

ステップS3
現状の操業条件を設定する。具体的には、後述のステップS4において炉芯コークス沈下レベルおよび形状計算を行う際に必要な操業条件(送風量、送風温度、酸素富化流量、送風湿分、コークス比、微粉炭比、炉頂装入物のO/C分布等)、ステップS5において炉下部における溶銑・スラグの流速分布を求める際に必要となる操業条件(ラップ時間、出銑口深度、マッドの溶損速度等)を設定する。
Step S3
Set the current operating conditions. Specifically, the operating conditions (blowing volume, blowing temperature, oxygen-enriched flow rate, blowing moisture, coke ratio, pulverized coal ratio, furnace The operating conditions (lap time, taphole depth, mud erosion rate, etc.) required to determine the flow velocity distribution of the hot metal and slag in the lower part of the furnace in step S5 are shown. Set.

ステップS4
高炉の操業条件(S3)と炉底レンガの構造(S1)に対して、炉芯コークスの沈下レベルおよび形状を計算し、炉底流動における通液抵抗の条件として設定する。これは、例えば、剛塑性力学に基づく公知のモデル(ISIJ
int.,49(2009),470頁参照)により、以下のように計算できる。ここで、剛塑性力学に基づくモデルの支配方程式を、式(1)〜(4)に示す。なお、式(1)は連続の式であり、式(2)は運動方程式であり、式(3)はDrucker−Pragerの降伏条件式であり、式(4)は構成方程式である。
Step S4
With respect to the blast furnace operating conditions (S3) and the structure of the hearth brick (S1), the sinking level and shape of the core coke are calculated and set as conditions for the resistance to liquid flow in the furnace bottom flow. This is, for example, a known model based on rigid-plastic mechanics (ISIJ
int. , 49 (2009), pp. 470) can be calculated as follows. Here, equations (1) to (4) show governing equations of a model based on rigid-plastic dynamics. Equation (1) is a continuous equation, equation (2) is a motion equation, equation (3) is a Drucker-Prager yield condition equation, and equation (4) is a constitutive equation.

ここで、
である。
here,
It is.

上記式(1)〜式(4)を用いて、FEM(有限要素法)により、炉内応力分布を計算することによって、炉芯コークスの沈下レベルおよび形状が計算できる。上記の方法によれば、DEM(離散要素法)を用いるよりも、計算負荷を大きく軽減することが可能である。   By using the above equations (1) to (4) and calculating the in-furnace stress distribution by FEM (finite element method), the settlement level and shape of the furnace core coke can be calculated. According to the above method, it is possible to greatly reduce the calculation load as compared with the case where the DEM (discrete element method) is used.

ステップS5
上記S2で求めた炉底レンガ稼働面の形状、S3で設定した操業条件、S4で求めた炉芯コークスの沈下レベルに基づき設定された炉下部通液抵抗分布を用いて、高炉の内部に溶銑、スラグを収容したときの物質収支式、運動量収支式、エネルギー収支式に基づいて、高炉炉下部におけるコークス充填層、溶銑およびスラグの温度分布、および、溶銑およびスラグの流速分布を算出する。なお、S5では、高炉炉下部におけるコークス充填層、溶銑およびスラグの温度分布、溶銑およびスラグの流速分布を求めることが望ましいが、本発明では、レンガ稼働面近傍の溶銑の流速を求めることが最も重要であるので、必ずしもスラグの流速分布や炉底の温度分布を計算する必要は無い。
Step S5
Using the shape of the operating surface of the hearth brick determined in S2, the operating conditions set in S3, and the distribution of resistance to liquid flow in the lower part of the furnace set based on the sinking level of the core coke determined in S4, hot metal is introduced into the blast furnace. The temperature distribution of the coke packed bed, the hot metal and the slag, and the flow velocity distribution of the hot metal and the slag in the lower part of the blast furnace are calculated based on the mass balance formula, the momentum balance formula and the energy balance formula when the slag is contained. In S5, it is desirable to obtain the coke packed bed in the lower part of the blast furnace, the temperature distribution of the hot metal and slag, and the flow rate distribution of the hot metal and slag. In the present invention, it is most preferable to obtain the flow rate of the hot metal near the brick working surface. Since it is important, it is not always necessary to calculate the slag flow velocity distribution and the furnace bottom temperature distribution.

本ステップS5は、例えば上記非特許文献1に記載された公知のモデル等を使用して行なえる。すなわち、高炉の炉底部は、構造体であるレンガと、内容物である溶銑、スラグおよびコークス充填層とからなるものとする。そして、溶銑およびスラグの物質収支式(8)、運動量収支式(9)、およびエネルギー収支式(10)は、以下の通りである。   This step S5 can be performed using, for example, a known model or the like described in Non-Patent Document 1. That is, the furnace bottom of the blast furnace is assumed to be composed of a brick as a structure and a molten iron, slag and coke packed bed as contents. The material balance equation (8), the momentum balance equation (9), and the energy balance equation (10) for hot metal and slag are as follows.

ここで、
である。
here,
It is.

また、コークスのエネルギー収支式(14)は、以下の通りである。
The energy balance equation (14) for coke is as follows.

ただし、上記式(8)〜(14)において、
U:速度ベクトル、ρ:密度、S:生成量(滴下量)、p:圧力、μ:粘度、β:体積膨張係数、g:重力加速度、Cp:比熱、T:温度、T:基準温度、Tcoke:コークスの温度、Tliq:溶銑および/もしくはスラグの温度、λ:熱伝導度、ε:空隙率、φ:粒子形状係数、dp:粒子径、F:通液抵抗、ε:空隙率、h:対流伝熱係数、A:コークス充填層の比表面積
である。
However, in the above equations (8) to (14),
U: velocity vector, ρ: density, S: generation amount (dropping amount), p: pressure, μ: viscosity, β: volume expansion coefficient, g: gravitational acceleration, Cp: specific heat, T: temperature, T 0 : reference temperature , T coke : temperature of coke, T liq : temperature of hot metal and / or slag, λ: thermal conductivity, ε: porosity, φ: particle shape factor, dp: particle diameter, F: liquid flow resistance, ε: void Rate, h: convective heat transfer coefficient, A: specific surface area of the coke packed bed.

上記(8)〜(14)式を連立して解けば、溶銑およびスラグの流動と温度の時間推移を求めることができる。   If the above equations (8) to (14) are simultaneously solved, it is possible to obtain the time transition of the flow and temperature of the hot metal and slag.

ステップS6
S5で求められた溶銑の流速分布から、最もレンガの侵食が進んでいる部位近傍の溶銑の流速を求める。ここで、「近傍」とは、最も侵食している箇所を含むメッシュが最も好ましい。また、前記メッシュから、隣接する熱電対ユニットの間隔(図2の21d)の1/2の距離の範囲内のメッシュであってもよい。
Step S6
From the flow velocity distribution of the hot metal obtained in S5, the flow velocity of the hot metal near the portion where the erosion of the brick is most advanced is obtained. Here, the “nearby” is most preferably a mesh including the most eroded portion. Further, the mesh may be within a range of a half of an interval (21d in FIG. 2) between adjacent thermocouple units from the mesh.

炉下部レンガの侵食は、主として、レンガ稼働面の温度が上昇することにより進行する。レンガの温度上昇は、主として、溶銑からレンガへの対流伝熱により引き起こされる。対流伝熱により溶銑からレンガに供給される熱量が、レンガ近傍の溶銑の流速の低下とともに減少することは公知の事実である。よって、最もレンガの侵食を抑制可能な操業条件を決定するには、非定常計算によりレンガの侵食挙動を求める必要は無く、所定位置のレンガ近傍の溶銑の流速が最も小さくなる操業条件を決定すれば十分である。   The erosion of the lower furnace brick proceeds mainly due to a rise in the temperature of the brick working surface. The temperature rise of the brick is mainly caused by convective heat transfer from the hot metal to the brick. It is a known fact that the amount of heat supplied from the hot metal to the brick by convective heat transfer decreases as the flow velocity of the hot metal near the brick decreases. Therefore, it is not necessary to determine the erosion behavior of the brick by the unsteady calculation in order to determine the operating condition that can suppress the erosion of the brick most, and it is necessary to determine the operating condition that minimizes the flow velocity of the hot metal near the brick at the predetermined position. Is enough.

なお、S5で非定常計算を行った場合は、最もレンガの侵食が進んでいる部位近傍の溶銑の流速は、例えば、出銑スケジュールの1周期に相当する時間における平均速度として与えれば良い。   In the case where the unsteady calculation is performed in S5, the flow velocity of the hot metal in the vicinity of the part where the erosion of the brick is most advanced may be given, for example, as an average velocity in a time corresponding to one cycle of the tapping schedule.

以上により、現状の高炉炉底において最もレンガの侵食が激しい箇所の溶銑の流速が推定される。   From the above, the flow velocity of the hot metal at the location where the brick erosion is most severe at the current blast furnace bottom is estimated.

次に、この推定方法を用いて、最もレンガの侵食が激しい箇所のレンガの侵食の伸展を効果的に抑制できる操業方法を決める手順を説明する。   Next, a procedure for determining an operation method that can effectively suppress the extension of the erosion of the brick at a location where the erosion of the brick is most severe using this estimation method will be described.

ステップS7
所定位置の溶銑の流速を低減させるために考えられる複数の対策案(操業条件)を実施した場合において、最もレンガの侵食が進んでいる部位近傍の溶銑の流速を、それぞれ上記ステップS3〜S6の手順で計算する。すなわち、事前に想定した全ての操業条件の計算が終了していない場合はS3に戻り、操業条件を変更した後、その操業条件においてS4〜S6の処理を行い、操業条件毎に計算を繰り返して、それぞれの操業条件の場合の、最もレンガの侵食が進んでいる部位近傍の溶銑の流速を推定する。
Step S7
When a plurality of possible countermeasures (operating conditions) are considered to reduce the flow velocity of the hot metal at the predetermined position, the flow velocity of the hot metal in the vicinity of the site where the erosion of the brick is most advanced is determined by the above-described steps S3 to S6. Calculate with the procedure. That is, when the calculation of all the operating conditions assumed in advance is not completed, the process returns to S3, and after the operating conditions are changed, the processes of S4 to S6 are performed under the operating conditions, and the calculation is repeated for each operating condition. Then, the flow velocity of the hot metal in the vicinity of the portion where the erosion of the brick is most advanced under the respective operating conditions is estimated.

複数の対策案としては、例えば出銑口深度、出銑時のラップ時間、マッドの溶損速度、およびコークスフリースペースの有無等が考えられ、これら全てを単独でまたは組み合わせて、或いは実現可能ないずれかの対策案について計算を行う。なお、出銑口深度は、レンガを含めた炉壁部分と出銑口の炉内側に設けられる不定形耐火物からなるマッド部とを合わせた出銑口の全長を指す。また、ラップ時間は、複数の出銑口からの出銑の重複時間を指す。   As a plurality of countermeasures, for example, tap hole depth, tapping lap time, mud erosion rate, presence or absence of coke free space, and the like can be considered, all of which can be used alone or in combination, or can be realized. Calculate for one of the measures. The taphole depth refers to the total length of the taphole including the furnace wall portion including the brick and the mud portion made of an irregular refractory provided inside the furnace of the taphole. The lap time refers to the overlapping time of tapping from a plurality of tap holes.

ステップS8
事前に想定した全ての操業条件について計算が終了すると、計算を実施した各操業条件の、最もレンガの侵食が進んでいる部位近傍の溶銑の流速の推定値から、当該位置の溶銑の流速が最も小さくなる対策案を選択する。これにより、炉底レンガの侵食の伸展を最も効果的に抑制できる高炉の操業方法を決定することができる。
Step S8
When the calculation is completed for all the operating conditions assumed in advance, from the estimated values of the flow velocity of the hot metal in the vicinity of the site where the brick erosion is progressing, the flow velocity of the hot metal at Choose a countermeasure that will be smaller. Thereby, it is possible to determine a method of operating the blast furnace that can most effectively suppress the extension of erosion of the hearth brick.

以上のように、炉底レンガ面の推定法、炉芯コークスの下面位置および下面形状の推定法、および炉底での溶銑・溶滓流の推定法の3つの技術を合わせることによって、最もレンガの侵食が進んでいる部位の溶銑流速の推定が可能となる。そして、種々の対策案の中から、最も溶銑の流速が低くなる操業条件を採択することで、高炉の操業を停止することなく、炉底レンガの侵食の伸展を効果的に抑制できる。また、従来、耐火物の侵食を抑制するために、炉底部を冷却する冷却水を制御する等の対策が行われていたが、本発明によれば、このような冷却水を制御する装置等を設ける必要もない。   As described above, by combining the three techniques of the method of estimating the furnace bottom brick surface, the method of estimating the position and shape of the lower surface of the core coke, and the method of estimating hot metal and slag flow at the furnace bottom, It is possible to estimate the hot metal flow velocity at the site where the erosion of the hot metal is progressing. Then, by adopting an operating condition that minimizes the flow rate of the hot metal from among various countermeasure plans, it is possible to effectively suppress the erosion of the hearth brick without stopping the operation of the blast furnace. Conventionally, in order to suppress the erosion of refractories, measures such as controlling cooling water for cooling the furnace bottom have been taken. However, according to the present invention, an apparatus for controlling such cooling water, etc. It is not necessary to provide.

以下、本発明の実施例を説明する。   Hereinafter, embodiments of the present invention will be described.

炉容積1850mの高炉について、本発明を適用し、炉底レンガの侵食の伸展を最も効果的に抑制できる操業方法について検討した。 The present invention was applied to a blast furnace having a furnace volume of 1850 m 3 , and an operation method capable of most effectively suppressing the extension of erosion of a bottom brick was studied.

まず、高炉の炉底構造に基づいて計算格子を生成した。図2は、本実施例で検討する高炉11の炉底部を示し、2本の出銑口12a、12bを通る断面における計算格子の例である。高炉11の炉底部は、構造体であるレンガ13を有し、内部に溶銑14およびスラグ15が堆積している。   First, a calculation grid was generated based on the hearth structure of the blast furnace. FIG. 2 shows a furnace bottom of the blast furnace 11 studied in the present embodiment, and is an example of a calculation grid in a cross section passing through two tap holes 12a and 12b. The furnace bottom of the blast furnace 11 has a brick 13 which is a structure, and hot metal 14 and slag 15 are deposited inside.

図3は、炉底部に埋設した熱電対21の平面配置例を示す。本実施例では、高炉11の炉底部の3方向に出銑口12a、12b、12cを有し、炉の中心から外周に向けて半径方向の距離1P、2P、3P、方位NE、SE、SW、NWに、それぞれ熱電対21が設置されている。これらの熱電対21は、それぞれ高さ方向に3段のレベルに設置されている(図2参照)。   FIG. 3 shows an example of a planar arrangement of thermocouples 21 embedded in a furnace bottom. In the present embodiment, tap holes 12a, 12b, and 12c are provided in three directions at the bottom of the blast furnace 11, and radial distances 1P, 2P, and 3P from the center of the furnace toward the outer periphery, directions NE, SE, and SW. , NW are each provided with a thermocouple 21. These thermocouples 21 are installed at three levels in the height direction, respectively (see FIG. 2).

図4は、炉底レンガ(中埋レンガ)の残厚分布を、上段と中段に配置された熱電対による温度測定値とレンガの物性値に基づいて求めた結果を示す。なお、図中の数字はレンガの残厚(mm)を示している。図4に示すように、半径位置:2P(図3参照)、方位:NEにおけるレンガの残厚が最も薄く、残厚が約100mmまで侵食されている。   FIG. 4 shows the result of obtaining the residual thickness distribution of the hearth brick (middle buried brick) based on the temperature measured by the thermocouples arranged in the upper and middle tiers and the physical properties of the brick. The numbers in the figure indicate the remaining thickness (mm) of the brick. As shown in FIG. 4, the remaining thickness of the brick at the radial position: 2P (see FIG. 3) and the orientation: NE is the smallest, and the remaining thickness is eroded to about 100 mm.

次に、直近の操業条件に基づき、炉芯コークスの沈下レベルおよび形状を剛塑性力学に基づく公知のモデル(ISIJ int.,49(2009),470頁参照)により計算した。図5の実線が、その計算結果から得られた炉心コークス下面を示す。さらに、炉底のレンガ残厚の計算結果(レンガ稼働面)を破線で示す。図5より、中埋レンガ1段目の多くは既に消失しており、レンガの侵食は、中埋レンガ2段目に到達していることがわかる。   Next, based on the latest operating conditions, the settlement level and shape of the furnace core coke were calculated by a known model based on rigid plasticity mechanics (see ISIJ int., 49 (2009), p. 470). The solid line in FIG. 5 shows the lower surface of the core coke obtained from the calculation result. Further, the calculation result of the brick thickness at the hearth (brick operating surface) is indicated by a broken line. From FIG. 5, it can be seen that most of the first stage of the embedded brick has already disappeared, and the erosion of the brick has reached the second stage of the embedded brick.

炉芯コークス下面より上方の領域については、コークス充填層が存在する領域であるため、上記式(11)〜(13)により、式(9)の通液抵抗Fを設定した。炉芯コークス下面と中埋レンガ稼働面とで挟まれた領域は、コークスフリースペースであり、充填層が存在しないので、式(9)の通液抵抗をF=0とした。   Since the area above the core coke lower surface is the area where the coke packed layer exists, the flow resistance F of the equation (9) was set by the above equations (11) to (13). The area sandwiched between the lower surface of the furnace core coke and the operating surface of the embedded brick is a coke free space, and there is no packed bed. Therefore, the flow resistance in equation (9) is set to F = 0.

現状の操業状態における、最もレンガ残厚が薄い2P−NE近傍の溶銑の流速に対して、出銑口深度、ラップ時間、マッドの溶損速度、炉芯の沈下レベル(コークスフリースペースの有無)の4種類の操業条件を単独であるいは組み合わせて変化させた場合の、2P−NE近傍の溶銑の流速の低下割合を算出した結果を、表1に示す。   In the current operating state, the taphole depth, lap time, mud erosion rate, and sinking level of the furnace core (with or without coke free space) for the hot metal flow velocity near 2P-NE with the smallest brick thickness Table 1 shows the results of calculating the rate of decrease in the flow velocity of the hot metal near 2P-NE when the four types of operating conditions were changed alone or in combination.

ケース1は現状の操業状態であり、出銑口深度が2m、出銑口のラップ時間は0である。ケース2は、マッド22を厚くして出銑口深度dを3mに変更した場合であり、2P−NE近傍の溶銑の流速がケース1よりも5.6%低下した。ケース3は、2箇所の出銑口12a、12bを同時に開口させるラップ時間を30分としてラップ出銑を実施した場合であり、2P−NE近傍の溶銑の流速が15%低下することがわかった。さらに、ラップ時間を30分としてラップ出銑を実施し、かつ、出銑口深度dを3mに変更したケース4は、2P−NE近傍の溶銑の流速を20%低下させ、その結果、レンガの侵食の伸展を抑制できた。   Case 1 is in the current operating state, the taphole depth is 2 m, and the taphole lap time is 0. Case 2 is the case where the tapping depth d was changed to 3 m by increasing the thickness of the mud 22, and the flow velocity of the hot metal in the vicinity of 2P-NE was reduced by 5.6% as compared with Case 1. Case 3 is a case in which lapping is performed with a lapping time of simultaneously opening two tapholes 12a and 12b being 30 minutes, and it has been found that the flow velocity of the hot metal near 2P-NE decreases by 15%. . Furthermore, Case 4 in which lapping was performed with a lap time of 30 minutes and the taphole depth d was changed to 3 m, the flow velocity of the hot metal near 2P-NE was reduced by 20%, and as a result, The extension of erosion could be suppressed.

これに対して、マッド22の改良を行って溶損速度を低下させたケース5は、2P−NE近傍の溶銑流速の低下効果が5.6%であり、マッド素材の開発に要する時間やコストと効果とを考慮すると、ラップ時間の変更のみ、もしくはラップ時間および出銑口深度dの変更を行う方が、効率よく溶銑の流速を低下させられることがわかった。更に、出銑口深度dを2mから3mに変更し、かつ、炉芯を完全に炉底に着床させコークスフリースペースを消失させたケース6では、2P−NE近傍の溶銑の流速を約60%低下させることができ、最も大きな効果が得られることがわかった。なお、ケース6では、コークス比を320kg/t(ケース1)から350kg/tに増加することにより、コークスフリースペースの消失を図った。コークスフリースペースを消失させる手段はこれに限らず、例えば通気性やガス組成の調整を行ってもよい。   On the other hand, in the case 5 in which the melting loss rate was reduced by improving the mud 22, the reduction effect of the molten iron flow velocity near 2P-NE was 5.6%, and the time and cost required for the development of the mud material were reduced. In consideration of the effect and the effect, it was found that the change of the lap time alone or the change of the lap time and the taphole depth d can reduce the flow rate of the hot metal more efficiently. Further, in case 6 in which the taphole depth d was changed from 2 m to 3 m, and the core was completely landed on the bottom of the furnace to eliminate the coke free space, the flow velocity of the hot metal near 2P-NE was reduced to about 60. %, And the greatest effect was obtained. In case 6, the coke free space was eliminated by increasing the coke ratio from 320 kg / t (case 1) to 350 kg / t. The means for eliminating the coke free space is not limited to this, and for example, the air permeability and the gas composition may be adjusted.

以上の結果に基づき、対象高炉にて、出銑口深度dを2mから3mに変更するとともに、コークス比を増加することにより炉内の通気性を確保して炉芯を炉底に完全に着床させた。これにより、2P−NEにおけるレンガの侵食が抑制され、安定的な高炉操業を実施することができた。   Based on the above results, in the target blast furnace, the tap hole depth d was changed from 2 m to 3 m, and the coke ratio was increased to secure air permeability in the furnace and completely attach the core to the furnace bottom. I let it floor. Thereby, the erosion of the brick in 2P-NE was suppressed, and the stable blast furnace operation was able to be performed.

従来は、過去の経験に基づき、炉底レンガの侵食を抑制すると考えられる全ての手段を実施していたが、本発明により、炉底レンガの侵食に対して最も効果のある手段を効率よく用いることができるようになった。   Conventionally, based on past experience, all means considered to suppress erosion of hearth bricks were implemented, but according to the present invention, the most effective means for erosion of hearth bricks is efficiently used. Now you can do it.

本発明は、高炉の炉底部において、レンガの侵食の伸展を抑制する方法として適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied as a method for suppressing the extension of erosion of bricks in a furnace bottom of a blast furnace.

11 高炉
12a、12b、12c 出銑口
13 レンガ
14 溶銑
15 スラグ
21 熱電対(ユニット)
22 マッド
11 Blast furnace 12a, 12b, 12c Tap hole 13 Brick 14 Hot metal 15 Slag 21 Thermocouple (unit)
22 Mad

Claims (3)

高炉の炉底部に内張りされた炉底レンガの、最も侵食が進んでいる部位の溶銑の流速を推定する方法であって、
高炉の炉底部に内張りされた炉底レンガの構造から、計算格子を生成し、
前記炉底レンガ内に、1組当たり2点の熱電対を埋め込んで、前記2点の熱電対の計測温度に基づいて、2点間の温度と距離および前記炉底レンガの熱伝導率から熱流束を計算し、前記炉底レンガの稼動面の温度を仮定して前記炉底レンガの残存厚みを算出し、この計算を複数組の熱電対について行い前記炉底レンガの稼働面の形状を求め、
現状の操業条件を設定し、
炉内の炉芯コークスの下端レベルおよび形状を、前記操業条件および前記炉底レンガの損耗状況から力学的バランスに基づいて算出し、炉内の通液抵抗として反映させ、
炉内に溶銑、スラグおよびコークス充填層が存在するとした場合の物質収支式、運動量収支式、および、エネルギー収支式に基づいて、炉底部における溶銑、スラグ、コークス充填層の温度分布と、溶銑およびスラグの流速分布を算出し、
前記溶銑の流速分布から、最も炉底レンガの侵食が進んでいる部位近傍の溶銑の流速を推定することを特徴とする、高炉内の溶銑の流速推定方法。
A method of estimating the flow velocity of hot metal at a site where erosion is progressing most, in a hearth brick lined at the hearth of a blast furnace,
From the structure of the hearth brick lined at the bottom of the blast furnace, a calculation grid was generated,
In the hearth brick, two thermocouples are embedded in one set, and based on the measured temperature of the two thermocouples, the heat flow is determined from the temperature and distance between the two points and the thermal conductivity of the hearth brick. Calculate the bundle, calculate the remaining thickness of the hearth brick assuming the temperature of the operating surface of the hearth brick, calculate the shape of the operating surface of the hearth brick by performing this calculation for a plurality of sets of thermocouples ,
Set the current operating conditions,
The lower end level and the shape of the core coke in the furnace are calculated based on the mechanical balance from the wear conditions of the operating conditions and the hearth brick, and reflected as the flow resistance in the furnace,
The temperature distribution of the hot metal, slag, coke packed bed at the bottom of the furnace, and the hot metal and Calculate the slag flow velocity distribution,
A method for estimating the flow velocity of hot metal in a blast furnace, comprising estimating the flow velocity of hot metal near a portion where erosion of the hearth brick is most advanced from the flow distribution of the hot metal.
請求項1に記載の高炉内の溶銑の流速推定方法を用いて高炉の操業条件を決定する高炉の操業方法であって、
複数の異なる操業条件を設定し、前記現状の操業条件と同様の手順で溶銑の流速分布を算出し、
前記複数の異なる操業条件のうち、前記最も炉底レンガの侵食が進んでいる部位近傍の溶銑の流速が最も小さくなるものを、新しい操業条件とすることを特徴とする、高炉の操業方法。
A method for operating a blast furnace, which determines operating conditions for a blast furnace using the method for estimating flow velocity of hot metal in a blast furnace according to claim 1,
Set a plurality of different operating conditions, calculate the flow velocity distribution of the hot metal in the same procedure as the current operating conditions,
A method for operating a blast furnace, wherein a condition in which the flow velocity of hot metal in the vicinity of a portion where the erosion of the hearth brick is most advanced is the smallest among the plurality of different operating conditions is a new operating condition.
前記複数の異なる操業条件は、出銑口深度、出銑時のラップ時間、マッドの溶損速度、およびコークスフリースペースの有無について、いずれか単独の、または2つ以上を組み合わせた条件であることを特徴とする、請求項2に記載の高炉の操業方法。 The plurality of different operating conditions are tap hole depth, tapping lap time, mud erosion rate, and the presence or absence of coke free space, either alone or in combination of two or more. The method for operating a blast furnace according to claim 2, characterized in that:
JP2016182621A 2016-09-20 2016-09-20 Method of estimating hot metal flow velocity in blast furnace and operating method of blast furnace Active JP6669024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016182621A JP6669024B2 (en) 2016-09-20 2016-09-20 Method of estimating hot metal flow velocity in blast furnace and operating method of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016182621A JP6669024B2 (en) 2016-09-20 2016-09-20 Method of estimating hot metal flow velocity in blast furnace and operating method of blast furnace

Publications (2)

Publication Number Publication Date
JP2018048352A JP2018048352A (en) 2018-03-29
JP6669024B2 true JP6669024B2 (en) 2020-03-18

Family

ID=61767232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016182621A Active JP6669024B2 (en) 2016-09-20 2016-09-20 Method of estimating hot metal flow velocity in blast furnace and operating method of blast furnace

Country Status (1)

Country Link
JP (1) JP6669024B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7107050B2 (en) * 2018-07-19 2022-07-27 日本製鉄株式会社 Blast furnace operation method
CN110867220A (en) * 2019-11-07 2020-03-06 西安交通大学 Method for researching in-core eutectic reaction and high-temperature melting behavior by particle grid mixing method
CN112593030B (en) * 2020-11-26 2022-04-12 山西太钢不锈钢股份有限公司 Method for determining furnace heat by utilizing blast furnace slag iron heat index

Also Published As

Publication number Publication date
JP2018048352A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6669024B2 (en) Method of estimating hot metal flow velocity in blast furnace and operating method of blast furnace
Zhang et al. Numerical analysis of blast furnace hearth inner profile by using CFD and heat transfer model for different time periods
JP5680297B2 (en) Refractory lining structure for steelmaking containers
Swartling et al. Heat transfer modelling of a blast furnace hearth
CN113111549B (en) Erosion model modeling method and modeling system for casting repaired blast furnace hearth
Upadhyay et al. Drain rate and liquid level simulation in blast furnace hearth using plant data
JP5381892B2 (en) Estimation method of bottom erosion line and bottom structure
JP5707918B2 (en) Steel container
JP5854200B2 (en) Blast furnace operation method
Wu et al. The study of structure optimization of blast furnace cast steel cooling stave based on heat transfer analysis
WO2014030118A2 (en) A method and a system for determination of refractory wear profile in a blast furnace
Du et al. Numerical simulation of liquid iron flow and heat transfer in the hearth of COREX melter gasifier during tapping process
JP3385831B2 (en) Estimation method of hearth erosion line and hearth structure
JP2669279B2 (en) Blast furnace operation method
JPH01290709A (en) Operation of blast furnace
Agrawal et al. Effect of hearth liquid level on the productivity of blast furnace
JP7436831B2 (en) Blast furnace operating method, pulverized coal injection control device, pulverized coal injection control program
JP7513226B1 (en) METHOD FOR MEASURING MOLTEN MATERIAL LEVEL IN BLAST FURNACE, MEASURING DEVICE FOR MOLTEN MATERIAL LEVEL IN BLAST FURNACE, AND METHOD FOR OPERATING BLAST FURNACE
Maldonado et al. Mathematical modelling of flows and temperature distributions in the blast furnace hearth
Ubale et al. Numerical investigation of temperature distribution in blast furnace hearth
JPH07278627A (en) Cooling piping for bottom of blast furnace and method for cooling bottom of blast furnace
JP4598710B2 (en) Blast furnace brick wear prevention method
JP4276564B2 (en) Blast furnace operation method
Roy et al. Studies on influence of liquid level on blast furnace performance and monitoring of hearth drainage
JP6233003B2 (en) How to determine coke strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200210

R151 Written notification of patent or utility model registration

Ref document number: 6669024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151