JPH07278627A - Cooling piping for bottom of blast furnace and method for cooling bottom of blast furnace - Google Patents

Cooling piping for bottom of blast furnace and method for cooling bottom of blast furnace

Info

Publication number
JPH07278627A
JPH07278627A JP9793994A JP9793994A JPH07278627A JP H07278627 A JPH07278627 A JP H07278627A JP 9793994 A JP9793994 A JP 9793994A JP 9793994 A JP9793994 A JP 9793994A JP H07278627 A JPH07278627 A JP H07278627A
Authority
JP
Japan
Prior art keywords
cooling
refractory
furnace bottom
blast furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9793994A
Other languages
Japanese (ja)
Inventor
Akihiko Shinotake
昭彦 篠竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9793994A priority Critical patent/JPH07278627A/en
Publication of JPH07278627A publication Critical patent/JPH07278627A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively cool a furnace bottom refractory corresponding to the distribution of molten iron flow in the radial direction and restrain erosion of the furnace bottom refractory by arranging cooling pipes having individually inlets and outlets for cooling medium in concentric circle shape and separately controlling the temp. and/or the flow rate of the fed cooling medium. CONSTITUTION:The cooling pipings having 5-15 pieces are arranged so that the interval between each adjacent piping is equal or wider from the outer peripheral part of the furnace bottom toward the center part. Further, the inlet and the outlet are arranged in each cooling piping, respectively. At the time of cooling, the past and the present temps. of from the outer peripheral part of the furnace bottom to the center part are detected, and the remaining thickness of the refractory is calculated from the max. temp. heretofore in the furnace bottom refractory. Further, the thickness of solidified layer developed in the furnace bottom refractory is calculated based on the max. temp. at the past and the present temp., and the cooling medium temp. and/or flow rate for flowing into the cooling piping are controlled according to the refractory thickness and/or the solidified layer thickness developed on the refractory.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉炉底の冷却配管お
よびその冷却方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace bottom cooling pipe and a cooling method therefor.

【0002】[0002]

【従来の技術】高炉炉内の炉床部分には炉芯と呼ばれる
コークスの充填領域が存在し、その充填コークスの空隙
部分に鉱石の還元・溶融によって生じた溶銑・溶滓が溜
まっている。炉底レンガには通常カーボンを主成分とす
る耐火物が使われているが、溶銑の流れと熱負荷による
耐火物の侵食を防ぐため、耐火物下部に冷却配管を設け
て冷却することが行われている。溶銑の流れは炉体の侵
食プロフィルや炉芯の下端形状・炉芯内の通液性などに
よって異なり、例えば炉芯が完全に沈下して炉底につい
ているときに比べ、炉芯全体が浮上して炉底との間に狭
い隙間ができているときは、この空間を溶銑が多く流
れ、また、炉芯の中心部が炉底について周辺部が浮いて
隙間があるときは、この隙間を通って出銑口へ向かう環
状流ができる。溶銑が多く流れる部分に相当する炉底耐
火物は、温度が上昇して熱負荷を多く受ける。通常の高
炉操業においては炉底耐火物に埋設した温度計により、
耐火物の温度変化を監視して温度が上昇した場合に対策
をとる。
2. Description of the Related Art A coke filling area called a core exists in a hearth portion of a blast furnace, and hot metal and slag produced by reduction or melting of ore are accumulated in voids of the coke. Refractory containing carbon as the main component is usually used for the bottom brick, but in order to prevent erosion of the refractory due to the flow of hot metal and heat load, cooling can be done by installing a cooling pipe under the refractory. It is being appreciated. The flow of hot metal differs depending on the erosion profile of the furnace body, the shape of the lower end of the core, the liquid permeability in the core, etc., for example, the entire core floats higher than when it completely sinks to the bottom of the furnace. If there is a narrow gap between the furnace bottom and the furnace bottom, a large amount of hot metal flows in this space.If there is a gap around the center of the furnace core with the bottom of the furnace bottom, there is a gap. A circular flow is created toward the taphole. The furnace bottom refractory, which corresponds to a portion where a large amount of hot metal flows, has a high temperature and receives a large heat load. In a normal blast furnace operation, the thermometer embedded in the bottom refractory
Monitor the temperature change of refractory and take measures when the temperature rises.

【0003】炉底下部に設置されている冷却配管は、平
行に配置した配管に冷却媒体を流す方法が一般的である
が、この方法では炉底部に熱負荷分布がある場合に、熱
負荷の大小に応じて冷却能を制御することができない。
近年の大型高炉では、炉底で周辺部に環状流が生じて熱
負荷が高くなることが多く、この部位の選択的侵食を防
ぐため炉底中心部に比べて、炉底周辺部を強く冷却する
のが望ましい場合が多い。この問題を解決すべく特開昭
58−55509号公報や特開昭63−105913号
公報に、それぞれ炉底中心部と周辺部を別々に冷却制御
することによって、冷却能を変えることができる冷却配
管方法、冷却管内の一部に伝熱抵抗体を設けて冷却能の
異なる領域を形成する方法が提案されている。特開昭5
8−55509号公報には、高炉炉底冷却ダクトを複数
段に設け、下段のダクトは炉底全体に、上段のダクトは
炉底外周部に設置してそれぞれ独自に冷却する方法が、
また特開昭63−105913号公報には、高炉炉底の
冷却配管がまっすぐな平行線状に設置されている高炉に
おいて炉底中央部に相当する部位に伝熱抵抗体を着脱し
て炉底中央部の冷却能を弱めることができる炉底冷却方
法が記載されている。
The cooling pipes installed in the lower part of the furnace bottom generally have a method of flowing a cooling medium through the pipes arranged in parallel. In this method, when there is a heat load distribution in the bottom part of the furnace, The cooling capacity cannot be controlled according to the size.
In large-scale blast furnaces in recent years, an annular flow is often generated around the bottom of the furnace to increase the heat load.To prevent selective erosion of this part, the periphery of the bottom is cooled more strongly than the center of the bottom. It is often desirable to do so. In order to solve this problem, Japanese Patent Laid-Open No. 58-55509 and Japanese Patent Laid-Open No. 63-105913 disclose cooling control in which the central portion and the peripheral portion of the furnace bottom are separately cooled to change the cooling capacity. A piping method and a method of forming a region having different cooling ability by providing a heat transfer resistor in a part of the cooling pipe have been proposed. JP-A-5
No. 8-55509 discloses a method in which blast furnace bottom cooling ducts are provided in a plurality of stages, the lower duct is installed on the entire furnace bottom, and the upper duct is installed on the outer periphery of the furnace bottom to cool each independently.
Further, in Japanese Patent Laid-Open No. 63-105913, in a blast furnace in which cooling pipes at the bottom of the blast furnace are installed in straight parallel lines, a heat transfer resistor is attached to and detached from a part corresponding to the central part of the bottom of the blast furnace. A method for cooling the bottom of the furnace is described which can reduce the cooling capacity of the central part.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開昭
58−55509号公報の方法は、炉底周辺部に複数の
冷却ダクトを設けることから構造が複雑になり設備工事
上の難度が高くなる。また、特開昭63−105913
号公報の方法も、冷却配管内に伝熱抵抗体を設ける方法
が難しく、設備費・工事費が高くなるなどの欠点があっ
た。本発明は、特に複雑な構造や配管以外の特別な部品
を用いることなく炉底の温度分布に応じて炉底半径方向
の冷却能を制御できる高炉炉底冷却配管および炉底冷却
方法を提供することを目的とする。
However, the method disclosed in Japanese Patent Laid-Open No. 58-55509 has a complicated structure since a plurality of cooling ducts are provided in the peripheral portion of the furnace bottom, and the difficulty in facility construction increases. Also, JP-A-63-105913
The method disclosed in Japanese Patent Laid-Open Publication No. 2003-242242 has a drawback that it is difficult to provide a heat transfer resistor in the cooling pipe, resulting in high equipment cost and construction cost. The present invention provides a blast furnace bottom cooling pipe and a bottom cooling method capable of controlling the cooling capacity in the radial direction of the bottom according to the temperature distribution of the bottom without using special parts other than a complicated structure and piping. The purpose is to

【0005】[0005]

【課題を解決するための手段】本発明は、高炉炉底の冷
却配管を同心円状に形成し、炉底の熱負荷に応じて冷却
媒体の温度または流量を制御することによって、設備的
に特に複雑な構造を用いずに炉底中心部と周辺部の冷却
能を変えることを可能にすることを特徴とする。すなわ
ち、本発明の要旨とするところは、(1)高炉炉底の冷
却配管において、隣接する冷却配管同士の間隔が、等間
隔に配列された5個以上15個以下の同心円をなす冷却
配管を有し、それぞれの冷却配管は個別に冷却媒体出入
口を有することを特徴とする高炉炉底冷却配管。
According to the present invention, the cooling pipes at the bottom of the blast furnace are formed concentrically, and the temperature or flow rate of the cooling medium is controlled according to the heat load at the bottom of the blast furnace. It is characterized in that it makes it possible to change the cooling capacity of the central part and the peripheral part of the furnace bottom without using a complicated structure. That is, the gist of the present invention is as follows: (1) In cooling pipes at the bottom of a blast furnace, cooling pipes having concentric circles of 5 or more and 15 or less arranged at equal intervals are provided. And a cooling medium inlet / outlet for each cooling pipe.

【0006】(2)高炉炉底の冷却配管において、隣接
する冷却配管同士の間隔が、炉底外周部から炉底中心部
に向かって広くなるように配列された5個以上15個以
下の同心円をなす冷却配管を有し、それぞれの冷却配管
は個別に冷却媒体出入口を有することを特徴とする高炉
炉底冷却配管。
(2) In the cooling pipe at the bottom of the blast furnace, five or more and 15 or less concentric circles arranged so that the intervals between the adjacent cooling pipes are widened from the outer periphery of the furnace bottom toward the center of the furnace bottom. A cooling pipe for the bottom of a blast furnace, characterized in that each cooling pipe has a cooling medium inlet / outlet.

【0007】(3)(1)または(2)に記載の高炉炉
底冷却配管を用いる高炉炉底冷却方法において、炉底外
周部から炉底中心部にかけての過去および現在の温度を
検出し、前記耐火物内温度の現在までの最高温度から耐
火物残存厚みを演算し、前記耐火物内温度の過去におけ
る最高温度と現在の温度の差に基づいて耐火物上に生成
した凝固層厚みを演算し、耐火物残存厚みおよび/また
は耐火物上に生成した凝固層厚みに応じて前記高炉炉底
冷却配管に流す冷却媒体の温度および/または流量を制
御することを特徴とする高炉炉底冷却方法にある。ここ
で言う炉底外周部とは炉内外周部の下側の炉底耐火物部
位を、炉底中心部とは炉内中心軸の下方の炉底耐火物部
位をそれぞれ指す。
(3) In the blast furnace bottom cooling method using the blast furnace bottom cooling pipe according to (1) or (2), the past and present temperatures from the outer periphery of the furnace bottom to the center of the furnace bottom are detected, The refractory residual thickness is calculated from the highest temperature of the refractory internal temperature to the present, and the solidified layer thickness generated on the refractory is calculated based on the difference between the past maximum temperature and the present temperature of the refractory internal temperature. And controlling the temperature and / or the flow rate of the cooling medium flowing through the blast furnace bottom cooling pipe according to the residual thickness of the refractory and / or the thickness of the solidified layer formed on the refractory. It is in. The furnace bottom outer peripheral portion referred to herein means a furnace bottom refractory portion below the furnace inner peripheral portion, and the furnace bottom center portion refers to a furnace bottom refractory portion below the furnace central axis.

【0008】[0008]

【作用】本発明に示す冷却配管を用いた場合は、以下の
ように炉底冷却能を制御することができる。鉄製の冷却
配管を用いて冷却媒体に水を使用する場合を例にとって
図面を用いて説明する。すなわち、(1)図1に示すよ
うに高炉炉底面の冷却配管3を等間隔の8個の同心円状
に形成し、それぞれの冷却配管は個別に冷却媒体出入口
を有するようにした場合は、それぞれの同心円部におい
て冷却水の温度を低くするほど、また冷却流量を多くす
るほど大きな冷却能を得ることができる。
When the cooling pipe of the present invention is used, the furnace bottom cooling capacity can be controlled as follows. A case where water is used as a cooling medium using an iron cooling pipe will be described as an example with reference to the drawings. That is, (1) When the cooling pipes 3 on the bottom surface of the blast furnace are formed into eight concentric circles at equal intervals as shown in FIG. 1, and each cooling pipe has a cooling medium inlet / outlet, respectively, In the concentric circles, the lower the cooling water temperature and the higher the cooling flow rate, the greater the cooling capacity can be obtained.

【0009】(2)図2に示すように高炉炉底面の冷却
配管3を、隣接する冷却配管3同士の間隔が炉底外周部
から炉底中心部に向かって広くなるように配列した8個
の同心円状に形成し、それぞれの冷却配管は個別に冷却
媒体出入口を有するようにした場合は、冷却水の温度と
流量が一定であれば炉底外周部から炉底中心部に向かっ
て冷却能は小さくなり、この状態を基準としてそれぞれ
の同心円部において、冷却水の温度を低くするほど、ま
た冷却水流量を多くするほど大きな冷却能を得ることが
できる。
(2) As shown in FIG. 2, eight cooling pipes 3 on the bottom surface of the blast furnace are arranged so that the intervals between the adjacent cooling pipes 3 become wider from the outer peripheral portion of the furnace bottom toward the central portion of the furnace bottom. When the cooling pipes are formed in concentric circles and each has a cooling medium inlet / outlet, if the temperature and flow rate of the cooling water are constant, the cooling capacity from the outer periphery of the furnace bottom toward the center of the furnace bottom Becomes smaller, and a larger cooling capacity can be obtained as the temperature of the cooling water is made lower and the flow rate of the cooling water is made larger in each concentric circle portion based on this state.

【0010】高炉操業においては、炉底耐火物に温度計
を埋設して測温し、過去の最高温度を用いて耐火物の侵
食位置を、過去の最高温度と現在の温度の差を用いて耐
火物上に生成した凝固層厚みを推定している。例えば炉
底レンガと凝固層の熱伝導率をそれぞれλ、λ* (W/
m/℃)とするとき、レンガ内の深度L1 、L2 (m)
(L1 <L2 )の位置に埋設された熱電対の測温値がT
1 、T2 (℃)であれば、これらの値とレンガ稼働面温
度T、レンガ残存厚みL、凝固層厚みlの間に次の関係
があるとしてT、L、lを推定する。
In blast furnace operation, a thermometer is embedded in the bottom refractory to measure the temperature, and the erosion position of the refractory is determined by using the past maximum temperature and the difference between the past maximum temperature and the current temperature is used. The thickness of the solidified layer formed on the refractory is estimated. For example, the thermal conductivity of the furnace bottom brick and the solidified layer are λ, λ * (W /
m / ° C), the depth in the brick L 1 , L 2 (m)
The temperature measurement value of the thermocouple buried in the position of (L 1 <L 2 ) is T
If 1 , T 2 (° C.), T, L, and l are estimated as the following relationships among these values, brick working surface temperature T, brick residual thickness L, and solidified layer thickness l.

【0011】[0011]

【数1】 [Equation 1]

【0012】1150は溶銑凝固温度である。すなわ
ち、T1 やT2 が最高温度となった時、T=1150、
l=0であるとして右側の等式を用いてLを算出し、現
在のT1 とT2 およびLを用いてTとlを計算する。熱
電対が1点(深度L2 )しか埋設されていない部位で
は、外気温度T0 とレンガ〜外気間の対流伝熱係数h
(W/m2 /℃)を用いて(2)式により熱電対位置〜
外気間の総括熱伝達係数H(W/m2 /℃)を求め、
(1)式の右辺に代えて(3)式を使用する。
Reference numeral 1150 is the hot metal solidification temperature. That is, when T 1 and T 2 reach the maximum temperature, T = 1150,
Calculate L using the equation on the right, assuming l = 0, and calculate T and l using the current T 1 and T 2 and L. At a site where only one thermocouple (depth L 2 ) is buried, the outside air temperature T 0 and the convection heat transfer coefficient h between the brick and the outside air
Using (W / m 2 / ° C.), the thermocouple position from equation (2)
Calculate the overall heat transfer coefficient H (W / m 2 / ° C) between outside air,
Expression (3) is used instead of the right side of expression (1).

【0013】[0013]

【数2】 [Equation 2]

【0014】この方法によって推定された耐火物の残存
厚みや耐火物上に生成した凝固層厚みが薄く、すなわち
冷却を強くしたい部位の冷却能が大きくなるように、冷
却水の温度および/または流量の制御を行えば、効果的
に炉底耐火物の侵食を抑制することができる。炉底環状
流や炉底半径方向の温度の差が問題となるのは、主に炉
床部の内径が10m以上ある大型高炉の場合であり、こ
の規模の高炉において同心円が5個未満では、冷却配管
の間隔が大きすぎて炉底温度分布に対応した適切な冷却
制御ができず、かつ十分な冷却能が得られない。また、
同心円が5個以上では、数がふえるほど制御性が増し冷
却能も大きくなるが、反面設備が煩雑になり設備費が冷
却し、15個を超えると設備の煩雑化と設備費の増加に
見合うだけの効果が得られない。
The temperature and / or the flow rate of the cooling water are adjusted so that the remaining thickness of the refractory and the solidified layer formed on the refractory estimated by this method are thin, that is, the cooling capacity of the portion where the cooling is desired to be strong becomes large. If the control is performed, erosion of the bottom refractory can be effectively suppressed. The annular bottom flow and the temperature difference in the radial direction of the bottom of the furnace become a problem mainly in the case of a large blast furnace with an inner diameter of the hearth of 10 m or more. In the blast furnace of this scale, if there are less than 5 concentric circles, The intervals between the cooling pipes are too large to perform appropriate cooling control corresponding to the temperature distribution in the bottom of the furnace, and sufficient cooling capacity cannot be obtained. Also,
If the number of concentric circles is 5 or more, the controllability increases and the cooling capacity increases as the number increases, but on the other hand, the equipment becomes complicated and the equipment cost cools. If the number of concentric circles exceeds 15, the equipment becomes complicated and the equipment cost increases. Not just the effect.

【0015】[0015]

【実施例】【Example】

(実施例1)図1(a)、(b)に示すごとく、高炉炉
底面の鉄製冷却配管3を、隣接する配管同士の間隔が一
様に0.75mとなるように配列した8個の同心円状に
形成し、それぞれの冷却配管は個別に冷却媒体出入口を
有するようにした炉床径12mの高炉において、炉底耐
火物に埋設した温度計4の指示値をみながら、各同心円
部に流す冷却水の流量を変えて操業した。すなわち、作
用の項に示す方法で、過去の最高温度と現在の温度値か
ら、耐火物残存厚みと凝固層厚みを計算し、耐火物残存
厚みが1m以上ある場合には凝固層厚み1mを基準とし
て、凝固層厚みが増/減した割合だけ冷却水流量を減/
増し、耐火物残存厚みが1m未満の場合には、1mより
減じた割合だけ基準の冷却水流量を増量した。
(Example 1) As shown in FIGS. 1 (a) and 1 (b), eight iron cooling pipes 3 on the bottom surface of a blast furnace were arranged so that the intervals between adjacent pipes were uniformly 0.75 m. In a blast furnace with a hearth diameter of 12 m, which is formed in a concentric shape, and each cooling pipe has a cooling medium inlet / outlet, while checking the indicated value of the thermometer 4 embedded in the bottom refractory material, The operation was performed by changing the flow rate of cooling water. That is, the refractory remaining thickness and the solidified layer thickness are calculated from the past maximum temperature and the present temperature value by the method described in the section of action, and when the refractory remaining thickness is 1 m or more, the solidified layer thickness 1 m is used as a reference. The cooling water flow rate is reduced by
When the residual thickness of the refractory is less than 1 m, the standard cooling water flow rate was increased by a rate of less than 1 m.

【0016】図3に最も外側の同心円と最も内側の同心
円の冷却配管の上部の耐火物内温度の推移の例を示す。
当初より炉底最外部の冷却水流量が最も中心の部位より
10%多くなるように、外側の同心円ほど流量を多くし
て操業していたが、図中の時点より外周部の温度が上
昇し、中心部の温度は低下の傾向となったため、中心部
には凝固層が発達して溶銑の流動が少なくなり、外周部
に環状流傾向が現れたものと推定し、外周部の冷却水流
量が20%増加し、中心部の冷却水流量が20%減少す
るように、それぞれの同心円の流量を変化させた。この
冷却状態を暫く継続したところ3日後以降外周部の温度
上昇と中心部の温度低下は停止し、徐々に元の温度に復
帰した。の時点で冷却水流量を元のレベルに戻した。
このアクションにより、順調な操業を中断することな
く、炉底外周部の耐火物の損耗を防止することができ
た。
FIG. 3 shows an example of the transition of the temperature inside the refractory at the upper part of the cooling pipe of the outermost concentric circle and the innermost concentric circle.
From the beginning, the outer concentric circles were operated with a larger flow rate so that the flow rate of the cooling water in the outermost part of the bottom of the furnace was 10% higher than in the central part, but the temperature of the outer periphery increased from the point in the figure Since the temperature of the central part tended to decrease, it was estimated that the solidified layer developed in the central part and the flow of hot metal decreased, and the annular flow tendency appeared in the outer peripheral part. Was increased by 20%, and the flow rate of the cooling water in the central portion was decreased by 20%. When this cooling state was continued for a while, the temperature increase in the outer peripheral portion and the temperature decrease in the central portion stopped after 3 days and gradually returned to the original temperature. At that time, the cooling water flow rate was returned to the original level.
By this action, it was possible to prevent the wear of the refractory material on the outer periphery of the furnace bottom without interrupting the smooth operation.

【0017】(実施例2)図2(a)、(b)に示すご
とく、高炉炉底面の鉄製冷却配管3を、炉底中心軸から
の半径が0.75、1.65、2.5、3.3、4.0
5、4.75、5.4、6.0mの8個の同心円状をな
し、それぞれの冷却配管は個別に冷却媒体出入口を有す
るようにした、炉床径12mの高炉において、炉底耐火
物に埋設した温度計4の指示値をみながら、各同心円部
に流す冷却水の流量と温度を変えて操業した。すなわ
ち、作用の項に示す方法で、過去の最高温度と現在の温
度値から耐火物残存厚みと凝固層厚みを計算し、耐火物
残存厚みが1m以上ある場合には、凝固層厚み1mを基
準として、凝固層厚みが増/減した場合だけ冷却水流量
を減/増し、耐火物残存厚みが1m未満の場合には、1
mより減じた割合だけ基準の冷却水流量を増量した。
(Embodiment 2) As shown in FIGS. 2 (a) and 2 (b), the iron cooling pipe 3 at the bottom of the blast furnace has a radius of 0.75, 1.65, 2.5 from the center axis of the furnace bottom. 3.3, 4.0
In a blast furnace with a hearth diameter of 12 m, which has 8 concentric circles of 5, 4.75, 5.4, and 6.0 m, each cooling pipe has a cooling medium inlet / outlet, a bottom refractory material While observing the indicated value of the thermometer 4 embedded in the, the flow rate and the temperature of the cooling water flowing in each concentric circle were changed and the operation was performed. That is, the refractory residual thickness and the solidified layer thickness are calculated from the past maximum temperature and the present temperature value by the method described in the section of action, and when the refractory residual thickness is 1 m or more, the solidified layer thickness 1 m is used as a reference. The cooling water flow rate is decreased / increased only when the solidified layer thickness is increased / decreased, and when the refractory residual thickness is less than 1 m, 1
The standard cooling water flow rate was increased by the ratio reduced from m.

【0018】図4に最も外側の同心円と最も内側の同心
円の冷却配管の上部の耐火物内温度の推移の例を示す。
当初は各同心円部に流す冷却水の流量と温度を一様にし
て操業していたが、図中の時点より外周部の温度が上
昇し、中心部の温度は低下の傾向となったため、中心部
には凝固層が発達して溶銑の流動が少なくなり、外周部
に環状流傾向が現れたものと推定し、外側4個の同心円
については外から20、15、10、5%冷却水流量を
増加させ、その内側2個の同心円については外から5、
10℃高く加温した水を流し、最も内側の2個の同心円
については冷却水を切って常温の窒素を流す冷却に切り
替えた。この冷却状態を暫く継続したところ、5日後以
降外周部の温度上昇と中心部の温度低下は停止し、徐々
に元の温度に復帰した。の時点で冷却水流量を元のレ
ベルに戻した。このアクションにより、順調な操業を中
断することなく、炉底外周部の耐火物の損耗を防止する
ことができた。
FIG. 4 shows an example of transition of the temperature inside the refractory at the upper part of the cooling pipes of the outermost concentric circle and the innermost concentric circle.
Initially, the flow rate and temperature of the cooling water flowing through the concentric circles were made uniform, but since the temperature at the outer periphery increased and the temperature at the center tended to decrease from the time in the figure, It is estimated that the solidified layer developed in the area and the flow of the hot metal decreased, and an annular flow tendency appeared in the outer periphery. For the four outer concentric circles, 20, 15, 10 and 5% cooling water flow rate from the outside For the two inner concentric circles from the outside,
Water heated to 10 ° C. was flowed, and the innermost two concentric circles were switched off by cutting the cooling water and flowing nitrogen at room temperature. When this cooling state was continued for a while, the temperature increase in the outer peripheral portion and the temperature decrease in the central portion stopped after 5 days and gradually returned to the original temperature. At that time, the cooling water flow rate was returned to the original level. By this action, it was possible to prevent the wear of the refractory material on the outer periphery of the furnace bottom without interrupting the smooth operation.

【0019】[0019]

【発明の効果】本発明によって以下の効果を奏する。 (1)高炉炉底面の下部に特に複雑な設備を用いること
なく、同心円状に形成した冷却配管を用いて、各同心円
部に流す冷却媒体の温度または流量を制御することによ
って、炉底侵食形状や溶銑流の径方向分布に応じて、効
果的に冷却を行いつつ、炉底耐火物の侵食を抑制するこ
とができる。 (2)隣接する冷却配管同士の間隔が、炉底外周部から
炉底中心部に向かって、順に広くなるように配列した同
心円状に形成した冷却配管を用いて、等しい温度と流量
で冷却媒体を流す場合でも、炉底外周部の冷却能を炉底
中心部に比べて大きく取って、炉底中心部の凝固層の発
達や、炉底環状流を抑制することができ、さらに各同心
円部に流す冷却媒体の温度または流量の制御を加えて、
より効果的に炉底耐火物の侵食を抑制することができ
る。
The present invention has the following effects. (1) The erosion shape of the bottom of the blast furnace is controlled by controlling the temperature or flow rate of the cooling medium flowing in each concentric circle by using concentric cooling pipes without using complicated equipment at the bottom of the bottom. Corrosion of the furnace bottom refractory can be suppressed while effectively cooling in accordance with the radial distribution of the molten iron or the hot metal flow. (2) Cooling medium is formed at the same temperature and flow rate using concentric cooling pipes arranged so that the intervals between the adjacent cooling pipes are sequentially widened from the outer peripheral portion of the furnace bottom toward the central portion of the furnace bottom. Even when flowing, the cooling capacity of the outer periphery of the bottom of the furnace can be made larger than that of the center of the bottom to suppress the development of the solidified layer in the center of the bottom and the annular flow of the bottom of the furnace. In addition to controlling the temperature or flow rate of the cooling medium flowing through
Erosion of the bottom refractory can be suppressed more effectively.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の炉底冷却配管図FIG. 1 is a furnace bottom cooling piping diagram of Example 1.

【図2】実施例1の炉底冷却配管図2 is a furnace bottom cooling piping diagram of Example 1. FIG.

【図3】炉底外周部と中心部の耐火物内温度変化の例
(実施例1)
[Fig. 3] Example of temperature change in refractory material at outer peripheral portion and central portion of furnace bottom (Example 1)

【図4】炉底外周部と中心部の耐火物内温度変化の例
(実施例2)
[Fig. 4] Example of temperature change in refractories at the outer peripheral portion and the central portion of the furnace bottom (Example 2)

【符号の説明】[Explanation of symbols]

1 高炉炉体 2 炉底耐火物 3 炉底冷却配管 4 埋設温度計 5 冷却水出入口 1 Blast furnace furnace body 2 Furnace bottom refractory 3 Furnace bottom cooling pipe 4 Buried thermometer 5 Cooling water inlet / outlet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高炉炉底の冷却配管において、隣接する
冷却配管同士の間隔が、等間隔に配列された5個以上1
5個以下の同心円をなす冷却配管を有し、それぞれの冷
却配管は個別に冷却媒体出入口を有することを特徴とす
る高炉炉底冷却配管。
1. The cooling pipes at the bottom of the blast furnace have at least five adjacent cooling pipes arranged at equal intervals.
A blast furnace bottom cooling pipe, which has 5 or less concentric cooling pipes, and each cooling pipe has a cooling medium inlet / outlet.
【請求項2】 高炉炉底の冷却配管において、隣接する
冷却配管同士の間隔が、炉底外周部から炉底中心部に向
かって広くなるように配列された5個以上15個以下の
同心円をなす冷却配管を有し、それぞれの冷却配管は個
別に冷却媒体出入口を有することを特徴とする高炉炉底
冷却配管。
2. In the cooling pipe at the bottom of the blast furnace, 5 or more and 15 or less concentric circles are arranged such that the intervals between the adjacent cooling pipes are widened from the outer periphery of the furnace bottom toward the center of the furnace bottom. A blast furnace bottom cooling pipe characterized by having a cooling pipe, and each cooling pipe having a cooling medium inlet / outlet individually.
【請求項3】 請求項1または2に記載の高炉炉底冷却
配管を用いて高炉炉底を冷却するに際し、炉底外周部か
ら炉底中心部にかけての過去および現在の温度を検出
し、前記耐火物内温度の現在までの最高温度から耐火物
残存厚みを演算し、前記耐火物内温度の過去における最
高温度と現在の温度の差に基づいて耐火物上に生成した
凝固層厚みを演算し、耐火物残存厚みおよび/または耐
火物上に生成した凝固層厚みに応じて前記高炉炉底冷却
配管に流す冷却媒体の温度および/または流量を制御す
ることを特徴とする高炉炉底冷却方法。
3. When cooling the blast furnace bottom using the blast furnace bottom cooling pipe according to claim 1 or 2, the past and present temperatures from the outer periphery of the furnace bottom to the center of the furnace bottom are detected, and The refractory remaining thickness is calculated from the maximum temperature of the refractory temperature to date, and the solidified layer thickness generated on the refractory is calculated based on the difference between the past maximum temperature and the present temperature of the refractory temperature. A method for cooling the bottom of a blast furnace, wherein the temperature and / or the flow rate of a cooling medium flowing through the cooling pipe for the bottom of the blast furnace are controlled according to the remaining thickness of the refractory and / or the thickness of the solidified layer formed on the refractory.
JP9793994A 1994-04-13 1994-04-13 Cooling piping for bottom of blast furnace and method for cooling bottom of blast furnace Pending JPH07278627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9793994A JPH07278627A (en) 1994-04-13 1994-04-13 Cooling piping for bottom of blast furnace and method for cooling bottom of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9793994A JPH07278627A (en) 1994-04-13 1994-04-13 Cooling piping for bottom of blast furnace and method for cooling bottom of blast furnace

Publications (1)

Publication Number Publication Date
JPH07278627A true JPH07278627A (en) 1995-10-24

Family

ID=14205643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9793994A Pending JPH07278627A (en) 1994-04-13 1994-04-13 Cooling piping for bottom of blast furnace and method for cooling bottom of blast furnace

Country Status (1)

Country Link
JP (1) JPH07278627A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049922C (en) * 1996-03-30 2000-03-01 安阳钢铁集团有限责任公司 Method for additionally providing water cooling of bottom of blast furnace
KR20010059375A (en) * 1999-12-30 2001-07-06 이구택 furnace wall deposition and hearth temperature control system of furnace hearth bottom in a blast furnace
CN104390463A (en) * 2014-11-12 2015-03-04 浙江森波特搪瓷有限公司 Method for preventing cracking and cooling of refractory bricks of furnace kiln
JP6947343B1 (en) * 2020-04-30 2021-10-13 Jfeスチール株式会社 Fluctuation detection method of solidified layer and blast furnace operation method
WO2021220751A1 (en) * 2020-04-30 2021-11-04 Jfeスチール株式会社 Method for detecting fluctuation in coagulation layer and blast furnace operation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049922C (en) * 1996-03-30 2000-03-01 安阳钢铁集团有限责任公司 Method for additionally providing water cooling of bottom of blast furnace
KR20010059375A (en) * 1999-12-30 2001-07-06 이구택 furnace wall deposition and hearth temperature control system of furnace hearth bottom in a blast furnace
CN104390463A (en) * 2014-11-12 2015-03-04 浙江森波特搪瓷有限公司 Method for preventing cracking and cooling of refractory bricks of furnace kiln
JP6947343B1 (en) * 2020-04-30 2021-10-13 Jfeスチール株式会社 Fluctuation detection method of solidified layer and blast furnace operation method
WO2021220751A1 (en) * 2020-04-30 2021-11-04 Jfeスチール株式会社 Method for detecting fluctuation in coagulation layer and blast furnace operation method
CN115485396A (en) * 2020-04-30 2022-12-16 杰富意钢铁株式会社 Method for detecting fluctuation of solidified layer and method for operating blast furnace

Similar Documents

Publication Publication Date Title
US3849587A (en) Cooling devices for protecting refractory linings of furnaces
US20180073090A1 (en) Long campaign life stave coolers for circular furnaces with containment shells
JPH07278627A (en) Cooling piping for bottom of blast furnace and method for cooling bottom of blast furnace
JP5445744B2 (en) Three-phase AC electrode type circular electric furnace and its cooling method
RU2487946C2 (en) Method of making cooling element for pyrometallurgical reactor and cooling element
US5295666A (en) Cooling plates for blast furnaces and cooling installation employing this type of plate
US5027881A (en) Continuous casting apparatus
CN115181824A (en) Blast furnace cooling structure and system
CN212720899U (en) Furnace body structure of ore-smelting electric furnace
JPH07126721A (en) Piping for cooling furnace bottom of blast furnace and method therefor
JP5854200B2 (en) Blast furnace operation method
JP4912758B2 (en) Three-phase AC electrode type circular electric furnace and its cooling method
CN110453023B (en) Blast furnace hearth elephant foot erosion prevention and analysis method
JP3635779B2 (en) Blast furnace wall cooling plate
JP3626552B2 (en) Cooling method for blast furnace bottom
JP4038153B2 (en) Blast furnace bottom cooling method
US4477279A (en) Annular tuyere and method
EP0128987A2 (en) Tuyere and method for blowing gas into molten metal
JP3745538B2 (en) Blast furnace operation method
RU2779575C1 (en) Device for producing titanium slag in ore thermal furnace
JP3385831B2 (en) Estimation method of hearth erosion line and hearth structure
JPH07145414A (en) Method for tapping molten metal from metal melting furnace and tapping hole thereof
JP4598710B2 (en) Blast furnace brick wear prevention method
JPS5933162B2 (en) Blast furnace operating method
JP2000283425A (en) Slag hole

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040629