JP4038153B2 - Blast furnace bottom cooling method - Google Patents

Blast furnace bottom cooling method Download PDF

Info

Publication number
JP4038153B2
JP4038153B2 JP2003160347A JP2003160347A JP4038153B2 JP 4038153 B2 JP4038153 B2 JP 4038153B2 JP 2003160347 A JP2003160347 A JP 2003160347A JP 2003160347 A JP2003160347 A JP 2003160347A JP 4038153 B2 JP4038153 B2 JP 4038153B2
Authority
JP
Japan
Prior art keywords
cooling
blast furnace
flow rate
furnace bottom
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003160347A
Other languages
Japanese (ja)
Other versions
JP2004360016A (en
Inventor
基樹 本田
顕 高橋
拓史 川村
守 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003160347A priority Critical patent/JP4038153B2/en
Publication of JP2004360016A publication Critical patent/JP2004360016A/en
Application granted granted Critical
Publication of JP4038153B2 publication Critical patent/JP4038153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Blast Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉炉底に埋設された冷却管に冷却水を供給して該高炉炉底を冷却する方法に関する。
【0002】
【従来の技術】
従来、高炉の炉底に内張りされた炉底れんがを保護するために、その側壁や底盤の下部に配置された冷却管によって炉底の冷却がなされている。
しかし、この冷却管による抜熱が過剰になる部分が生じると、溶銑滓の高融点成分が析出し、炉底れんがの稼働表面に付着物が多量に付着して炉底が隆起し、炉底における溶銑の流れが変化して環状流が発生することによって、炉床壁の特定方向が侵食されて炉底れんがの異常溶損の原因となることがある。
【0003】
従って、このような付着物の付着量を調整して、高炉炉底の局部的な熱負荷の変動に応じて適正な冷却条件の下で冷却を行うことが必要となる。
特に、高炉炉底中央部の付着物の層厚が厚くなると、炉底の中央部から炉壁の出銑口方向への溶銑の流れが悪くなることから、炉底の中央部は緩やかに冷却し、炉底の周辺部は強冷却することによって炉寿命を長くする冷却パターンが好ましい。
高炉炉底の冷却方法に関しては、従来から種々の提案がなされている。
例えば、特開平2−104603号公報には、高炉の炉底部の冷却法において、円形である前記炉底部の冷却範囲を中心部分と周辺部分に分け、炉底れんがに埋設された温度センサの指示により、それぞれ独立に冷却水の流量を調節する高炉の炉底冷却方法が記載されている。
しかし、前記特開平2−104603号公報に示される方法では、高炉炉底に配置する冷却管のピッチは一定であるうえ、中心部分の冷却管が1系統だけなので、冷却水の流量調整だけで炉底温度の制御を行う必要があり、高炉の操業状況に合わせた炉底の温度コントロールは不十分だった。
【0004】
また、特開平10-8114号公報には、冷却管を3重管構造にし、該冷却管内にシール部を設けることによって、冷却管内を冷却領域と非冷却領域とに分割することによって、高炉炉底れんがの冷却必要部位を効率的に冷却できる高炉炉底の冷却装置が開示されている。
しかし、冷却管を3重管構造にするためには、パイプを切断・溶接する複雑な加工が必要となるうえ、シール部から冷却水が漏れる可能性があった。
【0005】
【特許文献1】
特開平2−104603号公報
【特許文献2】
特開平10-8114号公報
【発明が解決しようとする課題】
本発明は、前述のような従来技術の問題点を解決し、高炉炉底における溶銑の流れを円滑にするとともに、れんがの異常損耗を防止して炉寿命を長くできる高炉炉底の冷却方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明は、前述の課題を解決するために鋭意検討の結果なされたものであり、その手段とするところは下記の通りである。
(1)高炉炉底の中央部及び周辺部に冷却配管を別々に、かつ、両者の冷却能が影響を受けない様に設置し、該冷却配管に冷却水を供給して、前記中央部を緩冷却し、周辺部を強冷却する方法において、前記中央部に設置した冷却管を、大流量用と小流量用の2系統にすると共に、該大流量用と小流量用の冷却管を交互に配置し、前記小流量用の冷却水をON、OFF制御することにより、冷却水が流れる冷却配管のピッチを調整することを特徴とする高炉炉底の冷却方法。
(2)前記大流量用の冷却水の流量を調整することを特徴とする(1)に記載の高炉炉底の冷却方法。
【0007】
【発明の実施の形態】
本発明の実施形態について、図1乃至図4を用いて詳細に説明する。
図4は、本発明が対象とする高炉炉底の断面図である。
図4において、高炉炉底10は、高炉の外殻を構成する鉄皮11aと、鉄皮11aの内部に内張りされた炉底れんが11と、炉底れんが11を支持する底盤12と、底盤12と基盤13との間に配置される冷却管14と、底盤12を支えて冷却管14の挿入間隙を形成する図示しないビームとを有している。なお、15はれんがに付着して溶銑の流れを阻害する付着物を示す。
【0008】
図1は、本発明の高炉炉底の冷却方法における実施形態を例示する図である。図1の上側の図は、高炉炉底の平面図であり、下側の図は冷却管の配置を示すA-A´断面図である。
図1において、1は高炉炉底の中央部aおよび周辺部bを冷却する大流量の冷却管、2は高炉炉底の中央部aを冷却する小流量の冷却管、3および4は高炉炉底の周辺部bを冷却する冷却管、5は出銑口、6は炉底温度計を示す。
【0009】
本実施形態における高炉の出銑口5は、高炉の中心から5方向に設けられており、例えば、対角線上の位置にある出銑口5を同時に使用する。
この出銑口5の周辺が最も溶銑滓の流速が速くなる領域であり、レンガの損耗が激しいので出銑口5の周囲に相当する高炉の周辺部を強冷却する必要がある。
一方、炉底の中央部は、周辺部に比べて溶銑滓の流速が遅く、この中央部を強冷却して温度が低下すると溶銑滓が析出して、レンガやスケールと混合物を形成し、レンガの表面に付着して溶銑溶銑滓が出銑口5に流れる流路を狭くしてしまうため、溶銑が出銑口5の方向に円滑に流れにくくなる。
そこで、高炉炉底の中央部は緩やかに冷却し周辺部は強冷却を行う、云わばドーナツ冷却を行う必要がある。
【0010】
本発明においては、このドーナツ冷却を行う簡便かつ効果的な方法として、高炉炉底の中央部に設置した冷却管内を流れる冷却水をON、OFF制御することにより、高炉炉底の中央部における冷却管のピッチ(間隔)を調整して、周辺部のピッチ(間隔)より大きくすることにより、中央部を緩やかに冷却する従来に比べて簡便かつ効果的な方法を実現した。
【0011】
また、高炉炉底の中央部に設置した冷却管内を流れる冷却水のON、OFF制御は、図1に示すように炉底の中央部の周辺に設置されている炉底温度計6の測定値に基づいてON、OFF動作を決定することによって、実際の炉底温度に基づいた正確な流量制御、引いては、炉底温度制御ができる。
また、冷却管と平行に設けた2個の炉底温度計6の測定値に差が有る場合には、管理範囲に対し、偏差量が大きい温度計の指示値に基づいてピッチ調整または水量調整などの調整アクションを実施することが好ましい。
なお、本実施形態においては、高炉炉底の周辺部を冷却する冷却管3,4のピッチ(間隔)は260mmとし、高炉炉底の中央部を冷却する冷却管1,2のピッチ(間隔)を520mmとしている。
【0012】
さらに、中央部に配置する冷却管は流通する水量が異なる冷却配管を交互に設置することが好ましい。そして、水量多い方(大流量)の冷却管1と水量少ない方(小流量)の冷却管2の2つの系統に分割し、それぞれの系統ごとに独立して流量調整を行うことにより、高炉炉底の局部的な熱負荷の変動に応じて適正な冷却条件の下で冷却を行うことによって、炉底の過剰隆起や異常損耗を防止することができる。
ここに、大流量とは、小流量の2倍〜4倍の流量をいい、例えば、大流量用配管径を80A、小流量用配管径を32Aとすることが好ましい。
このように、大流量と小流量の冷却管を設けるのは、大流量用の配管(例えば80A)を小流量(例えば30A)と同じピッチで設置しても、底盤のmax温度が低下しないからであり、従って、コストミニマムで大流量の配管(例えば80A)を設置した場合と同じ効果である小配管(例えば30A)との組み合わせとすることが好ましい。
【0013】
例えば、図3に中間配管なしの場合、および、中間配管を80A〜30Aに変化させた場合について、炉底温度の変化を示す。
図3に示すように中間配管を設けることにより炉底温度の偏差は著しく小さくなるが、中間配管のサイズは炉底温度にあまり影響がないことがわかる。
また、表1に示すように、レンガの温度に応じて、小配管の冷却水をON、OFF制御し、大配管の冷却水を流量調整することが好ましい。
大流量をON、OFF制御(通水/停水)すると、貫流熱量の変化幅が大きすぎることで貫流熱量の通常の必要調整量に対しオーバーアクションとなってしまう。従って、通常の調整必要量(縦積み温度において20〜30℃程度)に応じたアクション小流量のON、OFF制御にて行うことが好ましく、それを超えた大幅な調整必要量に応じたアクションは、大流量の流量調整にて行うことが好ましい。
【表1】

Figure 0004038153
【0014】
また、大流量をON、OFF制御した場合、貫流熱量の変化量が大きすぎて、底盤の温度変化によって底盤に熱歪みを生じ、底盤とスタンプ間に隙間が発生する恐れがある。隙間が発生すると、そこで断熱状態になり冷却に影響を及ぼすことも考えられる。
本発明においては、炉底の中央部の冷却管をON(流通)、OFF(停止)制御するため、周辺部はこのON、OFF制御の影響をできる限り受けないようにすることが好ましい。
そのため、図2に示すように、炉底の中央部の冷却管が、炉底の周辺部を通過する箇所の周囲に、例えば、λ=15W/m・K程度の低熱伝導率のスタンプ材を配置することによって、炉底の中央部の冷却管をON(流通)、OFF(停止)制御しても、その影響が周辺部に伝わらないようにすることが好ましい。
【0015】
【発明の効果】
本発明によれば、高炉炉底に埋設された冷却管に冷却水を供給して該高炉炉底を冷却する方法において、高炉炉底の中央部における冷却冷却管のピッチを周辺部より大きくし、中央部の冷却冷却管を大流量と小流量の2系統に分割することによって、高炉炉底の中央部を周辺部に比べて緩やかに冷却して高炉炉底における溶銑の流れを円滑にするとともに、炉底の周辺部を強冷却し、れんがの異常損耗を防止して炉寿命を長くできる高炉炉底の冷却方法を提供することができ、下記のような産業上有用な著しい効果を奏する。
1)ドーナツ冷却を簡便かつ効果的に行えるので、炉底の過剰隆起を防止でき、高炉の安定操業を実現することにより燃料原単位を約2kg/t-p低減することができる。
2)周辺部の冷却管を複数のゾーンに分割して選択的に強冷却できるので、炉床壁の異常損耗を防止でき、高炉寿命を1〜2年延長することができる。
3)従来に比べて簡便な方法なので高炉改修工期を約1日短縮することができる。
【図面の簡単な説明】
【図1】本発明の高炉炉底の冷却方法における実施形態を示す図である。
【図2】本発明の高炉炉底の部分拡大図である。
【図3】本発明の大配管と中間配管を設置した場合の炉盤温度の変化を示す図である。
【図4】本発明が対象とする高炉炉底の構造を示す図である。
【符号の説明】
1・・・高炉炉底中央部の冷却管(大流量)、
2・・・高炉炉底中央部の冷却管(小流量)、
3、4・・・高炉炉底円周部の冷却管、5・・・出銑口、
6・・・炉底温度計、10・・・高炉炉底 、11 ・・・炉底れんが、
11a・・・鉄皮 、12 ・・・底盤、13・・・ 基盤 、
14 ・・・冷却管、15 ・・・付着物 、19 ・・・シール部、
20・・・ 冷却領域、21・・・非冷却領域[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for cooling a blast furnace bottom by supplying cooling water to a cooling pipe embedded in the blast furnace bottom.
[0002]
[Prior art]
Conventionally, in order to protect the bottom bricks lined on the bottom of the blast furnace, the bottom of the furnace is cooled by cooling pipes disposed on the side walls or the bottom of the bottom plate.
However, if there is a part where the heat removal by the cooling pipe is excessive, a high melting point component of the hot metal is deposited, and a large amount of deposits adhere to the operating surface of the furnace bottom brick, causing the furnace bottom to rise. When the flow of hot metal in the furnace changes and an annular flow is generated, the specific direction of the hearth wall may be eroded, causing abnormal melting of the bottom brick.
[0003]
Therefore, it is necessary to adjust the amount of such deposits and perform cooling under appropriate cooling conditions in accordance with local heat load fluctuations at the bottom of the blast furnace furnace.
In particular, if the thickness of the deposit at the center of the blast furnace furnace increases, the flow of hot metal from the center of the furnace bottom toward the outlet of the furnace wall deteriorates, so the center of the furnace bottom is cooled slowly. In addition, a cooling pattern in which the periphery of the furnace bottom is strongly cooled to increase the furnace life is preferable.
Conventionally, various proposals have been made regarding the method of cooling the blast furnace bottom.
For example, in Japanese Patent Laid-Open No. 2-104603, in the cooling method of the bottom of a blast furnace, the circular cooling range of the bottom of the furnace is divided into a central portion and a peripheral portion, and an indication of a temperature sensor embedded in the bottom brick Describes a method for cooling the bottom of a blast furnace in which the flow rate of cooling water is independently adjusted.
However, in the method disclosed in Japanese Patent Laid-Open No. 2-104603, the pitch of the cooling pipes arranged at the bottom of the blast furnace furnace is constant, and only one system of cooling pipes in the central part is used. It was necessary to control the furnace bottom temperature, and the temperature control of the furnace bottom in accordance with the operating conditions of the blast furnace was insufficient.
[0004]
Japanese Patent Laid-Open No. 10-8114 discloses a blast furnace furnace by dividing a cooling pipe into a cooling area and a non-cooling area by providing a cooling pipe with a triple pipe structure and providing a seal portion in the cooling pipe. A blast furnace bottom cooling device capable of efficiently cooling a portion of the bottom brick requiring cooling is disclosed.
However, in order to make the cooling pipe into a triple pipe structure, a complicated process of cutting and welding the pipe is required, and cooling water may leak from the seal portion.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2-104603 [Patent Document 2]
Japanese Patent Laid-Open No. 10-8114 [Problems to be Solved by the Invention]
The present invention provides a blast furnace bottom cooling method that solves the above-mentioned problems of the prior art, smoothes the flow of hot metal at the bottom of the blast furnace furnace, prevents abnormal wear of bricks, and extends the furnace life. The issue is to provide.
[0006]
[Means for Solving the Problems]
The present invention has been made as a result of intensive studies in order to solve the above-described problems, and the means thereof is as follows.
(1) Install cooling pipes separately in the central part and the peripheral part of the bottom of the blast furnace furnace so that the cooling capacity of both is not affected, supply cooling water to the cooling pipes, In the method of slow cooling and strong cooling of the peripheral part, the cooling pipes installed in the central part are divided into two systems for large flow rate and small flow rate, and the large flow rate and small flow rate cooling pipes are alternated. The cooling method of the blast furnace bottom characterized by adjusting the pitch of the cooling piping through which cooling water flows by controlling the ON / OFF control of the cooling water for small flow rate.
(2) The method for cooling a blast furnace bottom according to (1) , wherein a flow rate of the cooling water for the large flow rate is adjusted.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described in detail with reference to FIGS.
FIG. 4 is a cross-sectional view of the blast furnace bottom targeted by the present invention.
In FIG. 4, a blast furnace bottom 10 includes an iron shell 11a that forms the outer shell of the blast furnace, a furnace bottom brick 11 lined inside the iron shell 11a, a bottom board 12 that supports the furnace bottom brick 11, and a bottom board 12 And a cooling tube 14 arranged between the base plate 13 and a beam (not shown) that supports the bottom plate 12 and forms an insertion gap of the cooling tube 14. In addition, 15 shows the deposit | attachment which adheres to a brick and inhibits the flow of hot metal.
[0008]
FIG. 1 is a diagram illustrating an embodiment of the method for cooling a blast furnace bottom according to the present invention. The upper diagram of FIG. 1 is a plan view of the blast furnace bottom, and the lower diagram is an AA ′ cross-sectional view showing the arrangement of cooling pipes.
In FIG. 1, 1 is a large flow rate cooling pipe for cooling the central part a and the peripheral part b of the blast furnace bottom, 2 is a small flow rate cooling pipe for cooling the central part a of the blast furnace bottom, 3 and 4 are blast furnace furnaces A cooling pipe for cooling the peripheral part b of the bottom, 5 is a tap, and 6 is a furnace bottom thermometer.
[0009]
The blast furnace outlet 5 in the present embodiment is provided in five directions from the center of the blast furnace. For example, the outlet 5 at a diagonal position is used simultaneously.
The vicinity of the tap hole 5 is a region where the flow velocity of the hot metal is the fastest, and the brick is worn out so that the peripheral portion of the blast furnace corresponding to the periphery of the tap hole 5 needs to be strongly cooled.
On the other hand, the central part of the furnace bottom has a slower flow rate of hot metal than the peripheral part, and when the temperature is lowered by intense cooling of the central part, the hot metal is deposited and forms a mixture with bricks and scales. Since the flow path where the hot metal molten iron adheres to the surface of the steel and flows to the outlet 5 becomes narrow, the hot metal becomes difficult to flow smoothly in the direction of the outlet 5.
Therefore, it is necessary to cool the center part of the blast furnace bottom slowly and strongly cool the peripheral part, that is, donut cooling.
[0010]
In the present invention, as a simple and effective method for performing this donut cooling, the cooling water flowing in the cooling pipe installed in the central portion of the blast furnace bottom is controlled to be turned on and off, thereby cooling the central portion of the blast furnace bottom. By adjusting the pipe pitch (interval) to be larger than the peripheral pitch (interval), a simpler and more effective method than the conventional method in which the central part is slowly cooled is realized.
[0011]
Moreover, ON / OFF control of the cooling water flowing in the cooling pipe installed at the center of the blast furnace bottom is measured by the bottom thermometer 6 installed around the center of the furnace bottom as shown in FIG. By determining the ON / OFF operation based on the above, accurate flow rate control based on the actual furnace bottom temperature, that is, furnace bottom temperature control can be performed.
If there is a difference between the measured values of the two bottom thermometers 6 provided in parallel with the cooling pipes, the pitch adjustment or water volume adjustment is based on the indicated value of the thermometer with a large deviation from the control range. It is preferable to perform an adjustment action such as.
In the present embodiment, the pitch (interval) of the cooling tubes 3 and 4 for cooling the peripheral portion of the blast furnace bottom is 260 mm, and the pitch (interval) of the cooling tubes 1 and 2 for cooling the central portion of the blast furnace bottom. Is set to 520 mm.
[0012]
Furthermore, it is preferable that the cooling pipes arranged in the central portion are alternately provided with cooling pipes with different amounts of water flowing. Then, the blast furnace furnace is divided into two systems, a cooling pipe 1 with a larger amount of water (large flow rate) and a cooling pipe 2 with a smaller amount of water (small flow rate), and the flow rate is adjusted independently for each system. By performing cooling under appropriate cooling conditions in accordance with local heat load fluctuations at the bottom, it is possible to prevent excessive rise and abnormal wear of the furnace bottom.
Here, the large flow rate means a flow rate that is 2 to 4 times the small flow rate. For example, it is preferable that the large flow pipe diameter is 80A and the small flow pipe diameter is 32A.
As described above, the large flow rate and the small flow rate cooling pipes are provided because the max temperature of the bottom plate does not decrease even if the large flow rate piping (for example, 80A) is installed at the same pitch as the small flow rate (for example, 30A). Therefore, it is preferable to use a combination with a small pipe (for example, 30A) that has the same effect as when a pipe with a large flow rate (for example, 80A) is installed with a minimum cost.
[0013]
For example, FIG. 3 shows changes in the furnace bottom temperature when there is no intermediate pipe and when the intermediate pipe is changed to 80A to 30A.
As shown in FIG. 3, by providing the intermediate pipe, the deviation of the furnace bottom temperature is remarkably reduced, but it can be seen that the size of the intermediate pipe has little influence on the furnace bottom temperature.
Further, as shown in Table 1, it is preferable that the cooling water for the small pipes is controlled to be turned on and off according to the brick temperature, and the flow rate of the cooling water for the large pipes is adjusted.
If the large flow rate is ON / OFF controlled (water flow / water stoppage), the amount of change in the through-flow heat amount is too large, resulting in an overaction relative to the normal required adjustment amount of the through-flow heat amount. Therefore, it is preferable to perform the small flow ON / OFF control according to the normal adjustment required amount (about 20-30 ° C at the vertical stacking temperature). It is preferable to carry out by adjusting the flow rate of a large flow rate.
[Table 1]
Figure 0004038153
[0014]
In addition, when the large flow rate is controlled ON / OFF, the amount of change in the through-flow heat amount is too large, and the bottom plate may be thermally distorted due to the temperature change of the bottom plate, and a gap may be generated between the bottom plate and the stamp. If a gap is generated, it may be insulative and affect cooling.
In the present invention, since the cooling pipe at the center of the furnace bottom is ON (distributed) and OFF (stopped), it is preferable that the peripheral portion is not affected by the ON / OFF control as much as possible.
Therefore, as shown in FIG. 2, a stamp material having a low thermal conductivity of, for example, λ = 15 W / m · K is provided around the portion where the cooling tube at the center of the furnace bottom passes through the periphery of the furnace bottom. By disposing, it is preferable to prevent the influence from being transmitted to the peripheral portion even if the cooling pipe at the center of the furnace bottom is controlled to be on (distributed) or off (stopped).
[0015]
【The invention's effect】
According to the present invention, in the method for cooling the blast furnace bottom by supplying cooling water to the cooling pipe embedded in the blast furnace bottom, the pitch of the cooling cooling pipe in the central portion of the blast furnace bottom is made larger than that in the peripheral portion. By dividing the cooling cooling pipe in the central part into two systems of a large flow rate and a small flow rate, the central part of the blast furnace bottom is cooled more slowly than the peripheral part, thereby smoothing the hot metal flow in the blast furnace bottom. In addition, it is possible to provide a cooling method of the blast furnace bottom that can strongly cool the periphery of the furnace bottom, prevent abnormal wear of bricks and extend the life of the furnace, and has the following industrially useful remarkable effects. .
1) Since the donut cooling can be carried out simply and effectively, it is possible to prevent excessive rise of the bottom of the furnace, and by realizing stable operation of the blast furnace, the fuel consumption rate can be reduced by about 2 kg / tp.
2) Since the peripheral cooling pipes can be selectively and strongly cooled by dividing them into a plurality of zones, abnormal wear of the hearth wall can be prevented and the blast furnace life can be extended by 1 to 2 years.
3) Since it is a simpler method than the conventional method, the blast furnace repair period can be shortened by about one day.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a blast furnace bottom cooling method according to the present invention.
FIG. 2 is a partially enlarged view of the blast furnace bottom of the present invention.
FIG. 3 is a diagram showing a change in furnace panel temperature when a large pipe and an intermediate pipe of the present invention are installed.
FIG. 4 is a diagram showing a structure of a blast furnace bottom targeted by the present invention.
[Explanation of symbols]
1 ... Cooling pipe (large flow rate) at the center of the blast furnace bottom,
2 ... Cooling pipe (small flow rate) at the center of the blast furnace bottom,
3, 4 ... cooling pipes around the blast furnace bottom circumference, 5 ... tapping outlet,
6 ... Bottom thermometer, 10 ... Blast furnace bottom, 11 ... Bottom brick,
11a ... iron skin, 12 ... bottom board, 13 ... base,
14 ... cooling pipe, 15 ... deposits, 19 ... seal part,
20 ... Cooling region, 21 ... Non-cooling region

Claims (2)

高炉炉底の中央部及び周辺部に冷却配管を別々に、かつ、両者の冷却能が影響を受けない様に設置し、該冷却配管に冷却水を供給して、前記中央部を緩冷却し、周辺部を強冷却する方法において、Install cooling pipes separately in the central part and the peripheral part of the blast furnace bottom so that the cooling capacity of both is not affected, and supply cooling water to the cooling pipes to slowly cool the central part. In the method of strongly cooling the periphery,
前記中央部に設置した冷却管を、大流量用と小流量用の2系統にすると共に、The cooling pipe installed in the central part is made into two systems for large flow rate and small flow rate,
該大流量用と小流量用の冷却管を交互に配置し、前記小流量用の冷却水をON、OFF制御することにより、冷却水が流れる冷却配管のピッチを調整することを特徴とする高炉炉底の冷却方法。A blast furnace characterized in that the cooling pipes for flowing the cooling water are adjusted by alternately arranging the cooling pipes for the large flow rate and the small flow rate, and controlling the ON / OFF of the cooling water for the small flow rate. Cooling method for the bottom of the furnace.
前記大流量用の冷却水の流量を調整することを特徴とする請求項1に記載の高炉炉底の冷却方法。The method for cooling a blast furnace bottom according to claim 1 , wherein the flow rate of the cooling water for the large flow rate is adjusted.
JP2003160347A 2003-06-05 2003-06-05 Blast furnace bottom cooling method Expired - Lifetime JP4038153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003160347A JP4038153B2 (en) 2003-06-05 2003-06-05 Blast furnace bottom cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003160347A JP4038153B2 (en) 2003-06-05 2003-06-05 Blast furnace bottom cooling method

Publications (2)

Publication Number Publication Date
JP2004360016A JP2004360016A (en) 2004-12-24
JP4038153B2 true JP4038153B2 (en) 2008-01-23

Family

ID=34053154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003160347A Expired - Lifetime JP4038153B2 (en) 2003-06-05 2003-06-05 Blast furnace bottom cooling method

Country Status (1)

Country Link
JP (1) JP4038153B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100823599B1 (en) * 2006-12-07 2008-04-21 주식회사 포스코 Cooling apparatus for bottom of blast furnace

Also Published As

Publication number Publication date
JP2004360016A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP4762172B2 (en) Furnace body water cooling structure of flash furnace
JP4038153B2 (en) Blast furnace bottom cooling method
CN212720899U (en) Furnace body structure of ore-smelting electric furnace
RU2281974C2 (en) Cooling member for cooling metallurgical furnace
JPH08246014A (en) Water-cooled molten slag trough for blast furnace
RU2487946C2 (en) Method of making cooling element for pyrometallurgical reactor and cooling element
JP7294830B2 (en) A cooling structure for the outlet of a melting furnace and a method for manufacturing a metal plate block used in the cooling structure.
JPH07278627A (en) Cooling piping for bottom of blast furnace and method for cooling bottom of blast furnace
KR20130034507A (en) Apparatus for collecting waste heat source of furnace
KR880002277B1 (en) Blast furnace
JP2669279B2 (en) Blast furnace operation method
JP5854200B2 (en) Blast furnace operation method
JP3626552B2 (en) Cooling method for blast furnace bottom
CN217781192U (en) Blast furnace cooling structure and system
JP6999473B2 (en) Flash smelting furnace cooling method and flash smelting furnace cooling structure
KR20120021384A (en) Water cooling panel for electric furnace and installation method thereof
JP2004052038A (en) Apparatus for forming inner wall of lower part of shaft kiln
JP2006274282A (en) Observation of bottom-blown tuyere in converter and method for controlling pressure
JPH0967607A (en) Method for monitoring furnace bottom of blast furnace
JP4238141B2 (en) Method of inserting cooling member into blast furnace
JP2000319712A (en) Water-cooled slag runner
JPH02104603A (en) Method for cooling furnace bottom in blast furnace
JPH07126721A (en) Piping for cooling furnace bottom of blast furnace and method therefor
JP2718274B2 (en) Cooling capacity control method for blast furnace bottom
JP2001335818A (en) Method for cooling furnace bottom in blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071102

R151 Written notification of patent or utility model registration

Ref document number: 4038153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term