JP7294830B2 - A cooling structure for the outlet of a melting furnace and a method for manufacturing a metal plate block used in the cooling structure. - Google Patents

A cooling structure for the outlet of a melting furnace and a method for manufacturing a metal plate block used in the cooling structure. Download PDF

Info

Publication number
JP7294830B2
JP7294830B2 JP2019037942A JP2019037942A JP7294830B2 JP 7294830 B2 JP7294830 B2 JP 7294830B2 JP 2019037942 A JP2019037942 A JP 2019037942A JP 2019037942 A JP2019037942 A JP 2019037942A JP 7294830 B2 JP7294830 B2 JP 7294830B2
Authority
JP
Japan
Prior art keywords
metal plate
plate block
runner
refractory
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019037942A
Other languages
Japanese (ja)
Other versions
JP2020098088A (en
Inventor
一輝 川田
史哉 淺岡
光正 戸高
秀行 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Publication of JP2020098088A publication Critical patent/JP2020098088A/en
Application granted granted Critical
Publication of JP7294830B2 publication Critical patent/JP7294830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

本発明は、溶融炉の出湯口部を冷却するための冷却構造と、その冷却構造に用いられる金属板ブロックの製造方法に関する。 TECHNICAL FIELD The present invention relates to a cooling structure for cooling the outlet of a melting furnace and a method of manufacturing a metal plate block used in the cooling structure.

溶融炉の出湯口部を構成する耐火物(以下「出湯口耐火物」という。)は、溶融スラグ等による浸食を受けることから、この浸食作用を抑制するため出湯口耐火物の冷却方法が種々提案されている。
例えば特許文献1では、出湯口部の外表面に冷却金物を設置するとともに、出湯口耐火物内部に冷却管を埋設することにより出湯口耐火物の冷却を図っている。
しかしながら、冷却金物による冷却効果は出湯口部の出口である出湯口付近に限られ、また、冷却管による冷却効果は当該冷却管付近に限られることから、出湯口耐火物に形成されている湯道を冷却する効果はほとんど得られず、結果として、湯道は溶融スラグ等により浸食される。
Since the refractory that constitutes the outlet of the melting furnace (hereinafter referred to as "the outlet refractory") is subject to erosion by molten slag, etc., there are various cooling methods for the outlet refractory in order to suppress this erosion. Proposed.
For example, in Patent Literature 1, a cooling metal fitting is installed on the outer surface of the tap hole, and a cooling pipe is buried inside the tap hole refractory to cool the tap hole refractory.
However, the cooling effect of the cooling hardware is limited to the vicinity of the outlet, which is the exit of the outlet, and the cooling effect of the cooling pipe is limited to the vicinity of the cooling pipe. Little cooling effect is obtained and as a result the runners are eroded by molten slag and the like.

この湯道の浸食形態は、図5に概念的に示しているように炉内側に向けてラッパ状に拡大する形態となるところ、このように湯道が拡大すると、出湯と閉塞を一定間隔で繰り返す間欠出湯方式の場合、拡大した湯道をマッド材で閉塞できず、マッド材が炉内圧で押し出される状態となり、溶融炉の運転に支障を来すことになる。
また、出湯口を開けたままの連続出湯方式の場合も、湯道が拡大すると出湯方向が乱れるなどの問題が生じ、やはり溶融炉の運転に支障を来すことになる。
したがって、溶融炉の安定的な運転のためには、湯道の浸食を抑えて健全な湯道を維持することが重要である。
As shown conceptually in FIG. 5, the erosion of the runner expands like a trumpet toward the inside of the furnace. In the case of the repeated intermittent pouring method, the expanded runner cannot be closed with the mud material, and the mud material is pushed out by the pressure inside the furnace, which hinders the operation of the melting furnace.
Also, in the case of the continuous tapping method in which the tapping port is left open, problems such as disturbance of the tapping direction occur when the runner expands, which also hinders the operation of the melting furnace.
Therefore, for stable operation of the melting furnace, it is important to suppress erosion of runners and maintain sound runners.

特許第5314436号公報Japanese Patent No. 5314436

本発明が解決しようとする課題は、溶融炉の出湯口部において、湯道の浸食を抑えて健全な湯道を維持することができるようにすることにある。 The problem to be solved by the present invention is to suppress erosion of the runner and maintain a sound runner at the outlet of the melting furnace.

本発明の一観点によれば、次の冷却構造が提供される。
溶融炉の出湯口部に、板厚内に連続する通水流路として通水穴を有する金属板ブロックを、前記出湯口部を取り囲むように設置し、前記金属板ブロックの内面側に耐火物で出湯口部の湯道を円孔形状に形成し、前記金属板ブロックは前記湯道の少なくとも上半周部と当該金属板ブロックとの間の前記耐火物の厚みが均等となるような逆U字形状を有し、前記金属板ブロックの前記通水穴に冷却水を通水することで当該金属板ブロックの内面から、前記湯道を含む前記耐火物を冷却するようにしている、溶融炉の出湯口部の冷却構造。
また、本発明の他の観点によれば、次の冷却構造が提供される。
溶融炉の出湯口部に、板厚内に連続する通水流路を有する金属板ブロックを、前記出湯口部を取り囲むように設置し、前記金属板ブロックの内面側に耐火物で出湯口部の湯道を形成し、前記金属板ブロックの通水流路に冷却水を通水することで当該金属板ブロックの内面から、前記湯道を含む前記耐火物を冷却するようにしており、
前記出湯口部の湯道は円孔形状であり、前記金属板ブロックは、前記湯道の出口である出湯口付近に設置し、かつ冷却する湯道長さを出湯口の直径以上の長さとしている、溶融炉の出湯口部の冷却構造。
According to one aspect of the present invention, the following cooling structure is provided.
A metal plate block having water passage holes as continuous water passages within the plate thickness is installed at the outlet of the melting furnace so as to surround the outlet, and the inner surface of the metal plate block is covered with a refractory material. The runner of the outlet portion is formed in a circular hole shape , and the metal plate block has an inverted U shape so that the thickness of the refractory between at least the upper half peripheral portion of the runner and the metal plate block is uniform. The melting furnace has a shape, and cools the refractory including the runner from the inner surface of the metal plate block by passing cooling water through the water passage holes of the metal plate block. Cooling structure of the spout.
Moreover, according to another aspect of the present invention, the following cooling structure is provided.
At the outlet of the melting furnace, a metal plate block having a continuous water flow passage within the plate thickness is installed so as to surround the outlet, and the inner surface of the metal plate block is covered with a refractory material to the outlet. The refractory including the runner is cooled from the inner surface of the metal plate block by forming a runner and passing cooling water through the water passage of the metal plate block,
The runner at the outlet portion has a circular hole shape, and the metal plate block is installed in the vicinity of the outlet, which is the outlet of the runner, and the length of the runner to be cooled is equal to or longer than the diameter of the outlet. Cooling structure of the tapping part of the melting furnace.

さらに、本発明の他の観点によれば、これらの冷却構造に用いられる金属板ブロックの製造方法として、予め平板の状態で直線状のドリル穴加工を行って連続する通水流路を形成後、溶融炉の出湯口部を取り囲む形状に曲げ加工する、金属板ブロックの製造方法が提供される。 Furthermore , according to another aspect of the present invention, as a method of manufacturing a metal plate block used in these cooling structures, a linear drill hole is formed in advance in a flat plate state to form a continuous water flow passage, A method for manufacturing a sheet metal block is provided that is bent into a shape that surrounds the outlet of a melting furnace.

本発明によれば、溶融炉の出湯口部において、湯道の浸食を抑えて健全な湯道を維持することができる。 Advantageous Effects of Invention According to the present invention, it is possible to suppress erosion of runners and maintain healthy runners at the outlet of the melting furnace.

本発明の一実施形態である冷却構造を適用した溶融炉の出湯口部の概要を示す図で、(a)は縦断面図、(b)は(a)のA-A矢視図、(c)はマッド材での閉塞状態を概念的に示す要部の縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an overview of a tapping port of a melting furnace to which a cooling structure that is an embodiment of the present invention is applied, (a) is a longitudinal sectional view, (b) is a view from the AA arrow of (a), ( c) is a vertical cross-sectional view of a main part conceptually showing a closed state with a mud material. 図1に示す冷却構造の斜視図。FIG. 2 is a perspective view of the cooling structure shown in FIG. 1; 金属板ブロックを平板状に展開した状態を示す図で、(a)は透視図、(b)は(a)のB-B断面図。FIG. 4A is a perspective view, and FIG. 4B is a cross-sectional view taken along the line BB of FIG. 本発明の冷却構造の他の実施形態を示す図で、(a)は要部の縦断面図、(b)は(a)のB-B線断面図。FIG. 10 is a view showing another embodiment of the cooling structure of the present invention, where (a) is a vertical cross-sectional view of the main part and (b) is a cross-sectional view taken along the line BB of (a); 従来の溶融炉における湯道の浸食形態を概念的に示す図。The figure which shows conceptually the erosion form of the runner in the conventional melting furnace.

図1は、本発明の一実施形態である冷却構造を適用した溶融炉の出湯口部の概要を示す図で、(a)は縦断面図、(b)は(a)のA-A矢視図、(c)はマッド材での閉塞状態を概念的に示す要部の縦断面図である。図2は、図1に示す冷却構造の斜視図である。
図1に示す溶融炉1は、廃棄物をガス化溶融処理する廃棄物ガス化溶融炉であり、その側壁は側壁耐火物2からなり、炉底部は炉底耐火物3からなる。この溶融炉1において出湯口部4は側壁耐火物2の下端部に位置し、この出湯口部4を介して溶融物が間欠出湯方式で出湯される。すなわち、溶融物は、出湯口部4の湯道4aを通って、出湯口部4の出口である出湯口4bから炉外に取り出され、樋7上に流出される。そして、出湯完了後、出湯口部4の湯道4aは、図1(c)に示すようにマッド充填機8を用いてマッド材9で閉塞される。
FIG. 1 is a diagram showing an outline of a tapping port of a melting furnace to which a cooling structure according to one embodiment of the present invention is applied, (a) being a longitudinal sectional view, and (b) being an AA arrow in (a). FIG. 2(c) is a vertical cross-sectional view of a main part conceptually showing a closed state with a mud material. 2 is a perspective view of the cooling structure shown in FIG. 1. FIG.
A melting furnace 1 shown in FIG. 1 is a waste gasifying and melting furnace for gasifying and melting waste, and has a side wall made of a side wall refractory 2 and a furnace bottom made of a hearth refractory 3 . In this melting furnace 1, a tapping port 4 is positioned at the lower end of the side wall refractory 2, and the molten material is tapped through the tapping port 4 in an intermittent tapping method. That is, the molten material passes through the runner 4a of the tapping port 4, is taken out of the furnace from the tapping port 4b, which is the outlet of the tapping port 4, and flows out onto the gutter 7. As shown in FIG. After the hot water is discharged, the runner 4a of the hot water outlet 4 is closed with a mud material 9 using a mud filling machine 8 as shown in FIG. 1(c).

本実施形態では、出湯口部4の出口である出湯口4b付近を取り囲むように金属板ブロック5が設置されている。そして、金属板ブロック5の内面側に耐火物6で円孔形状の湯道4a-1が形成されている。この湯道4a-1は、側壁耐火物2で形成された円孔形状の湯道4a-2と連続しており、これら湯道4a-1及び湯道4a-2が全体として出湯口部4の湯道4aを形成している。 In this embodiment, a metal plate block 5 is installed so as to surround the vicinity of the tapping port 4b, which is the exit of the tapping port portion 4. As shown in FIG. A runner 4a-1 having a circular hole shape is formed of a refractory material 6 on the inner surface side of the metal plate block 5. As shown in FIG. This runner 4a-1 is continuous with a circular runner 4a-2 formed of the side wall refractory material 2, and the runner 4a-1 and the runner 4a-2 as a whole are the outlet portion 4. , forming a runner 4a.

図3は、金属板ブロック5を平板状に展開した状態を示す図で、(a)は透視図、(b)は(a)のB-B断面図である。図3に示すように、金属板ブロック5は板厚内に連続する通水流路5aを有する。すなわち、通水流路5aは給水口5bから排水口5cに至るまで連続しており、この通水流路5aに冷却水を通水することで金属板ブロック5の内面から、前述の湯道4a-1を含む耐火物6を冷却するようにしている。これにより、湯道4a-1の全体(全長)が冷却されて、湯道4a-1の全体(全長)の浸食が抑えられる。 FIGS. 3A and 3B are diagrams showing the state in which the metal plate block 5 is developed into a flat plate, where FIG. 3A is a perspective view and FIG. As shown in FIG. 3, the metal plate block 5 has continuous water passages 5a within its plate thickness. That is, the water passage 5a is continuous from the water supply port 5b to the water discharge port 5c. By passing cooling water through the water passage 5a, the runner 4a- A refractory 6 containing 1 is cooled. As a result, the entire (full length) of the runner 4a-1 is cooled, and erosion of the entire (full length) of the runner 4a-1 is suppressed.

また、出湯口部の湯道は、接触及び通過する溶融スラグや炉内ガスとの反応により、特に上部が浸食されやすいことから(図5参照)、円孔形状の湯道の上半周部を効果的に冷却することが好ましい。そこで、本実施形態では、金属板ブロック5を逆U字形状として設置している。このように金属板ブロック5を逆U字形状として設置すると、湯道4a-1の上半周部の耐火物6は金属板ブロック5までの厚みt(図2参照)が均等となって、より均一な冷却ができる。すなわち本実施形態によれば、湯道4a-1の少なくとも上半周部が金属板ブロック5の内面から均等に冷却され、浸食されやすい湯道4a-1の上半周部の浸食が抑えられる。 In addition, the upper part of the runner at the outlet is particularly prone to erosion due to the reaction with molten slag and furnace gas that comes into contact with and passes through it (see Fig. 5). Effective cooling is preferred. Therefore, in this embodiment, the metal plate block 5 is installed in an inverted U shape. When the metal plate block 5 is installed in an inverted U shape in this way, the thickness t (see FIG. 2) of the refractory 6 on the upper half circumference of the runner 4a-1 to the metal plate block 5 becomes even, and the thickness t (see FIG. 2) becomes even. Uniform cooling is possible. That is, according to the present embodiment, at least the upper half circumference of runner 4a-1 is uniformly cooled from the inner surface of metal plate block 5, and erosion of the upper half circumference of runner 4a-1, which is prone to erosion, is suppressed.

また、本実施形態のように溶融炉1が間欠出湯方式である場合、出湯完了後、マッド材で湯道4aを閉塞する必要があるが、湯道4aが浸食されて拡大すると、拡大した湯道4aをマッド材で閉塞できず、マッド材が炉内圧で押し出される状態となり、溶融炉1の運転に支障を来すことになる。したがって、間欠出湯方式の溶融炉1の安定的な運転のためには、マッド材で閉塞可能な所定長さの健全な湯道4aを確保する、言い換えればマッド材が炉内圧で押し出される状態とならないように所定長さの健全な湯道4aを確保することが重要である。そこで本実施形態では、金属板ブロック5を出湯口部4の出口である出湯口4b付近に設置することで、図1(a)の破線の状態まで湯道4a-2が浸食されても金属板ブロック5で冷却されている湯道4a-1は維持されるようにしている。さらに本実施形態では、冷却する湯道長さL(図1(a)及び図2参照)を出湯口4bの直径D(図2参照)以上の長さとしている(一例として出湯口4bの直径Dは100mm、冷却する湯道長さLは2D(200mm)である。)。すなわち本実施形態では、長さLの金属板ブロック5の一端面(出湯口4b側の端面)が炉外面側の出湯口4bの位置に一致するようにしている。これにより、出湯口4bからの長さが出湯口4bの直径D以上である、健全な湯道4a-1を確保することができ、マッド材が炉内圧で押し出される状態とならないようにすることができる。なお、冷却する湯道長さLの上限は特に限定されず、マッド材での閉塞時に出湯口断面がマッド材で完全に充填される長さまで延長することもできる。この場合、マッド材で充填されない湯道が残ると、この部分には溶融スラグ、溶融メタル等が冷却固化され、出湯時の開孔作業が実施不可能になってしまう。なお、図1(c)には、本実施形態におけるマッド材での閉塞状態を概念的に示している。 Further, when the melting furnace 1 is of the intermittent tapping method as in the present embodiment, it is necessary to block the runner 4a with a mud material after the completion of tapping. If the road 4a cannot be closed with the mud material, the mud material will be pushed out by the pressure inside the furnace, and the operation of the melting furnace 1 will be hindered. Therefore, in order to stably operate the intermittent pouring type melting furnace 1, a sound runner 4a of a predetermined length that can be blocked by the mud material should be ensured. It is important to secure a sound runner 4a of a predetermined length so that it does not become unusable. Therefore, in the present embodiment, by installing the metal plate block 5 near the tapping port 4b, which is the exit of the tapping port portion 4, even if the runner 4a-2 is eroded to the state indicated by the broken line in FIG. The runner 4a-1 cooled by the plate block 5 is maintained. Furthermore, in the present embodiment, the length L of the runner to be cooled (see FIGS. 1A and 2) is equal to or longer than the diameter D (see FIG. 2) of the tap hole 4b (as an example, the diameter D of the tap hole 4b is is 100 mm, and the runner length L for cooling is 2D (200 mm).). That is, in the present embodiment, one end face of the metal plate block 5 of length L (the end face on the side of the tap hole 4b) is made to coincide with the position of the tap hole 4b on the furnace outer surface side. As a result, a sound runner 4a-1 having a length from the tapping port 4b equal to or larger than the diameter D of the tapping port 4b can be secured, and the mud material is prevented from being pushed out by the pressure inside the furnace. can be done. The upper limit of the length L of the runner for cooling is not particularly limited, and it can be extended to a length that allows the cross section of the tap outlet to be completely filled with the mud material when blocked with the mud material. In this case, if a runner that is not filled with the mud material remains, molten slag, molten metal, etc., will cool and solidify in this portion, making it impossible to carry out the drilling operation at the time of tapping. FIG. 1(c) conceptually shows a closed state with the mud material in this embodiment.

次に、金属板ブロック5の製造方法の一例について説明する。
図3(a)に示すように、平板の状態で直線状のドリル穴加工を行って連続する通水流路5aを形成する。なお、この図3(a)に示す例では、直線状のドリル穴加工により複数の直線状の穴を形成したうえで、これら穴の端部のうち給水口5b又は排水口5cとなる2つの端部を除いた端部を閉止栓5d等によって閉止することで、1つの給水口5bから1つの排水口5cに至る通水流路5aを形成している。
このようにして連続する通水流路5aを形成した後、出湯口部4を取り囲む形状に曲げ加工する。
Next, an example of a method for manufacturing the metal plate block 5 will be described.
As shown in FIG. 3(a), straight drilling is performed on a flat plate to form a continuous water passage 5a. In the example shown in FIG. 3(a), a plurality of straight holes are formed by straight drilling, and two of the ends of these holes, which serve as the water supply port 5b or the water discharge port 5c, are drilled. By closing the ends other than the ends with a stopcock 5d or the like, a water flow passage 5a extending from one water supply port 5b to one water discharge port 5c is formed.
After the continuous water flow passage 5a is formed in this way, it is bent into a shape surrounding the outlet portion 4. As shown in FIG.

このように平板の状態で板厚内に通水流路5aを形成後、曲げ加工することにより、ジャケット構造でない金属板ブロック5を容易に得ることができる。金属板ブロック5をジャケット構造とした場合、複雑な溶接構造となり、熱負荷の高い出湯口部4に設置すると、熱応力により溶接部が割れて水漏れのおそれがある。また一般的にジャケット構造では、流路形式が複雑となるため流路幅が広くなる。そうすると冷却水の流速が遅くなるため、スケールが流路内面に形成される。スケールが流路内面に形成されると、伝熱性が阻害され、金属板自体が冷却されずに、熱変形、割れにつながるおそれがある。
これに対して図3(a)に示す金属板ブロック5は、板厚内に連続する通水流路5aをドリル穴加工で形成しており、ジャケット構造のような複雑な溶接構造ではないため、水漏れの発生を防止できる。また、この通水流路5aは直線状の穴の組合せにより単一の流路を形成しているため、流路断面(流路幅)が小さく形成されている。このため、少ない流量で冷却水の流速を速くすることも簡単にできる。なお、冷却水の流速はスケール防止のためには例えば0.7m/s以上とする必要があるところ、本実施形態では冷却水の流速を0.7m/s以上とするために、通水流路5aの流路径をφ25mmとし、冷却水の流量を1.24m/h以上としている。
また、金属板ブロック5の材質は特に限定されないが、熱応力による割れ防止を考慮して、炭素含有率の低い一般構造用圧延鋼材、例えばSS400とすることが好ましい。
In this manner, the metal plate block 5 having no jacket structure can be easily obtained by forming the water flow passage 5a within the thickness of the flat plate and then bending the block. If the metal plate block 5 has a jacket structure, it becomes a complicated welded structure, and if it is installed in the outlet 4 where the heat load is high, the welded portion may crack due to thermal stress and water leakage may occur. In addition, generally, in the jacket structure, the width of the flow path is widened because the flow path format is complicated. As a result, the flow velocity of the cooling water becomes slow, and scale is formed on the inner surface of the flow channel. When scale is formed on the inner surface of the flow path, the heat transfer is hindered, and the metal plate itself may not be cooled, leading to thermal deformation and cracking.
On the other hand, in the metal plate block 5 shown in FIG. 3(a), a continuous water flow passage 5a is formed by drilling within the thickness of the plate. Water leakage can be prevented. Further, since the water flow passage 5a forms a single flow passage by combining linear holes, the flow passage cross section (flow passage width) is formed small. Therefore, it is possible to easily increase the flow velocity of the cooling water with a small flow rate. The flow velocity of the cooling water needs to be, for example, 0.7 m/s or more to prevent scale. The flow path diameter of 5a is set to φ25 mm, and the flow rate of cooling water is set to 1.24 m 3 /h or more.
Although the material of the metal plate block 5 is not particularly limited, it is preferable to use general structural rolled steel having a low carbon content, such as SS400, in consideration of crack prevention due to thermal stress.

本実施形態では、金属板ブロック5を逆U字形状に曲げ加工後、この金属板ブロック5の内面側に耐火物6を流し込み、湯道4a-1を形成する。具体的には湯道4a-1となる部分に中子として例えば発泡スチロール製の円柱を配置し、耐火物6を流し込むことで湯道4a-1を形成する。すなわち、本実施形態では耐火物6は耐火キャスタブルとすることができる。 In this embodiment, after bending the metal plate block 5 into an inverted U shape, the refractory 6 is poured into the inner surface of the metal plate block 5 to form the runner 4a-1. Specifically, the runner 4a-1 is formed by arranging, for example, a styrofoam cylinder as a core in the part to be the runner 4a-1 and pouring the refractory material 6 into it. That is, in this embodiment, the refractory 6 can be a refractory castable.

なお、本実施形態では、金属板ブロック5を逆U字形状として、特に湯道4a-1の上半周部の冷却を強化するようにしたが、湯道4a-1の下半周部の冷却も強化するために、逆U字形状の金属板ブロック5の開口部分を塞ぐように平板状の金属板ブロックを追加で設置することもできる。なお、追加で設置する平板状の金属板ブロックにも、図3(a)と同様に直線状のドリル穴加工を行って連続する通水流路を形成することができる。 In the present embodiment, the metal plate block 5 is formed in an inverted U shape so as to enhance the cooling of the upper half circumference of the runner 4a-1, but the lower half of the circumference of the runner 4a-1 is also cooled. For strengthening, a flat metal plate block can be additionally installed so as to close the opening of the inverted U-shaped metal plate block 5 . It should be noted that a continuous water passage can be formed by drilling a straight line in the additionally installed flat metal plate block in the same manner as in FIG. 3(a).

また、本実施形態において湯道4a-1は、前述のとおり耐火キャスタブルを流し込むことで形成することができる。
この場合、耐火キャスタブルの材質としては、金属板ブロック5の内面からの湯道4a-1部分の冷却効果を上げるため、熱伝導率の高いものが好ましい。具体的には、金属板ブロック5の内面からの冷却により、湯道4a-1の表面温度が通過する溶融スラグの融点以下(1200℃程度)とすることにより、耐火キャスタブルの溶融スラグとの反応による浸食を防ぐことができる。また、耐火キャスタブルの材質自体も溶融スラグとの反応性が低いものであることが好ましく、さらに間欠出湯の場合、出湯と閉塞の繰り返しによる耐火キャスタブルにかかる熱負荷変動が大きいため、熱的スポーリングに強いものであることが好ましい。以上の要件を全て満たす耐火キャスタブルの材質としては、炭化珪素を60質量%以上含有する炭化珪素質キャスタブルが最適である。
Further, in this embodiment, the runner 4a-1 can be formed by pouring refractory castable as described above.
In this case, it is preferable that the material of the refractory castable has a high thermal conductivity in order to increase the cooling effect of the runner 4a-1 portion from the inner surface of the metal plate block 5. FIG. Specifically, by cooling from the inner surface of the metal plate block 5, the surface temperature of the runner 4a-1 is lowered below the melting point (about 1200° C.) of the molten slag through which the refractory castable reacts with the molten slag. can prevent erosion due to In addition, it is preferable that the material of the refractory castable itself has low reactivity with the molten slag. In addition, in the case of intermittent tapping, the heat load fluctuation on the refractory castable due to repeated tapping and blockage is large, so thermal spalling It is preferably resistant to Silicon carbide castable containing 60% by mass or more of silicon carbide is most suitable as a material for the refractory castable that satisfies all of the above requirements.

一方、湯道4a-1を形成する耐火物(以下「湯道形成耐火物」という。)を耐火キャスタブルとする前述の耐火キャスタブル方式に対し、湯道形成耐火物の耐久性をさらに上げるため、湯道形成耐火物を高温焼成(例えば1400℃以上で焼成)された耐火れんが又は1000℃以上で事前焼成された耐火キャスタブルブロック(以下、総称して「焼成耐火物」という。)とする方式がある(図4参照)。
この場合、金属板ブロック5の内面からの冷却を効かせるため、焼成耐火物6aと金属板ブロック5との間に空隙を設け、この空隙部分に炭化珪素を60質量%以上含有する炭化珪素質キャスタブル6bを充填し、その高熱伝導率を利用して、金属板ブロック5の内面から焼成耐火物6a(湯道形成耐火物)を冷却できる構造とする。
焼成耐火物6aは焼成によりその品質が大きく向上するため、直接溶融物と接触する湯道形成耐火物としては、前述の耐火キャスタブルの単一材で湯道を形成した場合よりも、大幅に耐久性の向上が発揮できる。この場合の焼成耐火物6aとしては、炭化珪素を80質量%以上含有するものが好ましい。これにより焼成耐火物6aの熱伝導率も高くなり、金属板ブロック5の内面からの冷却が十分に作用する。
また、空隙部分に充填する充填キャスタブル(炭化珪素質キャスタブル6b)の炭化珪素含有率は90質量%以上であることが好ましい。そして、この空隙の幅δは施工性を考慮して20~30mmとすることが好ましい。
On the other hand, in contrast to the above-described refractory castable method in which the refractory forming the runner 4a-1 (hereinafter referred to as "runner-forming refractory") is refractory castable, in order to further increase the durability of the runner-forming refractory, There is a method in which the runner-forming refractories are refractory bricks fired at high temperatures (for example, fired at 1400°C or higher) or refractory castable blocks pre-fired at 1000°C or higher (hereinafter collectively referred to as “fired refractories”). (see Figure 4).
In this case, in order to effectively cool the inner surface of the metal plate block 5, a gap is provided between the fired refractory 6a and the metal plate block 5, and a silicon carbide material containing 60% by mass or more of silicon carbide is provided in the gap. The structure is such that the castable 6b is filled and the fired refractory 6a (runner forming refractory) can be cooled from the inner surface of the metal plate block 5 by utilizing its high thermal conductivity.
Since the quality of the fired refractory 6a is greatly improved by firing, as a runner-forming refractory that directly contacts the molten material, it has a significantly higher durability than the case where the runner is formed of a single material of the above-mentioned refractory castable. The improvement of sexuality can be exhibited. The fired refractory 6a in this case preferably contains 80% by mass or more of silicon carbide. As a result, the thermal conductivity of the fired refractory 6a also increases, and the cooling from the inner surface of the metal plate block 5 works sufficiently.
In addition, the content of silicon carbide in the filling castable (silicon carbide castable 6b) to be filled in the void portion is preferably 90% by mass or more. The width δ of this gap is preferably 20 to 30 mm in consideration of workability.

さらに、本実施形態において溶融炉1は間欠出湯方式としたが、本発明の冷却構造は連続出湯方式の溶融炉にも適用可能である。なお、溶融炉1が連続出湯方式の場合、マッド材による閉塞性を考慮する必要がないので、金属板ブロック5で冷却する湯道長さLは出湯口4bの直径D未満としても問題はない。 Furthermore, in the present embodiment, the melting furnace 1 is of the intermittent pouring type, but the cooling structure of the present invention can also be applied to a continuous pouring type melting furnace. If the melting furnace 1 employs a continuous tapping method, there is no need to consider the blockage of the mud material, so there is no problem even if the runner length L cooled by the metal plate block 5 is less than the diameter D of the tapping port 4b.

1 溶融炉
2 側壁耐火物
3 炉底耐火物
4 出湯口部
4a,4a-1,4a-2 湯道
4b 出湯口
5 金属板ブロック
5a 通水流路
5b 給水口
5c 排水口
5d 閉止栓
6 耐火物(湯道形成耐火物)
6a 焼成耐火物(湯道形成耐火物)
6b 炭化珪素質キャスタブル(充填キャスタブル)
7 樋
8 マッド材充填機
9 マッド材
δ 空隙の幅
1 Melting Furnace 2 Side Wall Refractory 3 Furnace Bottom Refractory 4 Outlet Portion 4a, 4a-1, 4a-2 Runner 4b Outlet 5 Metal Plate Block 5a Water Flow Channel 5b Water Supply Port 5c Drainage Port 5d Closing Plug 6 Refractory (Runner forming refractories)
6a Fired refractory (running refractory)
6b Silicon carbide castable (filled castable)
7 gutter 8 mud filling machine 9 mud material δ width of gap

Claims (6)

溶融炉の出湯口部に、板厚内に連続する通水流路として通水穴を有する金属板ブロックを、前記出湯口部を取り囲むように設置し、前記金属板ブロックの内面側に耐火物で出湯口部の湯道を円孔形状に形成し、前記金属板ブロックは前記湯道の少なくとも上半周部と当該金属板ブロックとの間の前記耐火物の厚みが均等となるような逆U字形状を有し、前記金属板ブロックの前記通水穴に冷却水を通水することで当該金属板ブロックの内面から、前記湯道を含む前記耐火物を冷却するようにしている、溶融炉の出湯口部の冷却構造。 A metal plate block having water passage holes as continuous water passages within the plate thickness is installed at the outlet of the melting furnace so as to surround the outlet, and the inner surface of the metal plate block is covered with a refractory material. The runner of the outlet portion is formed in a circular hole shape , and the metal plate block has an inverted U shape so that the thickness of the refractory between at least the upper half peripheral portion of the runner and the metal plate block is uniform. The melting furnace has a shape, and cools the refractory including the runner from the inner surface of the metal plate block by passing cooling water through the water passage holes of the metal plate block. Cooling structure of the spout. 溶融炉の出湯口部に、板厚内に連続する通水流路を有する金属板ブロックを、前記出湯口部を取り囲むように設置し、前記金属板ブロックの内面側に耐火物で出湯口部の湯道を形成し、前記金属板ブロックの通水流路に冷却水を通水することで当該金属板ブロックの内面から、前記湯道を含む前記耐火物を冷却するようにしており、
前記出湯口部の湯道は円孔形状であり、前記金属板ブロックは、前記湯道の出口である出湯口付近に設置し、かつ冷却する湯道長さを出湯口の直径以上の長さとしている、溶融炉の出湯口部の冷却構造。
At the outlet of the melting furnace, a metal plate block having a continuous water flow passage within the plate thickness is installed so as to surround the outlet, and the inner surface of the metal plate block is covered with a refractory material to the outlet. The refractory including the runner is cooled from the inner surface of the metal plate block by forming a runner and passing cooling water through the water passage of the metal plate block,
The runner at the outlet portion has a circular hole shape, and the metal plate block is installed in the vicinity of the outlet, which is the outlet of the runner, and the length of the runner to be cooled is equal to or longer than the diameter of the outlet. Cooling structure of the tapping part of the melting furnace.
前記湯道を形成する耐火物は耐火キャスタブルである、請求項1又は2に記載の溶融炉の出湯口部の冷却構造。 3. The cooling structure for a tapping port of a melting furnace according to claim 1 or 2, wherein the refractory forming said runner is a refractory castable. 前記耐火キャスタブルは、炭化珪素を60質量%以上含有する炭化珪素質キャスタブルである、請求項3に記載の溶融炉の出湯口部の冷却構造。 4. The cooling structure for a tapping port of a melting furnace according to claim 3, wherein said refractory castable is silicon carbide castable containing 60% by mass or more of silicon carbide. 前記湯道を形成する耐火物は、焼成された耐火れんが又は1000℃以上で事前焼成された耐火キャスタブルブロック(以下、総称して「焼成耐火物」という。)であり、当該焼成耐火物と前記金属板ブロックとの間に、炭化珪素を60質量%以上含有する炭化珪素質キャスタブルが充填されている、請求項1又は2に記載の溶融炉の出湯口部の冷却構造。 The refractory forming the runner is a fired refractory brick or a refractory castable block pre-fired at 1000 ° C. or higher (hereinafter collectively referred to as "fired refractory"), and the fired refractory and the above 3. The cooling structure for a tapping port of a melting furnace according to claim 1, wherein silicon carbide castable containing 60% by mass or more of silicon carbide is filled between the metal plate block and the metal plate block. 請求項1からのいずれか一項に記載の溶融炉の出湯口部の冷却構造に用いられる金属板ブロックの製造方法であって、予め平板の状態で直線状のドリル穴加工を行って連続する通水流路を形成後、溶融炉の出湯口部を取り囲む形状に曲げ加工する、金属板ブロックの製造方法。 6. A method for manufacturing a metal plate block used in a cooling structure for a tapping port of a melting furnace according to any one of claims 1 to 5 , wherein linear drill holes are performed in advance in a flat plate state to continuously drill holes. A method of manufacturing a metal plate block, which comprises forming a water flow passage to form a metal plate block, and then bending the block into a shape surrounding the outlet of the melting furnace.
JP2019037942A 2018-12-13 2019-03-01 A cooling structure for the outlet of a melting furnace and a method for manufacturing a metal plate block used in the cooling structure. Active JP7294830B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018233731 2018-12-13
JP2018233731 2018-12-13

Publications (2)

Publication Number Publication Date
JP2020098088A JP2020098088A (en) 2020-06-25
JP7294830B2 true JP7294830B2 (en) 2023-06-20

Family

ID=71106494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019037942A Active JP7294830B2 (en) 2018-12-13 2019-03-01 A cooling structure for the outlet of a melting furnace and a method for manufacturing a metal plate block used in the cooling structure.

Country Status (1)

Country Link
JP (1) JP7294830B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113503739A (en) * 2021-06-21 2021-10-15 南京玻璃纤维研究设计院有限公司 Discharge port flow control and cooling device of mineral wool electric melting furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164227A (en) 2009-01-14 2010-07-29 Nippon Steel Engineering Co Ltd Device for cooling tapping port section of waste gasification melting furnace
JP2017138032A (en) 2016-02-02 2017-08-10 新日鉄住金エンジニアリング株式会社 Furnace bottom structure of low carbon type shaft furnace
JP2019135429A (en) 2018-02-05 2019-08-15 パンパシフィック・カッパー株式会社 Tap hole structure of metal refining furnace

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041209Y2 (en) * 1971-11-29 1975-11-22
JP3066289B2 (en) * 1995-06-01 2000-07-17 株式会社タクマ Outlet cooling structure of melting furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164227A (en) 2009-01-14 2010-07-29 Nippon Steel Engineering Co Ltd Device for cooling tapping port section of waste gasification melting furnace
JP2017138032A (en) 2016-02-02 2017-08-10 新日鉄住金エンジニアリング株式会社 Furnace bottom structure of low carbon type shaft furnace
JP2019135429A (en) 2018-02-05 2019-08-15 パンパシフィック・カッパー株式会社 Tap hole structure of metal refining furnace

Also Published As

Publication number Publication date
JP2020098088A (en) 2020-06-25

Similar Documents

Publication Publication Date Title
JP4762172B2 (en) Furnace body water cooling structure of flash furnace
JP7294830B2 (en) A cooling structure for the outlet of a melting furnace and a method for manufacturing a metal plate block used in the cooling structure.
JP4350119B2 (en) Tap hole cooling structure
JPH11217609A (en) Cooling element for vertical furnace
JP5256376B2 (en) Method of manufacturing cooling element for dry metallurgical reactor and cooling element
EA003117B1 (en) Casting mould for manufacturing a cooling element and cooling element made in said mould
CN104313221B (en) A kind of water-cooling type iron storing type iron runner and cooling means
CN212720899U (en) Furnace body structure of ore-smelting electric furnace
RU2281974C2 (en) Cooling member for cooling metallurgical furnace
JPH08246014A (en) Water-cooled molten slag trough for blast furnace
JPS6336359B2 (en)
RU2487946C2 (en) Method of making cooling element for pyrometallurgical reactor and cooling element
JP6905480B2 (en) Tap hole structure of metal refining furnace
JP4495330B2 (en) Cooling panel for blast furnace wall
US3705713A (en) Bottom cooling device for shaft furnaces
EP1957681B1 (en) Snorkels for vacuum degassing of steel
RU2617071C2 (en) Method of cooling melting unit housing and melting unit for its implementation
RU2210599C2 (en) Iron making blast furnace and method of its functioning
JPH0357161B2 (en)
JP7037419B2 (en) Metal smelting furnace and its operation method
KR100797952B1 (en) Vortex reducing refractory block device in main runner
JPH07224307A (en) Method for repairing piping and the like used for cooling of blast furnace
JP4038153B2 (en) Blast furnace bottom cooling method
JP2000283425A (en) Slag hole
US452618A (en) Bosh-plate for furnaces

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230608

R150 Certificate of patent or registration of utility model

Ref document number: 7294830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150