JPH0967607A - Method for monitoring furnace bottom of blast furnace - Google Patents

Method for monitoring furnace bottom of blast furnace

Info

Publication number
JPH0967607A
JPH0967607A JP24365595A JP24365595A JPH0967607A JP H0967607 A JPH0967607 A JP H0967607A JP 24365595 A JP24365595 A JP 24365595A JP 24365595 A JP24365595 A JP 24365595A JP H0967607 A JPH0967607 A JP H0967607A
Authority
JP
Japan
Prior art keywords
furnace
refractory
erosion
shape
heat flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24365595A
Other languages
Japanese (ja)
Inventor
Koichi Kurita
興一 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24365595A priority Critical patent/JPH0967607A/en
Publication of JPH0967607A publication Critical patent/JPH0967607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the wearing of furnace bottom refractories, and also, to drastically extend the service life of a blast furnace by developing a solidified layer, by three- dimensionally detecting the wearing in the circumferential direction of the furnace bottom refractories of the blast furnace and taking the measure for the wear in each circumferential direction. SOLUTION: Plural thermal flowmeters 3 and thermocouples 4 are arranged in the furnace bottom 2 and in the height direction of the blast furnace 1 to measure the heat flow quantity and the temp. of the furnace bottom brick 5. Further, the thermal flowmeters 3 and the thermocouples 4 are arranged in the brick and the back surface of the brick even in the furnace side wall 6 part to always measure the heat flow quantity and the temp. Since a joint eroding range 7 is formed on the upper part of a sound brick 5 in the furnace hearth of the blast furnace and the solidified layer 8 of molten material in the furnace as a protecting layer is formed on the joint eroding range 7 at the boundary part between the side wall 6 of the furnace bottom, a three-dimensional heat transfer analysis is executed to the heat flow quantity distribution and the temp. distribution in the bricks 4. Then, the calculated values of the heat flow quantity and the temp. at the brick heat flow quantity measuring point and the actually measured values are compared, and the joint eroding surface is adjusted by these differences, and the distributing condition of the solidified layer 8 on the surface is grasped to suitably execute the prevention of wearing of the furnace bottom.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高炉の炉底耐火
物の侵食形状ならびに炉底耐火物上に生成した炉内溶融
物の凝固層形状を3次元的に推定し、高炉の寿命を延長
するための損耗防止対策を講じることができる高炉の炉
底監視方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention three-dimensionally estimates the erosion shape of the furnace bottom refractory of the blast furnace and the shape of the solidified layer of the furnace melt formed on the furnace bottom refractory, and extends the life of the blast furnace. The present invention relates to a method for monitoring the bottom of a blast furnace capable of taking measures to prevent wear and tear.

【0002】[0002]

【従来の技術】最近の低経済成長の状況下においては、
従来の高生産性を追求した高炉の過酷な操業条件や、巻
替えによる大型化に替わり、安定操業を行いつつ高炉寿
命を延長して銑鉄単価を切り下げることが重要課題とな
ってきている。
2. Description of the Related Art In recent low economic growth situations,
It is becoming an important issue to extend the life of the blast furnace and lower the unit cost of pig iron while maintaining stable operation, instead of the harsh operating conditions of the conventional blast furnace in pursuit of high productivity and the large size by rewinding.

【0003】通常、高炉の寿命は、羽口から上部につい
てはステーブの取替えなどの技術があるため、休風中に
修理が可能で延長できるが、炉底の湯溜まり部について
は、溶銑が存在して容易に修理することができないた
め、炉底耐火物の損耗によって決定されていた。
Usually, the life of a blast furnace can be extended and repaired during a blast because there is a technique such as the replacement of staves from the tuyere to the upper part, but there is hot metal in the hot water pool at the bottom of the furnace. It was determined by the wear of the bottom refractory because it could not be easily repaired.

【0004】したがって、高炉の安定操業と寿命延長の
ためには、高炉操業中の炉底耐火物の侵食状況を常時把
握し、侵食箇所の損耗防止対策を迅速かつ的確に取るこ
とが重要であるが、同時に侵食箇所の損耗防止対策によ
り耐火物侵食面上に生成、消滅を繰り返す炉内溶融物の
凝固層の分布状況を把握し、耐火物保護対策の定量化を
図ると共に、凝固層厚や層厚分布の制御を行うことも重
要である。
Therefore, for stable operation of the blast furnace and extension of its life, it is important to constantly grasp the erosion condition of the bottom refractory during the operation of the blast furnace and to take measures to prevent the wear of the erosion site promptly and appropriately. However, at the same time, by observing the distribution of the solidified layer of the molten material in the furnace that is repeatedly generated and disappeared on the erosion surface of the refractory due to the measures to prevent wear of the eroded part, the solidification layer thickness and It is also important to control the layer thickness distribution.

【0005】すなわち、耐火物侵食面上に生成、消滅を
繰り返す凝固層は、耐火物保護の面からは炉底耐火物の
侵食面全域に亘って厚く生成している方が望ましいが、
出銑口レベル以上に凝固層が成長すると炉底が冷え込み
状態となり易く出銑滓作業の妨げとなる。また、凝固層
が炉底中心で局部的に大きく成長した場合は、溶銑滓の
流路が小さくなって通液抵抗が増加し、一回の出銑滓作
業で排出できる溶銑滓の量が減少し、溶融物が炉床に残
り気味となるので、炉内全体の通気性が悪化したり、装
入物の荷下がりが悪くなる。
That is, it is desirable that the solidified layer which is repeatedly formed and disappears on the erosion surface of the refractory material is thickly formed over the entire erosion surface of the furnace bottom refractory material from the viewpoint of refractory material protection.
If the solidified layer grows above the tapping level, the bottom of the furnace is likely to be cooled, which hinders tapping work. In addition, when the solidified layer locally grows largely in the center of the furnace bottom, the flow path of the molten pig iron becomes small and the liquid flow resistance increases, and the amount of molten pig iron that can be discharged in one tapping work decreases. However, since the melt tends to remain in the hearth, the air permeability of the entire furnace is deteriorated and the unloading of the charged material is deteriorated.

【0006】したがって、安定した出銑滓作業と炉底耐
火物の有効な保護を両立させるためには、炉底部凝固層
の消長を制御できる技術を確立し、最適な凝固層厚や分
布を定量化し、最適条件で高炉操業を行うことが必要で
ある。このためには、高炉耐火物の侵食形状ならびに炉
底耐火物上に生成した炉内溶融物の凝固層形状を予測す
ることが重要となる。
Therefore, in order to achieve both stable tapping work and effective protection of the furnace bottom refractory, a technique capable of controlling the fluctuating of the furnace bottom solidification layer was established and the optimum solidification layer thickness and distribution were determined. And it is necessary to operate the blast furnace under optimum conditions. For this purpose, it is important to predict the erosion shape of the blast furnace refractory and the shape of the solidified layer of the in-furnace melt formed on the bottom refractory.

【0007】従来、高炉炉底の温度を基に炉底耐火物の
侵食形状ならびに炉底耐火物上に生成した炉内溶融物の
凝固層形状を予測する方法としては、炉底耐火物内およ
び/または炉底耐火物の外表面に配設した複数の温度セ
ンサーによる炉底温度測定結果に基づき、高炉の操業推
移を通した最高温度への到達を検出し、最高温度から境
界要素法を用いて炉の縦軸を対称軸とする軸対称体とし
て伝熱解析により炉底耐火物の侵食形状を予測し、つい
で最高温度よりも炉底温度が低い範囲での複数の温度セ
ンサーによる炉底温度の測定を継続し、継続して測定し
た温度と予測した炉底耐火物の侵食形状とを基に境界要
素法を用いて炉底の縦軸を対称軸とする軸対称体として
伝熱解析を行い、侵食された炉底耐火物上に生成した炉
内溶融物の凝固層形状を予測し、その後、高炉の操業推
移を通して新たな最高温度が検出されたならば、新たな
最高温度から境界要素法を用いて炉底の縦軸を対称軸と
する軸対称体として伝熱解析により炉底耐火物の侵食形
状を予測し、ついで新たな最高温度よりも炉底温度が低
い範囲での複数の温度センサーによる炉底温度の測定を
継続し、継続して測定した温度と予測した炉底耐火物の
侵食形状とを基に境界要素法を用いて炉底の縦軸を対称
軸とする軸対称体として伝熱解析を行い、侵食された炉
底耐火物上に生成した炉内溶融物の凝固層形状を予測す
ることを繰り返し、炉底耐火物の侵食形状ならびに炉底
耐火物上に生成した炉内溶融物の凝固層形状を常時監視
する炉底監視法(特公昭61−37328号公報)、ま
た、特公昭61−37328号公報に開示の炉底監視法
により予測した炉底耐火物上に生成した炉内溶融物の凝
固層形状を基に、その厚みおよび分布を、炉底冷却条件
を含む高炉操業条件の選択によって制御し、予測した炉
底耐火物の侵食成長を阻止することを繰り返し、炉底耐
火物の侵食形状ならびに炉底耐火物上に生成した炉内溶
融物の凝固層形状を常時監視する操業方法(特公昭61
−37327号公報)が提案されている。
Conventionally, as a method of predicting the erosion shape of the bottom refractory and the solidified layer shape of the in-furnace melt formed on the bottom refractory based on the temperature of the bottom of the blast furnace, the method of predicting the inside of the bottom refractory and / Or based on the results of furnace bottom temperature measurement by multiple temperature sensors arranged on the outer surface of the furnace bottom refractory, the arrival of the highest temperature through the operation transition of the blast furnace is detected, and the boundary element method is used from the highest temperature. Predict the erosion shape of the furnace bottom refractory by heat transfer analysis as an axisymmetric body with the vertical axis of the furnace as the axis of symmetry, and then measure the furnace bottom temperature with multiple temperature sensors in the range where the furnace bottom temperature is lower than the maximum temperature. The heat transfer analysis is performed by using the boundary element method based on the continuously measured temperature and the predicted erosion shape of the furnace bottom refractory as an axisymmetric body with the vertical axis of the furnace bottom as the axis of symmetry. Solidified layer of in-furnace melt formed on the eroded and eroded bottom refractory If a new maximum temperature is detected through the operation transition of the blast furnace, the heat transfer is performed from the new maximum temperature using the boundary element method as an axisymmetric body with the vertical axis of the furnace bottom as the axis of symmetry. Predict the erosion shape of the bottom refractory by analysis, then continue to measure the bottom temperature with multiple temperature sensors in the range where the bottom temperature is lower than the new maximum temperature, and predict the temperature measured continuously Based on the eroded shape of the bottom refractory, the heat transfer analysis was performed using the boundary element method as an axisymmetric body with the vertical axis of the bottom being the axis of symmetry, and the furnace produced on the eroded bottom refractory was analyzed. A bottom monitoring method that constantly monitors the erosion shape of the furnace bottom refractory and the shape of the solidified layer of the furnace melt formed on the furnace bottom refractory by repeatedly predicting the shape of the solidified bed of the inner melt (Japanese Patent Publication 61). Japanese Patent Publication No. 61-37328). Based on the solidified layer shape of the furnace melt generated on the furnace bottom refractory predicted by the disclosed furnace bottom monitoring method, its thickness and distribution is controlled by the selection of blast furnace operating conditions including the furnace bottom cooling conditions, An operation method for constantly monitoring the predicted erosion growth of the furnace bottom refractory and continuously monitoring the erosion shape of the furnace bottom refractory and the solidified layer shape of the in-furnace melt formed on the furnace bottom refractory (Japanese Patent Publication No.
No. 37327/1991) is proposed.

【0008】上記特公昭61−37328号公報、特公
昭61−37327号公報に開示の方法は、炉の縦軸を
対称軸とする軸対称体として有限要素法を用いた伝熱解
析により炉底耐火物の侵食形状ならびに侵食された炉底
耐火物上に生成した炉内溶融物の凝固層形状を予測する
ものである。このため、炉の円周方向の炉底耐火物の侵
食形状ならびに侵食された炉底耐火物上に生成した炉内
溶融物の凝固層形状については、平均値でしか求められ
ていなかった。
The methods disclosed in Japanese Patent Publication No. 61-37328 and Japanese Patent Publication No. 61-37327 disclose a furnace bottom by heat transfer analysis using a finite element method as an axisymmetric body whose longitudinal axis is the axis of symmetry. It is intended to predict the erosion shape of a refractory and the shape of the solidified layer of the in-furnace melt formed on the eroded furnace bottom refractory. For this reason, the eroded shape of the furnace bottom refractory in the circumferential direction of the furnace and the solidified layer shape of the in-furnace melt generated on the eroded furnace bottom refractory were determined only by average values.

【0009】しかしながら、高炉炉底には、出銑口は多
い場合4方位についており、溶銑は出銑口に向かって流
れるため、溶銑の流動は軸対称ではない。このため、図
15(a)に示すとおり、高炉21炉底の侵食22は、
軸23対称に進行するものではなく、図15(b)図に
示すように出銑口24のある方位とない方位とでは侵食
22の程度が異なる。また、ある方位では、局部的に炉
底耐火物の侵食が進行することがあり、この局部的な炉
底耐火物の侵食が実炉の寿命律速となる。したがって、
高炉の炉底耐火物の侵食に対する対策は、3次元モデル
による侵食ライン推定結果に基づいて立案する必要があ
る。
However, when there are many tap holes on the bottom of the blast furnace, the hot metal flows toward the tap holes, so that the flow of the hot metal is not axisymmetric. Therefore, as shown in FIG. 15A, the erosion 22 on the bottom of the blast furnace 21 is
The erosion 22 does not proceed symmetrically with respect to the axis 23, and as shown in FIG. Further, in a certain direction, the erosion of the hearth bottom refractory sometimes progresses locally, and this local erosion of the hearth bottom refractory becomes the life-determining rate of the actual furnace. Therefore,
Countermeasures against the erosion of the bottom refractory of the blast furnace must be planned based on the erosion line estimation result by the three-dimensional model.

【0010】3次元モデルによる侵食ライン推定方法と
しては、炉底耐火物内および/または炉底耐火物の外表
面に3次元的に複数ヶ所配置した温度センサーにより測
定した炉底温度分布に基づき、有限要素法、境界要素法
または有限差法を用いて3次元の伝熱解析を行い、炉底
耐火物の侵食形状を求め、過去最深の侵食形状と比較し
て侵食が進行している領域を更新し、前記炉底温度分布
を基に有限要素法、境界要素法または有限差分法を用い
て3次元の伝熱解析を行い、炉底耐火物の目地差し面形
状を求めて先に求めた目地差し面形状と比較して進行し
た目地差し面領域を更新すると共に、目地差し面形状と
過去最深の侵食形状と比較し、過去最深の侵食面と炉内
側の目地差し面との間を凝固層とすることを繰り返し、
定常的または非定常的に炉底耐火物の侵食形状ならびに
侵食された炉底耐火物上に生成した炉内溶融物の凝固層
形状を推定し、局部的に侵食している部分には局部的侵
食防止対策を、全体的に侵食している場合には、全体的
な侵食防止対策を講じる操業方法(特開平6−1364
20号公報)が提案されている。
As a method for estimating an erosion line using a three-dimensional model, based on the furnace bottom temperature distribution measured by temperature sensors arranged three-dimensionally in the furnace bottom refractory and / or on the outer surface of the furnace bottom refractory, A three-dimensional heat transfer analysis is performed using the finite element method, the boundary element method or the finite difference method, and the erosion shape of the hearth refractory is determined, and the area where erosion is progressing is compared with the deepest erosion shape in the past. It was updated and three-dimensional heat transfer analysis was performed using the finite element method, boundary element method, or finite difference method based on the above-mentioned temperature distribution of the bottom of the furnace, and the shape of the joint surface of the bottom of the refractory of the bottom was calculated and found in advance. The advanced joint surface area compared to the joint surface shape is updated, and the joint surface shape and the deepest erosion shape in the past are compared to solidify between the deepest erosion surface in the past and the joint surface inside the furnace. Repeatedly making a layer,
Estimate the erosion shape of the bottom refractory steadily or unsteadily and the solidified layer shape of the in-furnace melt generated on the eroded bottom bottom refractory, and localize the locally eroded part When the erosion prevention measure is totally eroded, an operation method for taking the overall erosion prevention measure (Japanese Patent Laid-Open No. 6-1364).
No. 20) has been proposed.

【0011】[0011]

【発明が解決しようとする課題】上記特開平6−136
420号公報に開示の3次元の伝熱解析においては、底
盤および側壁の境界条件をその冷却条件に応じて、例え
ば、底盤の水冷を20℃で総括熱伝達係数を25Kca
l/m2/hr/℃、側壁の水冷を20℃で総括熱伝達
係数を200Kcal/m2/hr/℃のように一定に
設定していた。このため、炉底耐火物内および/または
炉底耐火物の外表面に配設した温度センサーの温度測定
値だけでは、正確に侵食状況を推定できない場合が生じ
てきた。すなわち、熱流量が多い場合には、温度センサ
ーが低温であっても熱負荷が大きく、その結果侵食が進
んでおり、逆に耐火物温度が高くても熱流量が少なけれ
ば、耐火物残存が多いかまたは凝固層の成長が考えられ
る。
[Patent Document 1] Japanese Unexamined Patent Publication No. 6-136
In the three-dimensional heat transfer analysis disclosed in Japanese Patent Publication No. 420, the boundary condition of the bottom plate and the side wall depends on the cooling condition, for example, the bottom plate is water-cooled at 20 ° C. and the overall heat transfer coefficient is 25 Kca.
1 / m 2 / hr / ° C., water cooling of the side wall was set to 20 ° C., and the overall heat transfer coefficient was set to a constant value of 200 Kcal / m 2 / hr / ° C. For this reason, there have been cases where the erosion situation cannot be accurately estimated only by the temperature measurement values of the temperature sensors provided inside the furnace bottom refractory and / or on the outer surface of the furnace bottom refractory. That is, when the heat flow rate is high, the heat load is large even if the temperature sensor is at a low temperature, resulting in erosion, and conversely, if the heat flow rate is low even if the refractory temperature is high, the refractory remains. There may be more or solidified layer growth.

【0012】その理由は、高炉の寿命が過去においては
約5年であったが、最近は15年以上と延びてきたた
め、特に鉄皮と耐火物の間に詰めてあるスタンプ材と鉄
皮またはスタンプ材と耐火物の密着が変化し、鉄皮冷却
効果の耐火物への伝達が変動していることによるものと
推定される。炉底底盤に関しては、改修時に流用するこ
ともあり、30年連続使用の場合も起こっている。この
ような場合には、底盤下の水冷パイプの劣化、水漏れま
たはパイプ内面への付着物の影響により、底盤下の熱伝
達係数が経時変化することが考えられる。
The reason is that the life of the blast furnace has been about 5 years in the past, but recently it has been extended to more than 15 years. Therefore, in particular, the stamp material and the iron shell, which are packed between the iron shell and the refractory, or It is presumed that this is because the adhesion of the stamp material to the refractory changes and the transmission of the cooling effect of the steel skin to the refractory changes. As for the bottom of the furnace bottom, it may be diverted at the time of refurbishment, and it has been used for 30 years continuously. In such a case, it is conceivable that the heat transfer coefficient below the bottom plate changes with time due to deterioration of the water-cooled pipe below the bottom plate, water leakage, or the influence of deposits on the inner surface of the pipe.

【0013】この発明の目的は、上記従来技術の欠点を
解消し、底盤および側壁の総括熱伝達係数が変化した場
合においても、侵食形状ならびに侵食された炉底耐火物
上に生成した炉内溶融物の凝固層形状を正確に推定でき
る高炉の炉底監視方法を提供することにある。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art, and even when the overall heat transfer coefficients of the bottom plate and the side wall are changed, the erosion shape and the in-furnace melting generated on the eroded furnace bottom refractory It is an object of the present invention to provide a method for monitoring the bottom of a blast furnace, which can accurately estimate the solidified layer shape of an object.

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく種々試験研究を重ねた。その結果、高炉炉
底耐火物の熱流量分布または熱流量分布と温度分布に基
いて有限要素法(以下FEMという)、境界要素法(以
下BEMという)または有限差分法(以下FDMとい
う)を用いて3次元モデルでの伝熱解析を行い、炉底耐
火物の侵食形状、目地差し面形状および凝固層形状を3
次元的に求めることによって、炉底耐火物の円周方向に
おける侵食状況ならびに侵食された炉底耐火物上に生成
した炉内溶融物の凝固層形状を正確に予測できることを
究明し、この発明に到達した。
[Means for Solving the Problems] The present inventors have conducted various test studies in order to achieve the above object. As a result, the finite element method (hereinafter referred to as FEM), the boundary element method (hereinafter referred to as BEM), or the finite difference method (hereinafter referred to as FDM) is used based on the heat flow distribution of the blast furnace bottom refractory or the heat flow distribution and temperature distribution. Heat transfer analysis using a three-dimensional model to determine the erosion shape, joint joint surface shape and solidification layer shape of the bottom refractory
By dimensionally obtaining, it was clarified that the erosion state in the circumferential direction of the furnace bottom refractory and the shape of the solidified layer of the molten material in the furnace generated on the corroded furnace bottom refractory can be accurately predicted, and the present invention Arrived

【0015】すなわちこの発明は、高炉の炉底耐火物の
侵食状況および侵食された耐火物上に生成した炉内溶融
物の凝固形状を監視する高炉の炉底監視方法において、
炉底耐火物内および/または炉底耐火物の外表面に3次
元的に複数箇所配置した熱流量計により測定した炉底熱
流量分布に基づき、FEM、BEMまたはFDMを用い
て3次元の伝熱解析を行い、炉底耐火物の侵食形状を求
め、過去最深の侵食形状と比較して侵食が進行している
領域を更新し、前記炉底熱流量分布を基にFEM、BE
MまたはFDMを用いて3次元の伝熱解析を行い、炉底
耐火物の目地差し面形状を求めて先に求めた目地差し面
形状と比較して進行した目地差し面領域を更新すると共
に、目地差し面形状と過去最深の侵食形状と比較し、過
去最深の侵食面と炉内側の目地差し面との間を凝固層と
することを繰り返し、定常的または非定常的に炉底耐火
物の侵食形状ならびに侵食された炉底耐火物上に生成し
た炉内溶融物の凝固形状を推定することを特徴とする高
炉の炉底監視方法である。
That is, the present invention provides a method for monitoring the bottom of a blast furnace, which monitors the erosion state of the bottom refractory of the blast furnace and the solidification shape of the in-furnace melt formed on the eroded refractory.
Based on the heat flow distribution of the bottom of the furnace bottom refractory and / or the outer surface of the bottom refractory, which is three-dimensionally arranged at a plurality of locations, the three-dimensional transmission is performed using FEM, BEM or FDM. Thermal analysis is performed to find the erosion shape of the bottom refractory, and the area where the erosion is progressing is updated by comparing with the deepest erosion shape in the past. Based on the bottom bottom heat flow distribution, FEM, BE
A three-dimensional heat transfer analysis is performed using M or FDM to obtain the joint joint surface shape of the furnace bottom refractory and update the joint joint surface area that has progressed in comparison with the joint joint surface shape previously obtained. Compared with the joint surface shape and the deepest erosion shape in the past, the solidification layer between the deepest erosion surface in the past and the joint surface inside the furnace was repeatedly used to steadily or unsteadily A method for monitoring the bottom of a blast furnace, characterized by estimating the erosion shape and the solidification shape of the molten material in the furnace generated on the eroded furnace bottom refractory.

【0016】また、この発明は、高炉の炉底の底部なら
びに側壁部分の熱流量または温度に基づき炉底耐火物の
侵食状況および侵食された耐火物上に生成した炉内溶融
物の凝固形状を監視する高炉の炉底監視方法において、
炉底耐火物内および/または炉底耐火物の外表面に3次
元的に複数箇所配置した熱流量計および温度センサーに
より測定した炉底熱流量分布および炉底温度分布に基づ
き、FEM、BEMまたはFDMを用いて3次元の伝熱
解析を行い、炉底耐火物の侵食形状を求め、過去最深の
侵食形状と比較して侵食が進行している領域を更新し、
前記炉底熱流量分布および炉底温度分布を基にFEM、
BEMまたはFDMを用いて3次元の伝熱解析を行い、
炉底耐火物の目地差し面形状を求めて先に求めた目地差
し面形状と比較して進行した目地差し面領域を更新する
と共に、目地差し面形状と過去最深の侵食形状と比較
し、過去最深の侵食面と炉内側の目地差し面との間を凝
固層とすることを繰り返し、定常的または非定常的に炉
底耐火物の侵食形状ならびに侵食された炉底耐火物上に
生成した炉内溶融物の凝固形状を推定することを特徴と
する高炉の炉底監視方法である。
Further, according to the present invention, the erosion state of the furnace bottom refractory and the solidified shape of the in-furnace melt produced on the corroded refractory are determined based on the heat flow rate or temperature of the bottom and side walls of the blast furnace. In the method of monitoring the bottom of the blast furnace to be monitored,
Based on the furnace bottom heat flow distribution and the furnace bottom temperature distribution measured by a heat flow meter and a temperature sensor arranged in a plurality of three-dimensionally inside the furnace bottom refractory and / or the outer surface of the furnace bottom refractory, a FEM, BEM or Perform three-dimensional heat transfer analysis using FDM, find the erosion shape of the bottom refractory, and update the area where erosion is progressing compared to the deepest erosion shape in the past,
FEM based on the furnace bottom heat flow distribution and the furnace bottom temperature distribution,
Perform three-dimensional heat transfer analysis using BEM or FDM,
Finding the joint surface shape of the hearth refractory and comparing the previously calculated joint surface shape with the updated joint surface area, and comparing the joint surface shape with the deepest erosion shape in the past. Repeatedly forming a solidified layer between the deepest erosion surface and the joint surface inside the furnace, steadily or unsteadily the erosion shape of the bottom refractory and the furnace generated on the eroded bottom refractory It is a method for monitoring the bottom of a blast furnace, characterized by estimating the solidification shape of the inner melt.

【0017】[0017]

【発明の実施の形態】以下にこの発明の詳細を熱流量計
と熱電対を用いた場合の実施の一例を示す図1ないし図
9に基づいて説明する。図1は高炉炉底への熱流量セン
サーとしての熱流量計と温度センサーとしての熱電対の
設置位置を示す炉底断面図、図2は高炉炉底高さ方向の
熱流量計と熱電対の設置位置を示すもので、(a)図は
図1のレベルA〜Dの熱流量計および熱電対の設置位置
図、(b)図は図1のレベルE,Fの熱電対の設置位置
図、(c)図は図1のレベルGの熱流量計の設置位置
図、図3は高炉炉底の状態を示す縦断面図、図4は炉底
床面の設定方法の説明図、図5は測温センサーによる測
温値を用いた時のれんが侵食ライン推定法の説明図、図
6は熱流量センサーを用いた時の熱流量測定値を用いた
時のれんが侵食ライン推定法の説明図、図7は炉底凝固
層の決定方法の説明図、図8は高炉炉底の熱伝導度分布
図である。図9は熱流量より求めた高炉炉底高さ方向
(図1のレベルB)の総括熱伝達係数の分布である。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention will be described below with reference to FIGS. 1 to 9 showing an example of an embodiment in which a heat flow meter and a thermocouple are used. Fig. 1 is a sectional view of the bottom of the blast furnace showing the installation positions of a heat flow meter as a heat flow sensor and a thermocouple as a temperature sensor, and Fig. 2 shows a heat flow meter and a thermocouple in the height direction of the blast furnace. The installation positions are shown in Fig. 1 (a), which is the installation positions of the heat flow meters and thermocouples of levels A to D in Fig. 1, and (b) is the installation positions of the thermocouples in levels E and F of Fig. 1. , (C) is an installation position diagram of the level G heat flow meter of FIG. 1, FIG. 3 is a vertical cross-sectional view showing the state of the bottom of the blast furnace, FIG. 4 is an explanatory view of a method for setting the floor of the furnace bottom, and FIG. Is an explanatory diagram of the brick erosion line estimation method when using the temperature measured by the temperature sensor, and FIG. 6 is an explanatory diagram of the brick erosion line estimation method when the heat flow measurement value is used when the heat flow sensor is used. FIG. 7 is an explanatory diagram of a method for determining the solidified layer in the bottom of the furnace, and FIG. 8 is a thermal conductivity distribution diagram of the bottom of the blast furnace. FIG. 9 shows the distribution of the overall heat transfer coefficient in the furnace bottom height direction (level B in FIG. 1) obtained from the heat flow rate.

【0018】図1および図2に示すとおり、高炉1の炉
底の底盤2部分には通常4〜6方位以上、高さ方向で2
段以上で熱流量計3と熱電対4が設置され、れんが5の
熱流量および温度を測定し、側壁6部分では、4方位以
上でれんが内、ならびにれんが背面に熱流量計3および
熱電対4を設置し、熱流量および温度を測定している。
この測定点数が多いほど炉底耐火物損耗形状、目地差し
面形状、凝固層形状を3次元的に正確に求めることがで
きる。なお、熱流量計3のみを設置し、熱流量のみを測
定することもできる。
As shown in FIGS. 1 and 2, the bottom plate 2 of the furnace bottom of the blast furnace 1 usually has 4 to 6 or more orientations, and 2 in the height direction.
The heat flow meter 3 and the thermocouple 4 are installed in steps or more, and the heat flow and the temperature of the brick 5 are measured. At the side wall 6 part, the heat flow meter 3 and the thermocouple 4 are in the brick in four directions or more and on the back surface of the brick. Is installed to measure heat flow and temperature.
The larger the number of measurement points, the more accurately three-dimensionally the bottom bottom refractory wear shape, joint surface shape, and solidified layer shape can be obtained. It is also possible to install only the heat flow meter 3 and measure only the heat flow rate.

【0019】図3に示すとおり、高炉1の炉床は、健全
れんが5の上部に目地差し領域7が、炉底の側壁6との
境界部の目地差し領域7の上に凝固層8が形成される。
なお、9は溶銑+コークス塊を示す。まず、炉床の目地
差し面の3次元形状を仮定し、目地差し等温面を銑鉄凝
固温度の1150℃とおく、さらに、図1、図2に示す
とおり、熱流量計3で熱流量を測定しているので、その
熱流量を境界条件として与える。または、測定熱流量に
等しくなるように、総括熱伝達係数を仮想する。
As shown in FIG. 3, in the hearth of the blast furnace 1, the joint area 7 is formed on the upper part of the sound brick 5, and the solidified layer 8 is formed on the joint area 7 at the boundary with the side wall 6 of the furnace bottom. To be done.
In addition, 9 shows a hot metal + coke lump. First, assuming a three-dimensional shape of the joint surface of the hearth, the joint isothermal surface is set at 1150 ° C., which is the pig iron solidification temperature, and the heat flow rate is measured by the heat flow meter 3 as shown in FIGS. 1 and 2. Therefore, the heat flow rate is given as a boundary condition. Alternatively, the overall heat transfer coefficient is assumed to be equal to the measured heat flow rate.

【0020】上記の条件下でれんが内の熱流量分布と温
度分布を3次元的にFEM、BEMまたはFDMを用い
て伝熱解析を行い、れんが熱流量測定点での計算熱流量
と実測熱流量とを比較し、実測熱流量が計算熱流量より
低ければ、目地差し面を隆起させ、逆に実測熱流量の方
が計算熱流量より高ければ、目地差し面をさらに進行さ
せる。また、れんが測温点での計算温度と実測温度とを
比較し、実測温度の方が計算温度より低ければ、目地差
し面を隆起させ、逆に実測温度の方が計算温度より高け
れば、目地差し面をさらに進行させる。
Under the above conditions, the heat flow distribution and temperature distribution in the brick are three-dimensionally analyzed by heat transfer using FEM, BEM or FDM, and the calculated heat flow and the measured heat flow at the brick heat flow measurement point are measured. If the measured heat flow rate is lower than the calculated heat flow rate, the joint surface is raised. Conversely, if the measured heat flow rate is higher than the calculated heat flow rate, the joint surface is further advanced. In addition, the calculated temperature at the brick temperature measuring point is compared with the measured temperature.If the measured temperature is lower than the calculated temperature, the joint surface is raised, and conversely, if the measured temperature is higher than the calculated temperature, the joint temperature is higher. Further advance the side.

【0021】上記目地差し面の隆起および目地差し面の
進行方法は、図4に示すとおり炉底半径にほぼ等しい高
さhまで計算領域に設定し、炉心10の高さhのところ
に原点Oを置き、原点Oから炉底のれんが5および側壁
6の各測定点11に向かって放射状に直線を引き、この
直線と始めに仮定した目地差し面12との交点をPとす
る。そして前記れんがの各測定点11での計算値が実測
値より低ければ、その温度差(ΔT)または熱流量差
(Δq)に相当するだけ目地差し面12を原点Oに対し
てΔxまたはΔxaだけ移動させ、この点をP’とす
る。ただし、Δxは図5に示すとおり、温度測定の場合
は、Δx=(耐火物厚さ/1150℃)・ΔTにより与
える。また、図6に示すとおり、熱流量測定の場合は、
Δxa=−(耐火物厚さ/計算熱流量)・Δqにより与
える。このようにして目地差し面12を実測値と計算値
との差に応じて移動させ、目地差し面形状を決定する。
As shown in FIG. 4, the above method for raising the joint surface and for advancing the joint surface is set in the calculation area up to a height h substantially equal to the radius of the bottom of the furnace, and the origin O is set at the height h of the core 10. Then, a straight line is drawn radially from the origin O toward each measurement point 11 on the brick 5 and the side wall 6 of the furnace bottom, and the intersection point between this straight line and the initially assumed joint surface 12 is P. If the calculated value at each measurement point 11 of the brick is lower than the actual measurement value, the joint point surface 12 corresponding to the temperature difference (ΔT) or the heat flow difference (Δq) is Δx or Δxa with respect to the origin O. It is moved and this point is designated as P '. However, as shown in FIG. 5, Δx is given by Δx = (refractory thickness / 1150 ° C.) · ΔT in the case of temperature measurement. Further, as shown in FIG. 6, in the case of heat flow measurement,
Δxa = − (refractory thickness / calculated heat flow rate) · Δq In this way, the joint-joint surface 12 is moved according to the difference between the measured value and the calculated value, and the joint-joint surface shape is determined.

【0022】このように更新した目地差し面12形状を
初期値として、前記底盤2および側壁6の境界条件をそ
の冷却条件、底盤2の水冷を20℃で総括熱伝達係数を
25Kcal/m2/hr/℃、側壁5の水冷を20℃
で総括熱伝達係数を200Kcal/m2/hr/℃の
ように与える。図1および図2の黒丸で示した測定点の
ように熱流量を測定している場合には、その熱流量を境
界条件として与える。または、測定熱流量に等しくなる
ように、総括熱伝達係数を仮想する。その境界条件の下
でれんが内の熱流量分布と温度分布を3次元的にFE
M、BEMまたはFDMを用いて伝熱解析して求める。
そして前記方法により目地差し面12を隆起または目地
差し面12を進行させることを繰り返し、計算値と実測
値との差を小さくし、この差が全ての測定点11である
一定値以下となった時点で収束したこととする。
With the shape of the joint surface 12 thus updated as an initial value, the boundary condition between the bottom plate 2 and the side wall 6 is the cooling condition, the water cooling of the bottom plate 2 is 20 ° C., and the overall heat transfer coefficient is 25 Kcal / m 2 / hr / ℃, water cooling of side wall 5 to 20 ℃
The overall heat transfer coefficient is given as 200 Kcal / m 2 / hr / ° C. When the heat flow rate is measured like the measurement points indicated by black circles in FIGS. 1 and 2, the heat flow rate is given as a boundary condition. Alternatively, the overall heat transfer coefficient is assumed to be equal to the measured heat flow rate. Under the boundary conditions, the heat flow distribution and temperature distribution in the brick are three-dimensionally FE
It is determined by heat transfer analysis using M, BEM or FDM.
Then, by repeatedly raising the joint surface 12 or advancing the joint surface 12 by the above-described method, the difference between the calculated value and the actually measured value is reduced, and the difference is equal to or less than a certain value which is all the measurement points 11. It is assumed that it has converged at the time.

【0023】なお、れんが内測定位置は、離散的に分布
しているので、その測定位置によって推定される目地差
し面上の点も離散的である。したがって、点から面を補
完するためには、3次元のスプライン関数を用いる。収
束後の目地差し面12が先に求めた目地差し面12より
侵食の進行した位置にあれば、目地差しが進行したもの
と見なし、その目地差し面12をCRT画面に表示し、
高炉操業者に速報する。
Since the measurement positions inside the brick are distributed discretely, the points on the joint surface estimated by the measurement positions are also discrete. Therefore, a three-dimensional spline function is used to complement the surface from points. If the joint surface 12 after convergence is located at a position where erosion has progressed from the previously determined joint surface 12, it is considered that the joint has advanced, and the joint surface 12 is displayed on the CRT screen,
Notify the blast furnace operator.

【0024】上記操作により目地差し面12が決定すれ
ば、凝固層形状を決定することができる。すなわち、図
7に示すとおり、過去最深のれんが侵食面13aより隆
起して決定した目地差し面12との間を凝固層8とする
のである。なお、12aは過去最深の目地差し面を示
す。
If the joint surface 12 is determined by the above operation, the solidified layer shape can be determined. That is, as shown in FIG. 7, a solidification layer 8 is formed between the deepest brick in the past and the joint surface 12 which is determined to be raised from the erosion surface 13a. Note that reference numeral 12a denotes the deepest jointed surface in the past.

【0025】れんが侵食面13は、目地差し面12より
一般に高い等温面(約1350℃)で規定される。れん
が侵食面13の推定は、上記目地差し面12の推定と同
様に、まず、れんが侵食面13を仮定し、この面上で温
度を与え(1350℃)れんが内熱流量分布または温度
分布を3次元的にFEM、BEMまたはFDMを用いて
伝熱解析を行う。この場合の底盤2および側壁5の境界
条件は、目地差し面12の推定に用いた境界条件と同じ
である。そしてれんが侵食面13のれんが測定点での計
算値と実測値とを比較し、前記方法によりれんが侵食面
を隆起またはれんが侵食面を進行させる操作を繰り返す
ことによって、計算値と実測値との差を小さくし、この
差が全ての測定点で一定値以下となった時点で収束した
こととする。このれんが侵食面13の収束方法は、前記
目地差し面12の推定アルゴリズムと同様である。
The brick erosion surface 13 is defined as an isothermal surface (about 1350 ° C.) generally higher than the joint joint surface 12. In the estimation of the brick erosion surface 13, first, the brick erosion surface 13 is assumed and the temperature is given on this surface (1350 ° C.) to determine the heat flow distribution or temperature distribution in the brick 3 as in the estimation of the joint surface 12. Heat transfer analysis is performed dimensionally using FEM, BEM or FDM. The boundary conditions of the bottom plate 2 and the side wall 5 in this case are the same as the boundary conditions used for the estimation of the joint surface 12. Then, by comparing the calculated value at the brick measurement point of the brick erosion surface 13 with the actual measurement value, and repeating the operation of raising the brick erosion surface or advancing the brick erosion surface by the above method, the difference between the calculated value and the actual measurement value is obtained. Is set to be small, and it is assumed that the difference converges when all the measurement points become equal to or less than a certain value. The method for converging the brick erosion surface 13 is the same as the estimation algorithm for the joint surface 12.

【0026】そして推定された収束後のれんが侵食面1
3が過去最深のれんが侵食面13aとを比較し、過去最
深のれんが侵食面13aより侵食の進行した位置にあれ
ば、れんが侵食面13が進行したものと見なし、そのれ
んが侵食面13をCRT画面に表示し、高炉操業者に速
報する。また、逆に収束後のれんが侵食面13が過去最
深のれんが侵食面13aより隆起した位置にあれば、過
去最深のれんが侵食面13aをCRT画面に表示し、高
炉操業者に速報する。
The estimated converged brick erosion surface 1
3 compares the deepest brick erosion surface 13a in the past, and if the deepest brick erosion surface 13a is in a position where erosion has progressed from the erosion surface 13a, it is considered that the brick erosion surface 13 has progressed, and the brick erosion surface 13 is displayed on the CRT screen. It will be displayed on the screen and will be notified to the blast furnace operator. Conversely, if the converged brick erosion surface 13 is located at a position higher than the deepest brick erosion surface 13a in the past, the deepest brick erosion surface 13a in the past is displayed on the CRT screen and the blast furnace operator is notified immediately.

【0027】なお、3次元のFEM、BEMまたはFD
Mの熱流量または熱流量および温度計算において、過去
最深の目地差し面12aより炉外側で目地差し温度より
低い領域では、建設時に測定したれんがの熱伝導度を用
いる。その領域より炉内側で、過去最深のれんが侵食面
13aより炉外側の領域のうち、れんが侵食温度より低
い領域を変質れんが層(建設時のれんがに溶銑が浸透し
た層)と考える。変質れんが層の熱伝導度は、建設時の
れんがの熱伝導度と銑鉄の熱伝導度との間の値を用い
る。なお、れんが材質によって溶銑の浸透度合いが異な
るが、シャモットれんがでは20Kcal/m・hr・
℃とする。過去最深のれんが侵食面より炉内側は、銑鉄
凝固層と考え、熱伝導度も実炉の実績から12Kcal
/m・hr・℃とした。
A three-dimensional FEM, BEM or FD
In the heat flow rate of M or the heat flow rate and temperature calculation, the thermal conductivity of the brick measured at the time of construction is used in the region outside the furnace and lower than the joint temperature of the joint surface 12a, which is the deepest point in the past. A region lower than the brick erosion temperature in a region inside the furnace inside the furnace and outside the deepest brick erosion surface 13a in the past is considered to be an altered brick layer (a layer in which molten iron penetrated into the brick during construction). As the thermal conductivity of the altered brick layer, a value between the thermal conductivity of the brick at the time of construction and the thermal conductivity of pig iron is used. The degree of penetration of hot metal differs depending on the material of the brick, but with chamotte brick it is 20 Kcal / m · hr ·
℃. The inside of the furnace, which is the deepest brick erosion surface in the past, is considered to be a pig iron solidified layer, and the thermal conductivity is 12 Kcal from actual furnace results.
/ M · hr · ° C.

【0028】上記による熱伝導度λの分布図の一例を図
8に示す。なお、図8中の熱伝導度λの単位は、Kca
l/m・hr・℃である。上記により求めた底盤2また
は側壁6の総括熱伝達係数の図1のレベルBにおける円
周方向分布の一例を図9に示す。なお、図9中の総括熱
伝達係数の単位は、Kcal/m2/hr/℃である。
また、底盤2または側壁6の総括熱伝達係数の分布、炉
底の侵食面、凝固層の付着状態、れんが変質、目地差し
状態および温度分布は、3次元的にCRT画面によりグ
ラフ表示し、高炉操業者に速報する。
FIG. 8 shows an example of a distribution diagram of the thermal conductivity λ according to the above. The unit of thermal conductivity λ in FIG. 8 is Kca.
1 / m · hr · ° C. FIG. 9 shows an example of the circumferential distribution of the overall heat transfer coefficient of the bottom plate 2 or the side wall 6 obtained as described above at level B in FIG. The unit of the overall heat transfer coefficient in FIG. 9 is Kcal / m 2 / hr / ° C.
Further, the distribution of the overall heat transfer coefficient of the bottom plate 2 or the side wall 6, the erosion surface of the furnace bottom, the adhered state of the solidified layer, the alteration of brick, the joint condition and the temperature distribution are three-dimensionally displayed on a CRT screen as a graph, and Report to the operator.

【0029】上記3次元的にCRT画面によりグラフ表
示された結果から、局部的に炉底が侵食されていること
が判明すれば、高炉操業者は、局部侵食方位の冷却強
化、局部侵食方位へのモルタル圧入(出銑口へのマッド
の圧入も含む)、局部侵食方位の羽口への送風量の減
少、局部侵食方位の羽口へのTi粉鉱石の吹き込み、局
部侵食方位へのTi鉱石の装入、底盤の冷却強化、出銑
口回りの損耗の場合は、出銑口深さの増加等の対策を実
施する。
If it is found from the result of the three-dimensional graph display on the CRT screen that the bottom of the furnace is locally eroded, the blast furnace operator can strengthen the cooling of the local erosion direction and move to the local erosion direction. Mortar injection (including mud injection to taphole), reduction of air flow to local erosion direction tuyere, injection of Ti powder ore to local erosion direction tuyere, Ti ore to local erosion direction In case of the charging of, the strengthening of the cooling of the bottom plate, and the wear around the taphole, measures such as increasing the taphole depth will be implemented.

【0030】上記したとおり、この発明においては、炉
底耐火物内および/または炉底耐火物の外表面に3次元
的に複数箇所配設した熱流量センサーまたは熱流量セン
サーと温度センサーによる炉底熱流量分布または炉底熱
流量分布と炉底温度に基づき、FEM、BEMまたはF
DMを用いて3次元の伝熱解析を行い、炉底耐火物の侵
食形状、目地差し形状ならびに侵食された炉底耐火物上
に生成した炉内溶融物の凝固層形状を3次元的に求める
から、炉底耐火物の円周方向における損耗不均一を検出
することができる。
As described above, according to the present invention, the heat flow rate sensor or the heat flow rate sensor and the temperature sensor which are three-dimensionally arranged at a plurality of locations inside the furnace bottom refractory and / or on the outer surface of the furnace bottom refractory. FEM, BEM or F based on heat flow distribution or bottom heat flow distribution and bottom temperature
Three-dimensional heat transfer analysis using DM is performed to obtain three-dimensionally the erosion shape, joint shape, and solidified layer shape of the molten material in the furnace generated on the eroded furnace bottom refractory. From this, it is possible to detect uneven wear in the circumferential direction of the furnace bottom refractory.

【0031】そして、局部的に損耗が進行している部分
には、その直上の羽口からの送風を停止したり、または
羽口からTi鉱石粉を吹き込む等の局部的侵食防止対策
を講じることにより損耗を防止する。また、目地差しが
進行している方位では、鉄皮とれんが間のスタンプ材の
間隙を埋めると同時に、鉄皮水冷を強化する等の目地差
し進行防止対策を講じることにより目地差し進行が防止
され、高炉寿命を大幅に延長することができる。
For the locally worn portion, local erosion prevention measures such as stopping blowing air from the tuyere directly above or blowing Ti ore powder from the tuyere are taken. To prevent wear. In addition, in the direction where the jointing is progressing, the jointing progress is prevented by filling the gap between the stamp material between the steel bar and the brick and taking measures to prevent the joint penetration such as strengthening the steel water cooling. The blast furnace life can be greatly extended.

【0032】[0032]

【実施例】前記の方法によって図10に示すとおり、N
o.1出銑口14およびNo.2出銑口15の近傍の耐
火物溶損が激しいことが判明したので、No.1出銑口
14およびNo.2出銑口15からボタ16を圧入し、
出銑口深さを確保した。その結果、図11に示すとお
り、No.1出銑口14およびNo.2出銑口15近傍
に銑鉄凝固層8が形成されたことが確認された。
EXAMPLE As shown in FIG.
o. No. 1 tap hole 14 and No. 1 It was found that refractory erosion near the taphole 15 was severe. No. 1 tap hole 14 and No. 1 2 Press in the button 16 from the tap hole 15,
Secured the tap depth. As a result, as shown in FIG. No. 1 tap hole 14 and No. 1 2 It was confirmed that the pig iron solidified layer 8 was formed in the vicinity of the taphole 15.

【0033】また、図12に示すとおり、炉底の300
°方位に側壁耐火物損耗が激しい部分17があり、そこ
での総括熱伝達係数が54Kcal/m2/hr/℃と
低下していることが判明した。そこで、炉底側壁の30
0°方位の鉄皮内面にスタンプ圧入を実施したところ、
図13に示すとおり、炉底の300°方位の側壁の熱伝
導度が上昇し、炉内に凝固層8が形成されたことが確認
された。さらに炉底の300°方位の側壁耐火物損耗が
激しい部分17に羽口からTi粉鉱石を吹き込んだとこ
ろ、図14に示すとおり、凝固層8の表面にTiO2
固層18が生成していることが確認された。
Further, as shown in FIG.
It was found that there was a portion 17 where the side wall refractory wear was severe in the ° direction, and the overall heat transfer coefficient there was reduced to 54 Kcal / m 2 / hr / ° C. Therefore, 30 on the bottom wall of the furnace
When stamping was carried out on the inner surface of the iron skin in the 0 ° direction,
As shown in FIG. 13, it was confirmed that the thermal conductivity of the side wall of the furnace bottom in the direction of 300 ° was increased and the solidified layer 8 was formed in the furnace. Further, when Ti powder ore was blown from the tuyere into the portion 17 of the side wall of the furnace bottom where the refractory wear was severe at 300 °, as shown in FIG. 14, the TiO 2 solidified layer 18 was formed on the surface of the solidified layer 8. It was confirmed.

【0034】[0034]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、高炉炉底耐火物の円周方向における損耗を3次元的
に正確に検知し、円周方向方位別に諸対策を講じること
によって、損耗を防止すると共に凝固層を発生させ、従
来の高炉の寿命の最高13年を、20年と大幅に延長す
ることができ、高炉巻替えのための設備投資を著しく軽
減することができる。
As described above, according to the method of the present invention, wear in the circumferential direction of the blast furnace bottom refractory is accurately detected three-dimensionally, and various measures are taken for each circumferential direction. By preventing wear and generating a solidified layer, the maximum life of the conventional blast furnace, which is up to 13 years, can be greatly extended to 20 years, and the facility investment for blast furnace rewinding can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】高炉炉底への熱流量計または熱流量計および熱
電対の設置位置を示す炉底断面図である。
FIG. 1 is a furnace bottom cross-sectional view showing a heat flow meter or a position where a heat flow meter and a thermocouple are installed on the bottom of a blast furnace.

【図2】高炉炉底高さ方向の熱流量計または熱流量計お
よび熱電対の設置位置を示すもので、(a)図は図1の
レベルA〜Dの熱流量計または熱流量計および熱電対の
設置位置図、(b)図は図1のレベルE,Fの熱電対の
設置位置図、(c)図は図1のレベルGの熱流量計また
は熱流量計および熱電対の設置位置図である。
FIG. 2 is a view showing the installation positions of a heat flow meter or a heat flow meter and a thermocouple in the height direction of the blast furnace bottom, and FIG. 2 (a) is a diagram showing the heat flow meter or the heat flow meter of levels A to D in FIG. Installation position diagram of thermocouple, (b) diagram is installation position diagram of thermocouple of level E and F in FIG. 1, (c) diagram is heat flow meter of level G of FIG. 1 or heat flow meter and installation of thermocouple FIG.

【図3】高炉炉底の状態を示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing the state of the bottom of the blast furnace.

【図4】炉底床面の設定方法の説明図である。FIG. 4 is an explanatory diagram of a method of setting the floor surface of the hearth bottom.

【図5】温度測定結果かられんが侵食ラインを推定する
方法の説明図である。
FIG. 5 is an explanatory diagram of a method of estimating a brick erosion line from a temperature measurement result.

【図6】熱流量測定結果かられんが侵食ラインを推定す
る方法の説明図である。
FIG. 6 is an explanatory diagram of a method of estimating a brick erosion line from a heat flow rate measurement result.

【図7】炉底凝固層の決定方法の説明図である。FIG. 7 is an explanatory diagram of a method for determining a furnace bottom solidified layer.

【図8】高炉炉底の熱伝導度分布図である。FIG. 8 is a thermal conductivity distribution diagram of the bottom of the blast furnace.

【図9】高炉炉底側壁の熱流量計測定結果から得られた
側壁冷却における総括熱伝達係数の円周方向分布図(図
1のレベルB)である。
FIG. 9 is a circumferential distribution diagram (level B in FIG. 1) of the overall heat transfer coefficient in side wall cooling obtained from the result of heat flow meter measurement on the bottom wall of the blast furnace bottom.

【図10】実施例における出銑口近傍の耐火物の損耗説
明図である。
FIG. 10 is an explanatory diagram of wear of a refractory near the taphole in the example.

【図11】同じく出銑口からボタを圧入後の凝固層形成
説明図である。
FIG. 11 is also an explanatory view of forming a solidified layer after press-fitting a slag from the tap hole.

【図12】同じく炉底の300°方位の側壁耐火物の損
耗説明図である。
FIG. 12 is an explanatory view of wear of a side wall refractory of the furnace bottom in the direction of 300 °.

【図13】同じく炉底の300°方位の鉄皮内面にスタ
ンプ圧入実施後の凝固層形成説明図である。
FIG. 13 is an explanatory view of the formation of a solidified layer after the stamping is performed on the inner surface of the iron shell of the furnace bottom in the 300 ° direction.

【図14】同じく炉底の300°方位の側壁耐火物の損
耗部に羽口からTi粉鉱石吹き込み後の凝固層形成説明
図である。
FIG. 14 is an explanatory diagram of solidified layer formation after injecting Ti powder ore from tuyere into the wear part of the side wall refractory in the 300 ° azimuth direction of the furnace bottom.

【図15】高炉炉底の侵食状況を示すもので、(a)図
は縦断面図、(b)図は(a)図のA−A断面図であ
る。
15A and 15B show the erosion state of the bottom of the blast furnace, where FIG. 15A is a vertical sectional view, and FIG. 15B is a sectional view taken along the line AA of FIG. 15A.

【符号の説明】[Explanation of symbols]

1、21 高炉 2 底盤 3 熱流量計 4 熱電対 5 れんが 6 側壁 7 目地差し領域 8 凝固層 9 溶銑+コークス塊 10 炉心 11 測温点 12 目地差し面 13 れんが侵食面 14 No.1出銑口 15 No.2出銑口 16 ボタ 17 側壁耐火物損耗が激しい部分 18 TiO2凝固層 22 侵食 23 軸 24 出銑口1, 21 Blast furnace 2 Bottom plate 3 Heat flow meter 4 Thermocouple 5 Brick 6 Side wall 7 Joint region 8 Solidification layer 9 Hot metal + coke lump 10 Core 11 Temperature measuring point 12 Joint surface 13 Brick erosion surface 14 No. 1 tap hole 15 No. 2 tap hole 16 button 17 side wall where refractory wear is severe 18 TiO 2 solidified layer 22 erosion 23 shaft 24 tap hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高炉の炉底耐火物の侵食状況および侵食
された耐火物上に生成した炉内溶融物の凝固形状を監視
する高炉の炉底監視方法において、炉底耐火物内および
/または炉底耐火物の外表面に3次元的に複数箇所配置
した熱流量計により測定した炉底熱流量分布に基づき、
有限要素法、境界要素法または有限差分法を用いて3次
元の伝熱解析を行い、炉底耐火物の侵食形状を求め、過
去最深の侵食形状と比較して侵食が進行している領域を
更新し、前記炉底熱流量分布を基に有限要素法、境界要
素法または有限差分法を用いて3次元の伝熱解析を行
い、炉底耐火物の目地差し面形状を求めて先に求めた目
地差し面形状と比較して進行した目地差し面領域を更新
すると共に、目地差し面形状と過去最深の侵食形状と比
較し、過去最深の侵食面と炉内側の目地差し面との間を
凝固層とすることを繰り返し、定常的または非定常的に
炉底耐火物の侵食形状ならびに侵食された炉底耐火物上
に生成した炉内溶融物の凝固形状を推定することを特徴
とする高炉の炉底監視方法。
1. A method for monitoring the bottom of a blast furnace, wherein the erosion state of the bottom refractory of the blast furnace and the solidified shape of the in-furnace melt formed on the eroded refractory are monitored in the bottom refractory of the blast furnace and / or Based on the heat flow distribution of the hearth bottom measured by the heat flowmeters arranged three-dimensionally on the outer surface of the hearth refractory,
A three-dimensional heat transfer analysis is performed using the finite element method, the boundary element method or the finite difference method, the erosion shape of the hearth refractory is obtained, and the area where erosion is progressing is compared with the deepest erosion shape in the past. Update and perform three-dimensional heat transfer analysis using the finite element method, boundary element method, or finite difference method based on the heat flow distribution of the bottom of the furnace, and obtain the shape of the joint surface of the bottom of the refractory for the refractory The joint surface area that has advanced in comparison with the joint surface shape is updated, and the joint surface shape and the deepest erosion shape in the past are compared, and the space between the deepest erosion surface and the joint surface inside the furnace is compared. A blast furnace characterized by steadily or unsteadily estimating the erosion shape of the bottom refractory and the solidification shape of the in-furnace melt generated on the eroded bottom refractory by repeating the solidification layer Bottom monitoring method.
【請求項2】 高炉の炉底耐火物の侵食状況および侵食
された耐火物上に生成した炉内溶融物の凝固形状を監視
する高炉の炉底監視方法において、炉底耐火物内および
/または炉底耐火物の外表面に3次元的に複数箇所配置
した熱流量計および温度センサーにより測定した炉底熱
流量分布および炉底温度分布に基づき、有限要素法、境
界要素法または有限差分法を用いて3次元の伝熱解析を
行い、炉底耐火物の侵食形状を求め、過去最深の侵食形
状と比較して侵食が進行している領域を更新し、前記炉
底熱流量分布および炉底温度分布を基に有限要素法、境
界要素法または有限差分法を用いて3次元の伝熱解析を
行い、炉底耐火物の目地差し面形状を求めて先に求めた
目地差し面形状と比較して進行した目地差し面領域を更
新すると共に、目地差し面形状と過去最深の侵食形状と
比較し、過去最深の侵食面と炉内側の目地差し面との間
を凝固層とすることを繰り返し、定常的または非定常的
に炉底耐火物の侵食形状ならびに侵食された炉底耐火物
上に生成した炉内溶融物の凝固形状を推定することを特
徴とする高炉の炉底監視方法。
2. A method for monitoring the bottom of a blast furnace, wherein the erosion state of the bottom refractory of the blast furnace and the solidified shape of the in-furnace melt formed on the eroded refractory are monitored in the bottom refractory of the blast furnace and / or A finite element method, a boundary element method, or a finite difference method is used based on the heat flow distribution and the bottom temperature distribution of the bottom measured by a heat flow meter and a temperature sensor that are arranged three-dimensionally on the outer surface of the bottom refractory. The three-dimensional heat transfer analysis is performed using the erosion shape of the furnace bottom refractory, and the area where erosion is progressing is updated in comparison with the deepest erosion shape in the past. Three-dimensional heat transfer analysis is performed using the finite element method, boundary element method or finite difference method based on the temperature distribution, and the joint surface shape of the furnace bottom refractory is obtained and compared with the previously obtained joint surface shape. The joint surface area that has advanced The erosion shape of the bottom refractory is steadily or unsteadily compared with the depth of the deepest erosion surface and the solidification layer between the deepest erosion surface of the past and the joint surface inside the furnace. A method for monitoring the bottom of a blast furnace, comprising estimating the shape and the solidification shape of the molten material in the furnace generated on the eroded bottom refractory.
JP24365595A 1995-08-28 1995-08-28 Method for monitoring furnace bottom of blast furnace Pending JPH0967607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24365595A JPH0967607A (en) 1995-08-28 1995-08-28 Method for monitoring furnace bottom of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24365595A JPH0967607A (en) 1995-08-28 1995-08-28 Method for monitoring furnace bottom of blast furnace

Publications (1)

Publication Number Publication Date
JPH0967607A true JPH0967607A (en) 1997-03-11

Family

ID=17107050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24365595A Pending JPH0967607A (en) 1995-08-28 1995-08-28 Method for monitoring furnace bottom of blast furnace

Country Status (1)

Country Link
JP (1) JPH0967607A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115408A (en) * 2006-10-31 2008-05-22 Nisshin Steel Co Ltd Melting apparatus
KR20220086825A (en) * 2020-12-17 2022-06-24 주식회사 포스코건설 Apparatus and method of modelling erosion prediction of refractory in blast furnace
CN115485396A (en) * 2020-04-30 2022-12-16 杰富意钢铁株式会社 Method for detecting fluctuation of solidified layer and method for operating blast furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115408A (en) * 2006-10-31 2008-05-22 Nisshin Steel Co Ltd Melting apparatus
CN115485396A (en) * 2020-04-30 2022-12-16 杰富意钢铁株式会社 Method for detecting fluctuation of solidified layer and method for operating blast furnace
EP4101936A4 (en) * 2020-04-30 2023-08-02 JFE Steel Corporation Method for detecting fluctuation in coagulation layer and blast furnace operation method
KR20220086825A (en) * 2020-12-17 2022-06-24 주식회사 포스코건설 Apparatus and method of modelling erosion prediction of refractory in blast furnace

Similar Documents

Publication Publication Date Title
US5975754A (en) Method for monitoring the wear and extending the life of blast furnace refractory lining
JP2669279B2 (en) Blast furnace operation method
JPH0967607A (en) Method for monitoring furnace bottom of blast furnace
CN106687606B (en) Blast furnace cooling fin with integrated wear detecting system
Geyer et al. Blast furnace tapping practice at arcelor mittal South Africa, vanderbijlpark works
JP4497004B2 (en) Monitoring and pressure control method for converter bottom blowing tuyere
EP0128987A2 (en) Tuyere and method for blowing gas into molten metal
KR880002277B1 (en) Blast furnace
US6375346B1 (en) Method for detecting the spalling of a layer of buildup of a refractory lining in a metallurgical furnace
JPS5933162B2 (en) Blast furnace operating method
Chang et al. Real-Time Hearth Liquid Level Monitoring Systems to Optimize Tapping Strategies in Blast Furnaces
JPH055117A (en) Method for detecting molten material level in refining vessel for metallurgy
CN217111212U (en) Device for preventing molten iron of high-titanium slag closed electric furnace from penetrating into furnace
JPH06212215A (en) Method for controlling temperature of refractory brick at furnace bottom
JP4038153B2 (en) Blast furnace bottom cooling method
JPH08291313A (en) Method for estimating slag coating effective thickness of refining vessel
JPH09272905A (en) Method for repairing side wall brick of furnace bottom part in blast furnace
JP2008156717A (en) Method for determining repairing-timing of molten steel tapping hole in converter
JP3512042B2 (en) Cooling method of blast furnace refractory
JPS62238308A (en) Temperature measuring method for bottom part of blast furnace
JPH10280020A (en) Operation of smelting reduction
JPH10298619A (en) Operation of blast furnace
JPS62257004A (en) Method for detecting eroded state of furnace floor wall of shaft furnace
JPH09227911A (en) Operation of blast furnace
Peters et al. Blast furnace campaign prolongation philosophies in Germany