JPS62238308A - Temperature measuring method for bottom part of blast furnace - Google Patents

Temperature measuring method for bottom part of blast furnace

Info

Publication number
JPS62238308A
JPS62238308A JP7946086A JP7946086A JPS62238308A JP S62238308 A JPS62238308 A JP S62238308A JP 7946086 A JP7946086 A JP 7946086A JP 7946086 A JP7946086 A JP 7946086A JP S62238308 A JPS62238308 A JP S62238308A
Authority
JP
Japan
Prior art keywords
furnace
temperature
furnace bottom
side wall
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7946086A
Other languages
Japanese (ja)
Inventor
Fumiaki Yoshikawa
文明 吉川
Masatoshi Ichinomiya
一宮 正俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7946086A priority Critical patent/JPS62238308A/en
Publication of JPS62238308A publication Critical patent/JPS62238308A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily measure the continuous temp. distribution at optional time on the boundary of the meridian section of a furnace bottom part by forming a passage having both ends opened to the outside of the furnace to the inside of the refractories from the furnace bottom to side wall and moving a temp. measuring sensor. CONSTITUTION:The passage 14 to be conducted with the temp. measuring sensor 12 is formed between the refractories 2 in the side wall part of the furnace bottom and a cooler 9 as well as the refractories 2 right above a surface plate 10 at the furnace bottom. This temp. measuring instrument 11 is remotely operated to wind or unwind the sensor 12 by a winder 13 and to freely move the sensor in the passage 14, by which the temps. of the refractories 2 in various parts are detected. The continuous temp. distributions at optional time from the center of the furnace bottom to the shell part of the side wall or from the shell part of the side wall to the shell part of the side wall on the base of the furnace bottom and from the part right under tuyeres 8 to the furnace bottom plate 10 on the side wall of the furnace bottom are measured on the optional meridian section of the furnace bottom refractories 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶鉱炉炉底部の測温方法に関し、特に溶鉱炉
等高温溶融物を内部に有し、内部を直接監視できない炉
の耐火物の侵食状況およびその耐火物の侵食面上に消長
する凝固層の分布状況を精度良く推定し、操業安定化と
炉寿命の延長を図る管理手段の精度を高める測定方法に
関する。なお未発1!において溶鉱炉とは高炉、電気炉
またはガラス溶融炉など、炉内に高温溶融物を収容して
反応を推進させる炉を一括して呼称する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for measuring the temperature at the bottom of a blast furnace, and in particular to a method for measuring the temperature at the bottom of a blast furnace, particularly for corrosion of refractories in furnaces such as blast furnaces, which have high-temperature molten material inside and cannot directly monitor the inside. The present invention relates to a measurement method for estimating with high precision the distribution of a coagulated layer that ebbs and flows on the eroded surface of refractories, and improving the precision of control measures aimed at stabilizing operations and extending the life of the furnace. In addition, 1 unreleased item! The term "blast furnace" collectively refers to a furnace that contains a high-temperature molten material to promote a reaction, such as a blast furnace, electric furnace, or glass melting furnace.

〔従来の技術〕[Conventional technology]

以下溶鉱炉の代表例として高炉について説明する。 A blast furnace will be described below as a representative example of a blast furnace.

近年の晶生産性を追及した高炉の大型化や操業条件のI
・r酪化は、炉底耐大物の損耗を速め高炉寿命を短くし
ている。低経済成反の状況下における高炉操業では安定
操業を行い、高炉寿命を延長して銑鉄単価を切り下げる
ことが重要な課題となっている。
Increasing the size of blast furnaces and operating conditions in pursuit of crystal productivity in recent years
・R-butylation accelerates the wear and tear of heavy materials at the bottom of the furnace and shortens the life of the blast furnace. In blast furnace operation under conditions of low economic growth, it is important to maintain stable operation, extend the life of the blast furnace, and reduce the unit price of pig iron.

この高炉の安定操業と寿命の延長のためには。In order to ensure stable operation and extend the life of this blast furnace.

まず高炉操業中炉底耐火物の侵食状況を常時把握し、侵
食箇所の保護対策をiA速かつ的確に取ることが不ηf
欠である。
First of all, it is essential to constantly monitor the corrosion status of the bottom refractory during blast furnace operation and take prompt and accurate protection measures for the corroded areas.
It is lacking.

また、同時に該保護対策に由来し耐火物侵食面上に生成
、消滅を繰返す、溶銑、コークス、れんが破片、その他
の装入物の混合した凝固層の分布状況を常時把握して、
耐火物保護対策の定量化を図るとともに凝固層厚や層厚
分布の制御を行うことも必須の重要課題である。
At the same time, we constantly monitor the distribution of the solidified layer, which is a mixture of hot metal, coke, brick fragments, and other charges, that repeatedly forms and disappears on the eroded surface of the refractory due to the protection measures.
Quantifying refractory protection measures and controlling the solidified layer thickness and layer thickness distribution are also important issues.

すなわち、上記の凝固層は耐火物の保護の面では炉底部
耐火物の侵食面全域にわたって厚く成りしている方が望
ましいが、厚すぎて出銑口レベル以上に凝固層がI&長
すると炉底が冷え込み状態となり易く出銑作業の妨げと
なる。それほど異常でなくとも、凝固層が炉底中心部で
局部的に大きく成長したような場合、溶銑滓の流路が小
さくなって通液抵抗が増加し一回の出銑作業で排出でき
る溶銑滓の量は減少し、溶融物が炉床に残り気味となる
ので炉内全体の通気性が悪化したり装入物の荷Fりが悪
くなる。
In other words, from the standpoint of protecting the refractory, it is desirable that the solidified layer be thick over the entire eroded surface of the furnace bottom refractory, but if it is too thick and the solidified layer is longer than the taphole level, it will damage the furnace bottom. The steel tends to become cold, which hinders the tapping operation. Even if it is not so abnormal, if the solidified layer grows locally in the center of the furnace bottom, the flow path for hot metal slag becomes smaller and the flow resistance increases, resulting in hot metal slag that can be discharged in one tap operation. The amount of melt decreases, and the melt tends to remain on the hearth, resulting in poor ventilation throughout the furnace and poor loading of the charge.

このように安定した出銑滓作業と炉底耐大物の有効な保
護を両立させるためには、炉底部凝固層の消長を制御で
きる技術を確立し、最適な凝固層厚や分布を定着化して
最適条件で高炉操業を行うことが必要となるわけである
In order to achieve both stable tap slag work and effective protection of large objects at the bottom of the furnace, we have established a technology that can control the growth and development of the solidified layer at the bottom of the furnace, and established the optimal thickness and distribution of the solidified layer. It is therefore necessary to operate the blast furnace under optimal conditions.

これを実現するためには炉底耐大物の侵食状況は言うま
でもなく、その侵食面上に生成、消滅を繰返す凝固層の
オンラインによるモータリングが+’+rN提となる。
In order to achieve this, not only the erosion condition of the heavy-duty material at the bottom of the furnace but also the online motoring of the solidified layer that repeatedly forms and disappears on the eroded surface must be +'+rN.

炉底部1耐大物は高炉火入れ以後徐々に損耗して行くの
で炉底各部位のセンサの側温値は長期的に徐々に1−)
1するが、短期的には高炉操業条件の変化や耐火物保護
対策の如何によって耐火物上に凝固層が成長し側温値は
低ドする。それ故火入れ後各部位のセンサが最高温度値
を示す時点での測温(diを用いて耐火物の侵食状況を
推定し、モしてセンサ測温値が低下した時点での測湿値
を用いて前時点で推定した耐火物侵食面りにIJt長し
た凝固層の分布状況を逐次推定していくことが必要とな
る。
Since the 1-large-sized material at the bottom of the furnace gradually wears out after the blast furnace is fired, the side temperature values of the sensors at each part of the furnace bottom gradually increase to 1-) over a long period of time.
However, in the short term, depending on changes in blast furnace operating conditions and measures taken to protect the refractory, a solidified layer grows on the refractory and the side temperature value decreases. Therefore, the corrosion status of the refractory is estimated using the temperature measurement (di) at the time when the sensor of each part shows the maximum temperature value after burning, and the humidity measurement value is calculated at the time when the sensor temperature value decreases. It is necessary to successively estimate the distribution of the solidified layer extending IJt from the refractory erosion surface estimated at the previous point in time using the method.

炉底耐大物の侵食ラインおよび耐火物侵食面」二に消長
する凝固層の層厚分布ライン、すなわち凝固層ライン(
以下、まとめて「侵食凝固層ライン」という)を推定す
るために、高炉炉底部に熱電対あるいは熱流計等を複数
配設し炉底部の伝熱計算を行わなければならないわけで
ある。
The line of thickness distribution of the solidified layer that fades away, that is, the solidified layer line (
In order to estimate the erosion solidification layer line (hereinafter collectively referred to as the "eroded solidification layer line"), it is necessary to install multiple thermocouples or heat flow meters at the bottom of the blast furnace and perform heat transfer calculations at the bottom of the furnace.

従来、炉底部の侵食凝固層ラインの推定には、炉底各部
の熱電対で検出された実測温度を用いてI′杵なる一次
元伝熱計算か、またときに二次元伝熱計算として有限要
素法が採用されてきた。
Conventionally, the line of the eroded solidified layer at the bottom of the furnace has been estimated using a one-dimensional heat transfer calculation called I', using the actually measured temperatures detected by thermocouples at each part of the furnace bottom, or sometimes a two-dimensional heat transfer calculation. The element method has been adopted.

炉底コーナ部の侵食凝固層ラインの推定は、−次元の伝
熱計算によっては元来不可能で、高炉炉底を炉のたて軸
を対称軸とする軸対称体と簡略化しても二次元伝熱計算
が不可欠である。
Estimation of the erosion solidified layer line at the corner of the furnace bottom is originally impossible by -dimensional heat transfer calculation, and even if the blast furnace hearth is simplified as an axisymmetric body with the longitudinal axis of the furnace as the axis of symmetry, Dimensional heat transfer calculations are essential.

この二次元伝熱計算には一般に有限要素法が用いられて
きたが、これは非常に時間を要する面倒な作業である。
The finite element method has generally been used for this two-dimensional heat transfer calculation, but this is a very time-consuming and tedious task.

このような実情に鑑み、本発明者らは、特開昭60−1
84606に示すように、境界要素法という新しい数値
計算法を応用し、従来技術では成し得なかった侵食凝固
層ラインの自動推定および該ラインのオンラインモニタ
リングによる複数高炉の炉底の長期的な保護対策の実施
とそれによる操業の安定化、モして炉底耐大物の侵食進
行などの異常時における即応といった炉体管理、および
炉寿命の延長を実現した。
In view of these circumstances, the inventors of the present invention
As shown in 84606, by applying a new numerical calculation method called the boundary element method, we are able to automatically estimate the erosion solidification layer line and online monitor the line, which could not be achieved with conventional technology, to protect the bottoms of multiple blast furnaces over the long term. By implementing countermeasures and thereby stabilizing operations, we were able to manage the reactor body by quickly responding to abnormalities such as the progress of erosion of large materials at the bottom of the reactor, and extend the life of the reactor.

ここにおいて当然のことながら上述の新規の方法は高炉
炉底各部においてl−分な数の測温センサが設置されて
おり、かつ正確な測温データが得られることを前提とし
ている。
Of course, the above-mentioned new method is based on the assumption that a number of temperature sensors equal to 1 are installed at each part of the bottom of the blast furnace, and that accurate temperature measurement data can be obtained.

しかし、現実には測温センサの数は少なく、炉底部のあ
るひとつの子午線断面上にあるセンサの数は、例えば第
4図に示すように多くて9個程度である。少し以前に建
設された高炉では1例えば第5図に示すように炉底底面
には唯一点のセンサしか設置されていないというような
状況である。また、まとまって測温センサが設とされて
いる炉底耐大物の子午線断面の数も少なく、せいぜい4
断面程度である。これは多くの断面に多くの測温センサ
3を設置すれば、当然のことながら、センサや測定値の
集録装この維持管理労力は莫大なものとなり、結局は管
理不良となって設置されていても使用されないというよ
うな二K mが発生していたことによる。
However, in reality, the number of temperature sensors is small, and the number of sensors on one meridian section at the bottom of the furnace is, for example, about nine at most, as shown in FIG. In blast furnaces that were constructed a while ago, for example, as shown in FIG. 5, only one sensor is installed on the bottom of the furnace. In addition, the number of meridian cross sections of large furnace bottoms on which temperature sensors are installed is small, and there are only 4 at most.
It is about a cross section. This is because if many temperature sensors 3 are installed in many cross sections, the maintenance and management effort for the sensors and measurement value acquisition devices will be enormous, and in the end, they will be installed due to poor management. This was due to the fact that there were two kilometers of traffic that were not used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような状況のも、とでは、得られる正確なデータの
数にも限りがあり、特開昭60−184606に示す全
く新規な方法によっても高炉の炉底内部状況の推定監視
の精度には限界が存在したのである。
In such a situation, there is a limit to the amount of accurate data that can be obtained, and even with the completely new method shown in Japanese Patent Application Laid-Open No. 60-184606, the accuracy of estimation and monitoring of the internal situation at the bottom of the blast furnace cannot be improved. There were limits.

未発明は側温方法に改′善を加えることによって、セン
サや測温データの集録装置を増加させることなく、炉底
部子子線断面境界(例えば第4図、第5図の6)ににお
ける任意の時刻の連続的な湿度分布を容易に測定するこ
とができる方法を提供することを目的とし、この方法に
よって得られた側温データを、特開昭60−18460
6に示す方法と組み合わせることによってその真価を発
揮し、炉内状況の推定精度を飛躍的に向上させるもので
ある。
By improving the side heating method, the uninvented method can be applied to the bottom of the furnace at the cross-sectional boundary (for example, 6 in Figs. 4 and 5) without increasing the number of sensors or temperature measurement data acquisition devices. The purpose is to provide a method that can easily measure continuous humidity distribution at any time, and the side temperature data obtained by this method is published in Japanese Patent Application Laid-Open No. 60-18460.
When combined with the method shown in Section 6, its true value will be demonstrated, and the accuracy of estimating the situation inside the reactor will be dramatically improved.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

」−記目的を達成するため、発明者は、高炉炉底部の任
意の子午線断面上で、炉底底面には炉底中心から側壁鉄
皮部あるいは対向する側壁鉄皮部から側壁鉄皮部まで、
モして炉底側壁には羽口直下から炉底底盤まで測温セン
サの通路を耐火物内に内在させ、その通路は両端を炉外
に開口させておき、この通路内にΔ11温センナを移動
自在に挿通し、これを任意に移動させて炉底部の炉子午
線に沿う連続的な温度分布を測定する方法を開発した。
” - In order to achieve the above purpose, the inventor has proposed that, on any meridian section of the bottom of the blast furnace, the bottom surface of the furnace bottom has a line extending from the center of the bottom to the side wall skin or from the opposing side wall skin to the side wall skin. ,
In addition, a passage for a temperature sensor is built into the refractory on the side wall of the furnace bottom from just below the tuyere to the bottom plate of the furnace bottom, and both ends of the passage are open to the outside of the furnace, and a Δ11 temperature sensor is installed in this passage. We have developed a method to measure the continuous temperature distribution along the furnace meridian at the bottom of the furnace by inserting it in a movable manner and moving it arbitrarily.

〔作用〕[Effect]

1−記先願に示された方法による炉内状況の推定は、本
発明と組合わせると数学的には非線形最適化問題に帰着
され、測温値と計算値との誤差が最少になるように侵食
凝固層ラインが決定される。
1- When the method shown in the previous application is used to estimate the situation inside the reactor, it is mathematically reduced to a nonlinear optimization problem when combined with the present invention, so that the error between the measured temperature value and the calculated value is minimized. The eroded solidification layer line is determined.

当然のことながらこの場合、測温点の数が増加すればす
るほど、また、広範な位置でのデータが得られれば得ら
れるほど、この方法による推定精度は向1ユする。
Naturally, in this case, the more the number of temperature measurement points increases, and the more data from a wider range of positions can be obtained, the more accurate the estimation by this method becomes.

以にのように本発明によれば、測温センサや測温データ
の集録装置の数を増加させることなく、炉底部子子線断
面境界6kにおける任意の時刻の連続的な温度分布を容
易に得ることができ、炉内状況の推定精度を飛躍的に向
−Lさせることができる。また、センサの交換が非常に
容易となり、かつセンサの数も増加しないため、センサ
の保守、管理の労力が減少し、ひいては全センサの測定
値の信頼性を向上させることができる。
As described above, according to the present invention, it is possible to easily obtain a continuous temperature distribution at any time at the furnace bottom beam cross-sectional boundary 6k without increasing the number of temperature measurement sensors or temperature measurement data acquisition devices. As a result, the accuracy of estimating the situation inside the reactor can be dramatically improved. Furthermore, since the sensors can be replaced very easily and the number of sensors does not increase, the labor for maintaining and managing the sensors can be reduced, and the reliability of the measured values of all the sensors can be improved.

本発明の実施例に用いる装置は、 (D 炉底各部にセンサを設置固定するのではなく、自
由に移動できるようにすることによって、センサの数を
増加させることなく、炉底部子子線断面境界」二におい
て任意時刻の温度を連続に捕えることができる。
The apparatus used in the embodiments of the present invention has the following features: It is possible to continuously capture the temperature at any time at the boundary.

■ これにより計算値との比較点数が増加し、炉内状況
の推定精度を向上させることができる。
■ This increases the number of comparison points with calculated values and improves the accuracy of estimating the situation inside the reactor.

■ センサの劣化によるセンサの交換が容易でセンサ数
も少ないことがらセンサの保守、管理が確実となる。
■ Sensors can be easily replaced when they deteriorate, and the number of sensors is small, making maintenance and management of sensors reliable.

などの利点を有するものである。It has the following advantages.

第1図に本発明方法の適用されるステーブ冷却装置9を
有する高炉炉底部の構造の概略を示す。
FIG. 1 schematically shows the structure of the bottom of a blast furnace having a stave cooling device 9 to which the method of the present invention is applied.

炉底は一般に炭素、酸化珪素、酸化アルミニウム、炭化
珪素等を主成分とする種々の耐火物2によって構成され
ており、それらを保護するために炉底側壁部と炉底底盤
lO下に冷却装置9が備えられている。
The hearth bottom is generally composed of various refractories 2 whose main components are carbon, silicon oxide, aluminum oxide, silicon carbide, etc., and in order to protect them, a cooling device is installed on the side wall of the hearth bottom and under the hearth bottom plate lO. 9 is provided.

測温装:ξ11は、第1図に示す如く、炉底側壁部の(
耐火物2と冷却装置9の間、および炉底底盤10頁1;
の耐火物2の中に埋設され、1本あるいは複数本の測温
センサ12、該センサ12の巻取り装置13および該セ
ンサ12を導通させる通路14から成り立っている。ま
た必要に応じ、測温センサ12の移動方向を変えて案内
する装置15(例えば滑車)を装備する。測温装置11
は遠隔自動操作され、任意の時刻の炉底側壁、底面部の
温度を、それぞれの位置について連続的な温度分布とし
て採取することができる。すなわち、測温センサ12は
巻取り装置13によって巻取りあるいは巻戻しされ、通
路14内を自由に移動し、センサ12は通路】4内容部
の温度すなわち、各部の耐火物の温度を捕え、炉底部耐
火物2の任意の子午線断面にで、炉底底面では炉底中心
から側壁鉄皮部、あるいは対向する側壁鉄皮部から側壁
鉄皮部まで、モして炉底側壁では羽1コ8直ドから炉底
底盤lOまでの、任意の時刻の連続温面分布を測定する
ことができる3 第2図は散水冷却設備9を有する高炉炉底部に本発明を
実施するための装置を設置した例を示す概略図であり、
第1図における場合と同様に、任意の子′[線断面の境
界における連続的な温度分布を検知することができる。
Temperature measuring device: ξ11 is (
Between the refractory 2 and the cooling device 9, and the furnace bottom plate 10 Page 1;
It is embedded in a refractory 2 and consists of one or more temperature sensors 12, a winding device 13 for the sensors 12, and a passage 14 through which the sensors 12 are electrically connected. Further, if necessary, a device 15 (for example, a pulley) for guiding the temperature sensor 12 by changing its moving direction is provided. Temperature measuring device 11
is remotely and automatically operated, and the temperature of the side wall and bottom surface of the furnace bottom at any time can be collected as a continuous temperature distribution at each location. That is, the temperature sensor 12 is wound up or unwound by the winding device 13 and moves freely in the passage 14, and the sensor 12 captures the temperature of the contents of the passage [4], that is, the temperature of the refractories in each part, and At any meridian cross section of the bottom refractory 2, from the center of the hearth bottom to the side wall skin, or from the opposing side wall skin to the side wall skin, on the bottom side wall of the hearth there is one blade 8. It is possible to measure the continuous temperature surface distribution at any time from the bottom of the furnace to the bottom of the furnace. FIG. 2 is a schematic diagram illustrating an example;
As in the case in FIG. 1, it is possible to detect a continuous temperature distribution at the boundary of an arbitrary cross-section.

測温センサ感湿部16の詳細を第3図に示す。Details of the temperature sensor humidity sensing section 16 are shown in FIG.

第3図は温度センサ通路14として内径5mm外径10
mmのステンレス鋼製の配管を用い、JIS規定のシー
ス式に型熱電対(外径3゜2m m )から成る測温セ
ンサ12(−1さ25m)の中間に感温部16を備えた
ものを挿入した例を示す。配管14は耐火物2の中に埋
め込まれている。
Figure 3 shows a temperature sensor passage 14 with an inner diameter of 5 mm and an outer diameter of 10 mm.
A temperature sensing part 16 is installed in the middle of a temperature sensor 12 (-1 x 25 m) consisting of a JIS-specified sheath type thermocouple (outer diameter 3゜2 mm) using stainless steel piping with a diameter of 1 mm. Here is an example of inserting . The pipe 14 is embedded in the refractory 2.

測温センサ12は両端の巻取り装置13により巻取り1
巻戻しがなされ、感温部16は配管14内を左右に自由
に摺動し各部の温度をとらえることができる。
The temperature sensor 12 is wound up by winding devices 13 at both ends.
The winding is performed, and the temperature sensing part 16 can freely slide left and right inside the pipe 14 to detect the temperature of each part.

測温センサの通路を任意の子午線断面の炉底側壁部と炉
底底面部に設備し本発明方法により測温することにより
、該断面の侵食凝固層ラインの推定精度は非常に向上し
、1耐火物2の保護やそれによる炉寿命の延長1および
適切な出銑滓作業等高炉操業の安定化にはかり知れない
効果をもたらずものである。
By installing temperature sensor passages on the bottom side wall and the bottom of the furnace bottom of an arbitrary meridian cross section and measuring the temperature using the method of the present invention, the accuracy of estimating the erosion solidified layer line of the cross section can be greatly improved. It does not bring about immeasurable effects on stabilizing blast furnace operations such as protecting the refractories 2, thereby extending the life of the furnace 1, and ensuring proper tapping slag work.

〔実施例〕〔Example〕

II産銑鉄50001−ン級の大型高炉の炉底を本発明
方法により測温した結果を第6図に示す。
FIG. 6 shows the temperature measurement results of the bottom of a large blast furnace of 50,001-ton grade pig iron manufactured by the method of the present invention.

第6図は]−肥大型高炉において火入れ後約7年4ケ月
後のある日の測温結果17.18とそれに基づく耐火物
2の推定侵食ラインJ9.20を示している。
FIG. 6 shows the temperature measurement result 17.18 on a certain day about 7 years and 4 months after firing in the enlarged blast furnace and the estimated erosion line J9.20 of the refractory 2 based on the temperature measurement result.

炉底部のt径方向と高さ方向の本発明方法による測定結
果17と従来の固定式の測温センサを用いた測定結果1
8とは第6図に示すように±5℃の範囲内で一致してお
り、各部の温度はセンサ自体の誤差範囲内で正しく計測
されている。
Measurement results 17 using the method of the present invention in the radial direction and height direction of the furnace bottom and measurement results 1 using a conventional fixed temperature sensor
8 and 8. As shown in FIG. 6, they agree within a range of ±5° C., and the temperature of each part is correctly measured within the error range of the sensor itself.

従来法と異なる本発明方法の有効性は、第6図に示され
るように、測温センサ通路に沿った連続的な温度分布を
捕えることにより局部的な温度」−外部を的確に把握で
きることにある。2つの測定結果17.18から推定さ
れる侵食ラインは第6図に示すプロフィル19と20の
ようであった。
The effectiveness of the method of the present invention, which is different from the conventional method, is that, as shown in Figure 6, by capturing the continuous temperature distribution along the temperature sensor path, it is possible to accurately grasp the local temperature outside. be. The erosion lines estimated from the two measurement results 17 and 18 were profiles 19 and 20 shown in FIG.

第6図かられかるように、本発明方法によって得られた
測定結果17かも求められた侵食ライン19は側壁出銑
口レベル5直下に局部的な異常侵食があることを示して
いる。このような局部的異常侵食は炉底破損というよう
な大事故を引き起こし、また事故に至らなくともその部
分を保護するための対策により大幅減産、生産コストの
上昇を招く。従って、局部的異常侵食の早期発見、早期
対策の実施は、高炉の安定操業、寿命延長には不可欠の
玉要な事柄である。
As can be seen from FIG. 6, the erosion line 19 obtained from the measurement result 17 obtained by the method of the present invention indicates that there is localized abnormal erosion immediately below the side wall tap hole level 5. Such localized abnormal erosion can cause major accidents such as damage to the bottom of the furnace, and even if an accident does not result, measures to protect the affected area will significantly reduce production and increase production costs. Therefore, early detection of abnormal local erosion and early implementation of countermeasures are essential for stable operation and extension of blast furnace life.

従来法では、第6図から明らかなように、局部的な温度
上昇を感知、ひいては局部的な耐火物2の異常侵食を的
確に予測することができず、大事故を招く可能性が高い
、従来法では、極めて多数の測温センサ3を炉底部に埋
設することによってのみ、局部温度上昇を把握すること
ができるが、これはセンサとデータ集録装置の費用、保
守管理からみて不可能である。
As is clear from Fig. 6, with the conventional method, it is not possible to detect local temperature rises and, by extension, to accurately predict localized abnormal erosion of the refractory 2, which has a high possibility of causing a major accident. In the conventional method, it is possible to grasp the local temperature rise only by burying an extremely large number of temperature sensors 3 in the bottom of the furnace, but this is impossible due to the cost and maintenance of the sensors and data acquisition equipment. .

本発明方法によれば、各子午線断面で最低2本のセンサ
があれば2局部温度玉昇を捕えることができ、従って、
炉底耐火物2の侵食ラインを精度よく把握することがで
き、その有用性ははかり知れないものがある。また、本
発明方法は炉底内部で成長、消滅を繰り返す凝固層の分
布の推定にも利用できるるのであり、より精度の高い炉
底管理、ひいては安定操業を実現できることになる。
According to the method of the present invention, two local temperature rises can be captured with at least two sensors in each meridian cross section, and therefore,
The erosion line of the hearth bottom refractory 2 can be accurately grasped, and its usefulness is immeasurable. Furthermore, the method of the present invention can be used to estimate the distribution of the solidified layer that repeatedly grows and disappears inside the hearth bottom, making it possible to realize more accurate hearth bottom management and, by extension, stable operation.

〔発明の効果〕〔Effect of the invention〕

本発明方法により、溶鉱炉炉底部の温度分布を連続的に
把握することができるよになり、これを境界要素法を用
いた侵食凝固層ラインの推定法に適用することによって
炉底耐大物の侵食進行を精度よく正確に推定することか
でN、炉体管理および炉寿命の延長に寄与するところが
大である。
The method of the present invention makes it possible to continuously understand the temperature distribution at the bottom of the blast furnace, and by applying this to the estimation method of the erosion solidified layer line using the boundary element method, the erosion of large resistant materials at the bottom of the furnace can be confirmed. Precise and accurate estimation of progress greatly contributes to N, furnace body management, and extension of furnace life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明方法に係る高炉炉底部の断面図
で、第1図はステーブ冷却装置を備えた高炉での測温通
路の設置位置の概略を示し、第2図は、散水冷却袋ごを
備えた高炉での測温通路の設置位置の概略を示す。第3
図は、本発明の測温方法に用いるセンサ感温部の詳細を
示す説明図、第4図、第5図は従来の子午線断面の測温
センサの設置例を示す説明図、第6図は、本発明の測温
方法と従来の測温センサによる測温結果の比較、および
それぞれの測温結果に基づく耐火物侵食ラインの推定結
果の比較を示す説明図である。 1・・・対称軸 2・・・炉底耐大物 3・・・従来の測温センサ 4・・・耐火物侵食ライン 5・・・出銑口レベル 6・・・子午線断面境界線 7・・・建設時炉底耐大物 8・・・羽1ルベル 9・・・冷却装置 io・・・炉底底盤 11・・・測温装置 12・・・側温センサ 13・・・A11l温センザ巻取り装置14・・・測温
センサ通路 15・・・測温センサの移・幼方向を変λ−る装置16
・・・測温センサの感温部 17・・・本発明方法による71+11定結果(連続温
度分布) 18・・・従来の側温センサによる測定結果19・・・
未発I!+方法による測定結果に基づく推定侵食ライン 20・・・従来の測温センサによる測定結果に基づく推
定侵食ライン 21・・・高炉外壁鉄皮
FIGS. 1 and 2 are cross-sectional views of the bottom of a blast furnace according to the method of the present invention, FIG. 1 schematically shows the installation position of a temperature measurement passage in a blast furnace equipped with a stave cooling device, and FIG. The following is an outline of the installation location of the temperature measurement passage in a blast furnace equipped with a water cooling bag. Third
The figure is an explanatory diagram showing details of the sensor temperature sensing part used in the temperature measuring method of the present invention, Figures 4 and 5 are explanatory diagrams showing an example of installation of a conventional temperature measuring sensor with a meridian cross section, and Figure 6 is , is an explanatory diagram showing a comparison of temperature measurement results by the temperature measurement method of the present invention and a conventional temperature measurement sensor, and a comparison of estimation results of a refractory corrosion line based on the respective temperature measurement results. 1... Axis of symmetry 2... Hearth bottom resistant material 3... Conventional temperature sensor 4... Refractory erosion line 5... Taphole level 6... Meridian section boundary line 7...・During construction, hearth bottom heavy-duty 8...blade 1 lebel 9...cooling device io...heart bottom plate 11...temperature measuring device 12...side temperature sensor 13...A11l temperature sensor winding Device 14...Temperature sensor passage 15...Device 16 for changing the movement/induction direction of the temperature sensor 16
...Temperature sensing part 17 of temperature sensor...71+11 constant results (continuous temperature distribution) by the method of the present invention 18...Measurement results by conventional side temperature sensor 19...
Unreleased I! Estimated erosion line 20 based on measurement results by + method... Estimated erosion line 21 based on measurement results by conventional temperature sensor... Blast furnace outer wall iron skin

Claims (1)

【特許請求の範囲】 1 溶鉱炉炉底部耐火物内に溶鉱炉の子午線断面に沿う
測温センサの通路をその通路両端を炉外に開口させて内
在させ、該通路内に測温センサを移動自在に挿通し、該
通路の両端より通路内部の測温センサを移動させて炉底
部の炉子午線に沿う連続的な温度分布を測定することを
特徴とする溶鉱炉炉底部の測温方 法。
[Scope of Claims] 1. A passage for a temperature sensor along the meridian section of the blast furnace is housed in the refractory at the bottom of the blast furnace, with both ends of the passage open to the outside of the furnace, and the temperature sensor is movable within the passage. 1. A method for measuring temperature at the bottom of a blast furnace, comprising: inserting the passage through the passage, and moving a temperature sensor inside the passage from both ends of the passage to measure a continuous temperature distribution along the furnace meridian at the bottom of the furnace.
JP7946086A 1986-04-07 1986-04-07 Temperature measuring method for bottom part of blast furnace Pending JPS62238308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7946086A JPS62238308A (en) 1986-04-07 1986-04-07 Temperature measuring method for bottom part of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7946086A JPS62238308A (en) 1986-04-07 1986-04-07 Temperature measuring method for bottom part of blast furnace

Publications (1)

Publication Number Publication Date
JPS62238308A true JPS62238308A (en) 1987-10-19

Family

ID=13690489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7946086A Pending JPS62238308A (en) 1986-04-07 1986-04-07 Temperature measuring method for bottom part of blast furnace

Country Status (1)

Country Link
JP (1) JPS62238308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474813A (en) * 1990-07-18 1992-03-10 Sumitomo Metal Ind Ltd Method and instrument for measuring wall thickness in blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474813A (en) * 1990-07-18 1992-03-10 Sumitomo Metal Ind Ltd Method and instrument for measuring wall thickness in blast furnace
JPH0696726B2 (en) * 1990-07-18 1994-11-30 住友金属工業株式会社 Blast furnace wall thickness measuring method and equipment

Similar Documents

Publication Publication Date Title
US5944421A (en) Method for determining the conditions of heat transfer in a blast furnace
CN110453034A (en) A kind of device and method of on-line real time monitoring converter lining erosion state
KR102531803B1 (en) Method for monitoring wear of refractory linings of blast furnaces
CN215517504U (en) Blast furnace iron runner
JPS62238308A (en) Temperature measuring method for bottom part of blast furnace
CN110453023B (en) Blast furnace hearth elephant foot erosion prevention and analysis method
CN114134275A (en) Blast furnace hearth air gap judgment method
JP2669279B2 (en) Blast furnace operation method
JP4081248B2 (en) Control method of the lower part of the blast furnace
CN2541465Y (en) Ablation monitor of furnace brasque
KR880002277B1 (en) Blast furnace
JPS6137327B2 (en)
Ghorbani et al. Thermal assessment and identification of wear zones in a blast furnace hearth and tap-holes
JPS62257004A (en) Method for detecting eroded state of furnace floor wall of shaft furnace
JPS6137328B2 (en)
JP2530059Y2 (en) Wall electrode of DC arc furnace
RU2044058C1 (en) Method for control of erosion of blast-furnace well
JP7067413B2 (en) How to inspect refractories in atmospheric furnaces and how to manufacture reduced iron
JP2011220933A (en) Estimation method for residual thickness of refractory material in pipeline
JPS60141813A (en) Method for controlling refractory wall of refining furnace for molten steel
JPH04365807A (en) Method for predicting lowering of furnace heat accompanying wall falling in high temperature furnace
JPH06212215A (en) Method for controlling temperature of refractory brick at furnace bottom
JPH0967607A (en) Method for monitoring furnace bottom of blast furnace
JPS6314809A (en) Temperature measuring method for bottom of blast furnace
CN114292973A (en) Method for estimating and monitoring temperature of refractory material in blast furnace lining