JPS60141813A - Method for controlling refractory wall of refining furnace for molten steel - Google Patents

Method for controlling refractory wall of refining furnace for molten steel

Info

Publication number
JPS60141813A
JPS60141813A JP24735483A JP24735483A JPS60141813A JP S60141813 A JPS60141813 A JP S60141813A JP 24735483 A JP24735483 A JP 24735483A JP 24735483 A JP24735483 A JP 24735483A JP S60141813 A JPS60141813 A JP S60141813A
Authority
JP
Japan
Prior art keywords
wall
refractory wall
furnace
temp
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24735483A
Other languages
Japanese (ja)
Inventor
Seiji Narasaki
楢崎 誠治
Hisashi Miyashita
宮下 永
Takahiro Ito
孝宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24735483A priority Critical patent/JPS60141813A/en
Publication of JPS60141813A publication Critical patent/JPS60141813A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/44Refractory linings
    • C21C5/441Equipment used for making or repairing linings

Abstract

PURPOSE:To detect exactly the residual thickness of the refractory wall of a converter as well as the transition thereof with time and to discover the abnormal wear of the refractory wall in an early stage by detecting the fluctuation in the temp. during one cycle of the operation including the time while the furnace is empty by the thermocouples embedded in the refractory walls in the stage of operating the converter. CONSTITUTION:Thermocouples A are embedded into the refractory wall of a converter at 100-150mm. space from the inside wall and the temp. during refining when the cycle consisting of raw material charging, refining and tapping is repeated increases as shown in the curve I in the stage of operating the converter. When the inside of the furnace after tapping is empty, the temp. falls like the curve II and the temp. difference DELTAT is detected during this time. The temp. is compared with the value DELTAT calculated preliminarily from the relation between the heat conductivity of the refractory wall and the distance from the inside surface of the refractory wall to the position A and the distance DELTAL from A to the inside surface of the refractory wall is exactly estimated. The danger for the erosion of the furnace wall owing to the abnormal wear of the refractory wall is predicted therefrom and a countermeasure is effected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は転炉等の溶鋼精錬炉(以下転炉という)の炉体
管理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a furnace body management method for a molten steel refining furnace (hereinafter referred to as a converter) such as a converter.

〔背景技術〕[Background technology]

転炉等において操業中の耐火壁の残存厚みを正確に検知
し、異常の早期発見と適切な炉体保護対策を講すること
は安定し几操業を確保するとともに所定の生産量維持、
コスト削減ひいては炉寿命を延長する上で極めて重要な
ことである。
Accurately detecting the remaining thickness of the refractory wall during operation in converters, etc., detecting abnormalities early, and taking appropriate measures to protect the furnace body will ensure stable and efficient operation and maintain the specified production volume.
This is extremely important for reducing costs and extending the life of the furnace.

特に最近では生産規模の増大に呼応して転炉等の内容積
は拡大の一途を辿るとともに生産速度も飛躍的に増加し
ており、耐火壁にかかる熱的、物理的負荷は益々過酷と
なっている定め、耐火壁の厚み管理ケ厳重に行なう必要
性はさらに増大してきた。
In particular, in recent years, in response to the increase in production scale, the internal volume of converters, etc. has continued to expand, and production speed has also increased dramatically, and the thermal and physical loads placed on fireproof walls have become increasingly severe. The need to strictly control the thickness of fireproof walls has become even more important.

したがって従来より耐火壁厚みを検知する方法が種々提
案されている。例えば、特開昭52−58003号公報
に示されている様に耐火壁の中の厚さ方向に予め熱電対
を埋設して該熱電対全室む回路を構成し、耐火壁の侵蝕
によって、前記検出回路が断線し几こと全検出して耐火
壁の残存厚み全検出する方法や、特公昭57−5144
4号公報に示される様に高炉の炉内現象を示す信号上ト
リガー信号として検知するとともに該高炉の耐火壁に埋
設されたm度検知センサーによって壁厚方向の異なる点
における温度を測定し前記トリが一信号と各測温信号と
の間における相関性の夫々の時間的遅れと各測温点の炉
心からの半径方向の距離との関係を解析することにより
、耐火壁の損耗位置を把握する方法等が提供されてきた
Therefore, various methods for detecting the thickness of fireproof walls have been proposed. For example, as shown in Japanese Unexamined Patent Publication No. 52-58003, thermocouples are buried in advance in the thickness direction of a fireproof wall to form a circuit that includes all the thermocouples, and due to corrosion of the fireproof wall, A method of detecting the entire remaining thickness of a fireproof wall by thoroughly detecting the disconnection of the detection circuit, and a method of detecting the entire remaining thickness of the fireproof wall,
As shown in Publication No. 4, the temperature at different points in the wall thickness direction is measured by a trigger signal on a signal indicating a phenomenon inside the blast furnace, which is detected by a m degree detection sensor embedded in the refractory wall of the blast furnace. By analyzing the relationship between the time delay of the correlation between one signal and each temperature measurement signal and the radial distance of each temperature measurement point from the core, the location of damage to the refractory wall can be determined. methods have been provided.

しかしながら前述の方法では、前者は簡便ではあるが熱
電対の断線により耐火壁厚み全検知するため、損耗の推
移状況全断続的にしか検出できず、多数の熱電対を埋設
することは、耐火壁に対して悪影響を与える等多大の問
題を有していた。
However, with the above-mentioned method, although the former method is simple, it detects the entire thickness of the fireproof wall by breaking the thermocouple, so it can only detect the wear transition state intermittently. It had many problems, such as having a negative impact on the environment.

また、後者においては損耗の推移状況全比較的正確にか
つ連続的に検出できるが、信号処理が必要となり、装置
が複雑かつ高価となり、前者同様多数の熱電対全埋設す
ることは、耐火壁に対して悪影響を与える等、多大の問
題を有していた。
In addition, in the latter case, the entire wear and tear trend can be detected relatively accurately and continuously, but signal processing is required, making the equipment complex and expensive. It had many problems, such as having a negative impact on people.

し発明の目的〕 本発明は前記従来法における問題点の抜本的な解決全針
り信頼性の高い耐火壁厚み管理方法全提供するもので、
その目的とするところは転炉耐火壁の残存厚み、および
その時系列推移を正確かつ容易に把握することにより耐
火壁の異常損耗を早期に発見し、迅速かつ適切な処置を
講じて完全な炉体の維持管理全行なうことにある。
OBJECT OF THE INVENTION The present invention provides a complete and highly reliable method for controlling the thickness of a fireproof wall, which fundamentally solves the problems of the conventional methods.
The purpose of this is to accurately and easily understand the remaining thickness of the converter refractory wall and its chronological changes, so that abnormal wear and tear of the refractory wall can be detected early, and prompt and appropriate measures can be taken to complete the reactor. All maintenance and management is to be carried out.

〔発明の構成9作用〕 本発明に係る溶鋼精錬炉の耐火壁管理方法の要旨は、転
炉等耐火壁内に埋設された熱電対により転炉操業におけ
る任意の時点から1サイクル経過時点までの内の温度変
動幅全検出し、予め伝熱計算によりめた温度変動幅と耐
火壁内表面から、該熱電対埋設位置までの距離との関係
上用いて、耐火壁残存厚みを推定することにある。
[Structure 9 of the Invention] The gist of the fireproof wall management method for a molten steel refining furnace according to the present invention is that thermocouples embedded in the fireproof wall of a converter, etc. The remaining thickness of the fireproof wall is estimated by detecting the entire temperature fluctuation range within the temperature range and using the relationship between the temperature fluctuation range determined in advance by heat transfer calculation and the distance from the inner surface of the fireproof wall to the buried position of the thermocouple. be.

以下にその詳細を述べる。本発明者らは転炉等の操業時
における原料装入、精錬、出鋼のサイクル内において、
炉壁レンガ内に埋設されたある熱電対の最高温度および
1サイクル内の温度変動幅と耐火壁内表面から熱電対ま
での距離との関係を調べてみたが1種々の操業要因が関
与するため。
The details are described below. In the cycle of raw material charging, refining, and tapping during the operation of a converter, etc., the present inventors
We investigated the relationship between the maximum temperature of a certain thermocouple embedded in the bricks of the furnace wall, the range of temperature fluctuation within one cycle, and the distance from the inner surface of the refractory wall to the thermocouple, but it was found that various operational factors are involved. .

両者には明確な相関が得られなかった。そこで、−次元
非定常伝熱計算により詳細な解析全行ない、溶鋼温度、
充炉時間、空炉時間等の影響を調査したところ、空炉時
間が温度変動幅と耐火壁内表面ガ から熱電対重での距離との関係に最も大きな影響を及ぼ
すことを見出した。したがってレンガ内温度から溶損量
を推定するには空炉時間音ノξラメータとした温度変動
幅と耐火壁内表面からpP−電対までの距離との関係上
用いるのが良いことが分かった。
No clear correlation was found between the two. Therefore, we performed a detailed analysis using -dimensional unsteady heat transfer calculation, and determined the molten steel temperature,
When we investigated the effects of charging time, empty furnace time, etc., we found that empty furnace time had the greatest effect on the relationship between the temperature fluctuation width and the distance from the inner surface of the refractory wall in terms of thermocouple weight. Therefore, in order to estimate the amount of corrosion damage from the temperature inside the brick, it was found that it is best to use the air furnace time sound parameter ξ parameter based on the relationship between the temperature fluctuation width and the distance from the inner surface of the refractory wall to the pP-couple. .

〔発明の実施例〕[Embodiments of the invention]

以下、実施例全示す図面に基づき、詳細に説明する。第
1図は1本発明の原理全示す図で1曲線1、Ifは耐火
壁内の最高および最低温度分布を示したものである。炉
内IC?8鉄を保持している間は耐火壁は徐々に加熱さ
れ、曲線Iに示す様に最高温度に達する。ま次炉内が空
の場合は、耐火壁は放冷され曲線■の如く、最低温度に
達する。温度変動幅ΔTt−検知できる熱電対の位置A
は、レンガ熱伝導率および空炉時間により変化するが熱
電導率が8〜15KCat/mhr℃のレンガで空炉時
間が5分の場合は耐火壁内表面から200閣以内である
。したがって熱電対は200fm間隔で埋設すれば良い
ことになるが、実際は耐火壁内表面から100咽以−ヒ
では温度変動幅は微小となるため熱電対は1. OO〜
150糟間隔で埋設するのが望ましい。
Hereinafter, the embodiment will be described in detail based on the drawings showing all the embodiments. FIG. 1 is a diagram showing the entire principle of the present invention, and curve 1, If, shows the maximum and minimum temperature distributions within the fireproof wall. In-furnace IC? While holding the 8 iron, the refractory wall gradually heats up and reaches its maximum temperature as shown by curve I. When the inside of the furnace is empty, the refractory wall is allowed to cool and reaches the lowest temperature as shown by curve (2). Temperature fluctuation range ΔTt - Detectable thermocouple position A
varies depending on the brick thermal conductivity and the oven time, but for bricks with a thermal conductivity of 8 to 15 KCat/mhr°C and an oven time of 5 minutes, it is within 200 degrees from the inner surface of the fireproof wall. Therefore, it is sufficient to embed thermocouples at intervals of 200 fm, but in reality, the range of temperature fluctuation is minute within 100 fm from the inner surface of the fireproof wall, so thermocouples should be buried at 1.0 fm intervals. OO~
It is desirable to bury them at intervals of 150 mounds.

以上の様な条件で埋設された熱電対により温度変動幅全
検出し、予め、非定常伝熱計算によりめた温度変動幅と
耐火壁内表面から熱電対埋設位置間距離との関係から各
空炉時間毎に溶損量全算出するが、その方法については
測温チャートから温度変動幅音読み取り第2図の如き温
度変動幅と溶損量の関係を示したグラフによりめても良
いし、tたコンピュータにより処理を行なっても良く、
解析方法に関する手段は問わない。
The entire temperature fluctuation range was detected using the buried thermocouples under the above conditions, and each space was determined based on the relationship between the temperature fluctuation range determined in advance by unsteady heat transfer calculations and the distance between the inner surface of the fireproof wall and the thermocouple buried position. The total amount of melting loss is calculated for each furnace hour, but the method for doing this can be done by reading the temperature fluctuation range sound from the temperature measurement chart, or by using a graph showing the relationship between the temperature fluctuation range and the amount of melting loss, as shown in Figure 2. The processing may be performed by a computer with
Any method of analysis may be used.

ま九本発明は充炉、空炉状態が反復する炉全前提として
いるが、そのサイクルについてはサイクル中充炉、空炉
が含まれていれば良く、サイクルの分割方法は問わない
。すなわち、任意の時点から1サイクル経過までの内の
温度変動幅を検知すれば良い。
(9) Although the present invention is based on the assumption that the entire furnace is in a repeated charging and empty furnace state, the cycle only needs to include a charging furnace and an empty furnace during the cycle, and the method of dividing the cycle does not matter. That is, it is sufficient to detect the temperature fluctuation range from an arbitrary point in time until one cycle has passed.

実際の操業に於いては炉体止等により空炉時間が極端に
長くなりレンガ蓄熱レベルが低下することが考えられる
が、その場合も実際の操業における空炉時間により非定
常伝熱計算を遂−行なうかあるいはレンガ蓄熱レベルが
回復する昔での期間を省くことにより解決できる。
In actual operation, it is conceivable that the empty furnace time will become extremely long due to the shutdown of the furnace body, etc., and the brick heat storage level will decrease, but even in that case, unsteady heat transfer calculations can be performed using the empty furnace time in actual operation. - or by omitting the previous period during which the brick heat storage level recovers.

第3図は本発明による方法で、転炉実操業における溶損
量全推定したものである。図において。
FIG. 3 shows the total amount of erosion loss in the actual operation of the converter, estimated by the method according to the present invention. In fig.

黒丸−実線は各々のザイクル毎にレンガ溶損量全推定し
たもので、スラブコーティング等の影響によりノ々ラン
キが生ずる。これk1m次、移動しながら平均をとると
いう処理全行なうことにより白丸−破線で示した様な平
滑化された曲線が得られる。
The black circle-solid line is the total estimated amount of brick erosion for each cycle, and uneven ranking occurs due to the influence of slab coating, etc. By performing the entire process of taking the average while moving k1mth order, a smoothed curve as shown by the white circle-dashed line is obtained.

したがって実際は溶損の推定を行なう場合5複数の値を
用いて平滑化全行なうべきである。平滑化の方法につい
ては例えば移動平均法等従来より種々の方法が提唱され
ておりその方法は問わない。
Therefore, in practice, when estimating melt loss, all smoothing should be performed using five or more values. As for the smoothing method, various methods have been proposed in the past, such as the moving average method, and the method is not limited.

ま友、黒丸−一点鎖線によりAGA IMS 1600
MBASURING 8YSTEM (通称プロフィー
ルメータ)による測定結果を示した。本発明方法により
推定したレンガ溶損量はプロフィールメータによる測定
結果とほぼ良く一致し1本発明の方法によれば、極めて
簡便で、かつ連続的に比較的精度の高いレンガ溶損量の
推定が可能であることが分かる。
Mayu, AGA IMS 1600 by black circle - dashed line
The measurement results using MBASURING 8YSTEM (commonly known as Profile Meter) are shown. The amount of brick erosion estimated by the method of the present invention is in almost good agreement with the measurement results using a profile meter.1 According to the method of the present invention, the amount of brick erosion estimated by the method of the present invention is extremely simple, continuous, and relatively accurate. It turns out that it is possible.

尚5本発明方法は、転炉のみならず、 R1(、DH等
の固定式醇鋼精練炉における耐火壁に対しても同様の手
法で管理が可能である。
5. The method of the present invention can be used to manage not only converters but also refractory walls in fixed steel refining furnaces such as R1 (and DH) using the same method.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明の耐火壁管理方法によれば、転
炉等の耐火壁の残存厚み、およびその時系列推移全正確
かつ容易に把握することができるので、適切な炉体の維
持管理を行うことができるという効果會得られる。
As described above, according to the fireproof wall management method of the present invention, it is possible to accurately and easily grasp the remaining thickness of the fireproof wall of a converter, etc., and its time-series trends, so that appropriate maintenance and management of the furnace body can be carried out. The effect of being able to do this is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はレンガ内の温度分布を示した図、第2図は空炉
時間音パラメータとした温i変動幅ΔTと耐火壁内表面
から熱電対までの距離ΔLの関係を示すグラフ、第3図
は転炉においてレンガ溶損量を推定した結果會示すグラ
フである。 代理人 弁理士 秋 沢 政 元 他2名 57
Figure 1 is a diagram showing the temperature distribution inside the brick, Figure 2 is a graph showing the relationship between the temperature i fluctuation range ΔT, which is an air furnace time sound parameter, and the distance ΔL from the inner surface of the refractory wall to the thermocouple. The figure is a graph showing the results of estimating the amount of brick erosion in a converter. Agent: Patent attorney Masaaki Akizawa and 2 others 57

Claims (1)

【特許請求の範囲】[Claims] (1) 耐火壁内に埋設された熱電対により溶鋼精錬炉
操業における任意の時点から1サイクル経過時点までの
内の温度変動幅勿検出し、予め伝熱計算によりめ之湛度
変動幅と耐火壁内表面から該熱電対埋設位置までの距離
との関係音用いて耐火壁残存厚みを推定すること全特徴
とする容鋼精錬炉の耐火壁管理方法。
(1) Thermocouples embedded in the refractory wall detect temperature fluctuations from any point in the operation of the molten steel refining furnace to the end of one cycle, and the temperature fluctuation range and fire resistance are determined by heat transfer calculations in advance. A fireproof wall management method for a steel refining furnace characterized by estimating the remaining thickness of the fireproof wall using sound related to the distance from the wall inner surface to the thermocouple embedding position.
JP24735483A 1983-12-28 1983-12-28 Method for controlling refractory wall of refining furnace for molten steel Pending JPS60141813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24735483A JPS60141813A (en) 1983-12-28 1983-12-28 Method for controlling refractory wall of refining furnace for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24735483A JPS60141813A (en) 1983-12-28 1983-12-28 Method for controlling refractory wall of refining furnace for molten steel

Publications (1)

Publication Number Publication Date
JPS60141813A true JPS60141813A (en) 1985-07-26

Family

ID=17162162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24735483A Pending JPS60141813A (en) 1983-12-28 1983-12-28 Method for controlling refractory wall of refining furnace for molten steel

Country Status (1)

Country Link
JP (1) JPS60141813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076858A1 (en) * 2002-03-12 2003-09-18 Xstrata Queensland Limited Control of refractory wear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076858A1 (en) * 2002-03-12 2003-09-18 Xstrata Queensland Limited Control of refractory wear
EP1497602A4 (en) * 2002-03-12 2006-03-08 Xstrata Queensland Ltd Control of refractory wear
AU2003209816B2 (en) * 2002-03-12 2008-09-04 Xstrata Queensland Limited Control of refractory wear

Similar Documents

Publication Publication Date Title
US5944421A (en) Method for determining the conditions of heat transfer in a blast furnace
JP3769164B2 (en) Blast furnace bottom condition estimation and prediction method
JP4119620B2 (en) In-furnace situation estimation method for blast furnace
JP2008127619A (en) Method for deciding whether repair of refractory in molten iron ladle is needed or not
JPS60141813A (en) Method for controlling refractory wall of refining furnace for molten steel
JP4081248B2 (en) Control method of the lower part of the blast furnace
JP2867918B2 (en) Method for estimating effective thickness of slag coating in smelting vessel
JPS6137328B2 (en)
Ghorbani et al. Thermal assessment and identification of wear zones in a blast furnace hearth and tap-holes
RU2044058C1 (en) Method for control of erosion of blast-furnace well
KR950012400B1 (en) Corrosion checking method of tapping hole refractory
JP7067413B2 (en) How to inspect refractories in atmospheric furnaces and how to manufacture reduced iron
JPH04365807A (en) Method for predicting lowering of furnace heat accompanying wall falling in high temperature furnace
JP4276563B2 (en) Blast furnace bottom condition diagnosis method
JPS62238308A (en) Temperature measuring method for bottom part of blast furnace
JPS6137327B2 (en)
JPH03104808A (en) Method for operating blast furnace
JPS61186411A (en) Method for discriminating period when protection of refractory brick of blast furnace is necessary
JPS62257004A (en) Method for detecting eroded state of furnace floor wall of shaft furnace
JPS6314274B2 (en)
JPH03223658A (en) Method for monitoring surface state of refractory material and repairing-time judging apparatus for refractory material
JP2530059Y2 (en) Wall electrode of DC arc furnace
JPH0619092B2 (en) Blast furnace tap opening timing determination method
JPH0586411A (en) Method for assuming eroded line in furnace bottom of blast furnace
JP2005272892A (en) Method and system for controlling cooling of furnace lower part in blast furnace