JPS61186411A - Method for discriminating period when protection of refractory brick of blast furnace is necessary - Google Patents

Method for discriminating period when protection of refractory brick of blast furnace is necessary

Info

Publication number
JPS61186411A
JPS61186411A JP2723485A JP2723485A JPS61186411A JP S61186411 A JPS61186411 A JP S61186411A JP 2723485 A JP2723485 A JP 2723485A JP 2723485 A JP2723485 A JP 2723485A JP S61186411 A JPS61186411 A JP S61186411A
Authority
JP
Japan
Prior art keywords
refractory bricks
time
value
temperature
protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2723485A
Other languages
Japanese (ja)
Other versions
JPH0365404B2 (en
Inventor
Koji Shimomura
下村 興治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2723485A priority Critical patent/JPS61186411A/en
Publication of JPS61186411A publication Critical patent/JPS61186411A/en
Publication of JPH0365404B2 publication Critical patent/JPH0365404B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Blast Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To predict and discriminate exactly the time when the protection of the refractory bricks of a blast furnace under operation is necessary by determining the tendency of the max. value of the measured temp. to an increase with time from the measured value of the change of said refractory bricks with time and predicting the future period when the refractory bricks are damaged. CONSTITUTION:The temp. is continuously measured at multiple points in the wall on the bottom side of the blast furnace under operation. The max. value 1 and min. value 2 are determined upon lapse of time and the tendency of the max. value to the increase with time is plotted on a logarithmic graph from the measurement data or is determined quantitatively by a method of least squares. The period when the max. value of the temp. of the refractory bricks attains the preset upper limit temp. of the refractory bricks corresponding to the required residual thickness of the refractory bricks is discriminated by using such graph for the tendency of the value 1 to the increase with time. Whether the refractory bricks are in the period requiring the protection or not is discriminated from period requiring the protection or not is discriminated from the period discriminated in the above-mentioned manner and the stable operation of the blast furnace is executed without the shutdown.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高炉耐火れんがの保護必要時期判別方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for determining when blast furnace refractory bricks require protection.

(従来の技術) 一般に、高炉耐火れんがの損傷程度は、耐火れんがの温
度を鉄皮側で測定し、その測定温度値から伝熱計算によ
ってれんが残存厚さを算出し、その損傷程度を把握して
いた。そして従来、その算出したれんが残存厚さを、設
定された耐火れんが必要残存厚さと比較することによっ
て、耐火れんがが保護必要時期にあるか否かを判断して
いた。
(Conventional technology) Generally, the degree of damage to blast furnace refractory bricks is determined by measuring the temperature of the refractory bricks on the shell side, calculating the remaining thickness of the bricks from the measured temperature value through heat transfer calculations, and determining the degree of damage. was. Conventionally, it has been determined whether or not the refractory bricks are in need of protection by comparing the calculated remaining thickness of the bricks with the set required remaining thickness of the refractory bricks.

(発明が解決しようとする問題点) 上記従来のような方法で耐火れんがが保護必要時期にあ
るか否かを判別する方法では、その耐火れんが温度を測
定した時点での判別ができるだけで、将来的にいつ保護
が必要になるかを予測することはできなかった。そのた
め、耐火れんがが急激に侵食・剥離されたような場合に
は保護対策が間に合わず、高炉運転を停止しなければな
らないといったような問題もあった。
(Problems to be Solved by the Invention) The conventional method described above for determining whether or not a refractory brick is in need of protection can only be determined at the time when the temperature of the refractory brick is measured; It was not possible to predict when protection would be needed. Therefore, in cases where the refractory bricks were rapidly eroded or peeled off, protective measures could not be taken in time and blast furnace operation had to be stopped.

本発明は上記に鑑み、高炉耐火れんがの将来的な損傷の
時期を予測することによって迅速な保護対策を講じるの
に役立てることができる、高炉耐火れんがの保護必要時
期判別方法に関する。
In view of the above, the present invention relates to a method for determining when blast furnace refractory bricks need protection, which can be useful for taking prompt protective measures by predicting the timing of future damage to blast furnace refractory bricks.

(問題点を解決するための手段) 本発明が従来技術の問題点を解決すべく講じる技術的手
段の特徴とするところは、稼動中の高炉の耐火れんが温
度の経時的変化を測定し、その測定温度の極大値の経時
的な上昇傾向を定量的に求め、該定量的上昇傾向を用い
ることによって、耐火れんが温度の極大値が、設定され
た耐火れんが必要残存厚さに対応する耐火れんが上限温
度値に達する時期を求め、その時期より、耐火れんがが
保護必要時期にあるか否かを判別する点にある。
(Means for Solving the Problems) The technical measures taken by the present invention to solve the problems of the prior art are characterized by measuring changes over time in the temperature of refractory bricks in an operating blast furnace. By quantitatively determining the increasing tendency of the maximum value of the measured temperature over time and using the quantitative increasing tendency, the maximum value of the refractory brick temperature can be determined as the upper limit of the refractory brick corresponding to the set required residual thickness of the refractory brick. The point is to determine the time when the temperature value is reached, and from that time to determine whether or not the refractory bricks are in the need of protection.

(実施例) 以下、本発明の実施例を図面に基づき説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

まず、稼動中の高炉の炉底側壁部の多数の点において、
耐火れんがの鉄皮近傍での温度を火入から略4年間にわ
たって経時的に測定した。第1図はその測定点のうちの
一点における測定結果を表わしたもので、耐火れんが温
度の経時的変化が示されている。この測定結果によれば
、耐火れんが温度は経時的に脈動状に変化しており、極
大値1・・及び極小値2 ・・を示す。また、その極大
値1 ・・は経時的に漸次上昇傾向を示している。
First, at many points on the bottom side wall of a blast furnace in operation,
The temperature near the iron skin of the refractory bricks was measured over time over a period of approximately four years after firing. FIG. 1 shows the measurement results at one of the measurement points, and shows the change in the temperature of the refractory brick over time. According to the measurement results, the temperature of the refractory brick changes in a pulsating manner over time, showing a maximum value of 1 and a minimum value of 2. Moreover, the maximum value 1... shows a gradual upward trend over time.

次に、上記耐火れんがの測定温度の極大値1 ・・の経
時的な上昇傾向を定量的に求めるため、第2図に示すよ
うに両対数グラフにその極大値1 ・・をプロットした
。すると、その極大値1 ・・の経時的な上昇傾向は図
示のように直線近似することができ、定量的に求めるこ
とができた。
Next, in order to quantitatively determine the increasing trend over time of the maximum value 1 of the measured temperature of the refractory brick, the maximum value 1 was plotted on a logarithmic graph as shown in FIG. Then, the upward trend of the maximum value 1 over time could be approximated by a straight line as shown in the figure, and could be determined quantitatively.

なお、極大値1 ・・の経時的な上昇傾向を定量的に求
めるには、第3図に示すように経時的に測定した耐火れ
んがの温度値を直接両対数グラフにプロットしてもよい
、また両対数グラフ上で直線近似が困難な場合は、最小
自乗法によって極大値1 ・・を時間の関数として数式
で表わしてから定量的に求めてもよい。
In addition, in order to quantitatively determine the upward trend of the maximum value 1 over time, the temperature values of the refractory bricks measured over time may be directly plotted on a log-log graph as shown in Figure 3. If linear approximation is difficult on a double-logarithmic graph, the maximum value 1 may be expressed numerically as a function of time by the least squares method and then quantitatively determined.

さらに第4図は、上記と同様にして稼動中の高炉の炉底
側壁部の温度測定点のうち三点r、n。
Further, FIG. 4 shows three temperature measurement points r and n of the temperature measurement points on the bottom side wall of the blast furnace in operation in the same manner as above.

■における経時的に測定した耐火れんが温度の極大値1
 ・・を、両対数グラフにプロットしたものである。こ
の図から、各測定点1.  Il、 IIIにおける極
大値1 ・・の経時的な上昇傾向は直線近似でき、また
その上昇傾向は測定点によって異なるのがわかる。
Maximum value 1 of refractory brick temperature measured over time in ■
... is plotted on a log-log graph. From this figure, each measurement point 1. It can be seen that the upward trend over time of the maximum value 1 in Il, III can be approximated by a straight line, and that the upward trend differs depending on the measurement point.

次に、第4図において、各測定点1.n、IIIの耐火
れんが温度の極大値1が260℃に達する時期を求める
。この時期は、極大値1 ・・の上昇傾向が直線近似で
きるので、グラフ上の目盛から予測的に読み取ることに
よって求めることができる。
Next, in FIG. 4, each measurement point 1. Find the time when the maximum temperature 1 of the refractory bricks n and III reaches 260°C. At this time, the upward trend of the local maximum value 1 can be approximated by a straight line, so it can be determined by predictive reading from the scale on the graph.

すると、260℃に達するのは火入からの期間でいえば
、測定点Iでは5年目以内、測定点■では7年目以内、
測定点■では7年目以降であった。ここで260℃とい
う温度は、設定された耐火れんが必要残存厚さに対応す
る耐火れんが上限温度値である。なお、具体的な設定数
値は、安全率をどの程度に見込むかによって変わり、ま
た温度測定位置や耐火れんが材質等によっても変わる。
Then, in terms of the period from burning, the temperature reached 260℃ at measurement point I within 5 years, and at measurement point ■ within 7 years.
At measurement point ■, it was after the 7th year. Here, the temperature of 260° C. is the upper limit temperature value of the refractory brick corresponding to the set required remaining thickness of the refractory brick. Note that the specific set value varies depending on the expected safety factor, and also varies depending on the temperature measurement position, the material of the refractory brick, etc.

次いで、全測定点の耐火れんが温度の極大値の上昇傾向
を第4図と同様にして定量的に求めると、測定点工゛と
同様に火入後5年目以内にその極大値が260℃に達す
ると予測的に求められたのは全測定点のうち25%であ
った(これをA群とする)。
Next, if we quantitatively determine the rising trend of the maximum value of the refractory brick temperature at all measurement points in the same manner as in Figure 4, we will find that the maximum value will reach 260℃ within 5 years after firing, similar to the measurement point. It was predicted that 25% of all measurement points would reach this point (this will be referred to as Group A).

また、測定点■と同様に火入後7年目以内に260℃に
達するとされたのは全測定点のうち23%(これをB群
とする)、測定点■と同様に火入後7年目以降に260
℃に達するとされたのは全測定点のうち52%(これを
0群とする)であった。
Also, like measurement point ■, 23% of all measurement points (these are group B) were said to reach 260℃ within 7 years after burning; 260 after 7th year
℃ was reached at 52% of all measurement points (this is defined as group 0).

そこで、測定時点では火入から4年経過しているので、
A群の耐火れんがは保護対策を講じる必要があると判別
し、保護対策を講じた。
Therefore, at the time of measurement, four years had passed since the burning, so
It was determined that it was necessary to take protective measures for the refractory bricks in Group A, and protective measures were taken.

なお、保護対策としては、A群の耐火れんが部分の上方
の熱風吹込用羽口を一定期間閉止すること。溶鉄中にT
iを加えて溶鉄粘度を上げて渦流れをゆるやかにするこ
と。特定の出鉄口の使用を一定期間停止すること等があ
る。
As a protective measure, the hot air blowing tuyeres above the refractory bricks in Group A should be closed for a certain period of time. T in molten iron
Add i to increase the viscosity of molten iron and make the vortex flow gentler. The use of specific iron exits may be suspended for a certain period of time.

そして、温度測定をそのまま継続し、火入から6年目の
時点で再び全測定点の耐火れんが温度の極大値の上昇傾
向を定量的に求めた。すると、第5図に示すように、火
入後から5年目で260°Cに現実に達していたA群は
全測定点の3%にすぎず、7年巨で260℃に達するで
あろうB群は40%に、7年目以降に260℃に達する
であろう0群は57%に増加していた。
Then, temperature measurements were continued as they were, and at the 6th year after the firing, the increasing trend of the maximum value of the refractory brick temperature at all measurement points was again quantitatively determined. As shown in Figure 5, only 3% of all measurement points in Group A actually reached 260°C in the 5th year after the fire started, and it is expected that the temperature will reach 260°C in 7 years. Deaf group B increased to 40%, and group 0, who would reach 260 degrees Celsius after the seventh year, increased to 57%.

これは、火入後4年目に保護対策を講じたA群の耐火れ
んががB群又は0群に入ったことによるものであり、4
年目にB群、0群であったものがA群に入っていること
はなかった。
This is due to the fact that the refractory bricks of group A, for which protective measures were taken four years after burning, fell into group B or group 0.
Those who were in Group B or Group 0 in 2008 were never in Group A.

これにより、火入後4年目における、耐火れんがが保護
必要時期にあるか否かの判別が適切であったことがわか
る。
This shows that it was appropriate to determine whether or not the refractory bricks were in need of protection four years after burning.

上記のような方法によって耐火れんがの保護必要時期を
適切に判別できるのは、理論的には完全に解明されてい
ないが、以下のことが想定される。
The reason why the above-mentioned method can appropriately determine when the protection of refractory bricks is required has not been completely elucidated theoretically, but the following is assumed.

すなわち、稼動中の高炉の耐火れんがの温度は、鐙銑に
よる炉内側での侵食・剥離によってれんが厚さが薄くな
るので、鉄皮側の温度測定点での温度は炉内側に変化が
なければ漸次上昇するはずである。しかし、現実には上
記のように耐火れんが温度は経時的に脈動状に変化し、
極大値と極小値とを示す。
In other words, the temperature of the refractory bricks in a blast furnace during operation becomes thinner due to erosion and peeling inside the furnace due to the stirrup pig iron, so the temperature at the temperature measurement point on the shell side will be the same as long as there is no change inside the furnace. It should rise gradually. However, in reality, as mentioned above, the temperature of refractory bricks changes in a pulsating manner over time.
The local maximum value and local minimum value are shown.

これは、炉内では渦流れ状態が一様ではなく、流れの遅
い部分では外部からの冷却によって耐火れんかに伝わる
熱量が低下し、また耐火れんが稼動面に付着層が形成さ
れ、漸次測定温度が低下する。そして渦流れ状態が変化
してその部分の流れが速くなると耐火れんがの付着層を
溶失し、さらに耐火れんがを侵食・剥離させ、漸次測定
温度を上昇させ、これが繰返される。
This is because the vortex flow state is not uniform in the furnace, and in areas where the flow is slow, the amount of heat transferred to the refractory bricks decreases due to external cooling, and an adhesion layer is formed on the moving surface of the refractory bricks, which gradually increases the temperature measured. decreases. Then, when the vortex flow state changes and the flow speeds up in that part, the adhesion layer of the refractory bricks is melted away, the refractory bricks are further eroded and peeled off, and the measured temperature is gradually increased, and this process is repeated.

また、耐火れんが内部に亀裂が生じると、それが拡大し
て断熱層として作用し、測定温度が漸次低下する。そし
て、その耐火れんがが侵食・剥離されると測定温度が漸
次上昇し、これが繰返される。
Additionally, if a crack occurs inside the refractory brick, it expands and acts as a heat insulating layer, causing the measured temperature to gradually drop. Then, as the refractory bricks erode and peel, the measured temperature gradually increases, and this process is repeated.

一方、高炉は大型構造であるために場所によって耐火れ
んかによる築炉状態は異なり、渦流れ状態は均一でな(
、特に出銑口近くでは渦流れが集中したりすることによ
り、耐火れんがの侵食・剥離の進行は場所により異なる
On the other hand, since blast furnaces have large structures, the condition of the furnace construction using refractory bricks varies depending on the location, and the vortex flow condition is not uniform (
The progress of erosion and spalling of refractory bricks differs depending on the location due to the concentration of vortex flow, especially near the taphole.

このような炉内状態の変化によって耐火れんがの測定温
度値は経時的に脈□動をし、場所によってその温度変化
態様が異なるのである。しかし、耐火れんがの残存厚さ
が漸次薄くなることには違いがないので、測定温度の極
大値は経時的に漸次上昇し、その経時的上昇傾向は耐火
れんがの残存厚さが薄くなる速度と対応する。
Due to such changes in the conditions inside the furnace, the measured temperature value of the refractory bricks fluctuates over time, and the manner in which the temperature changes varies depending on the location. However, there is no difference in the fact that the remaining thickness of the refractory bricks gradually becomes thinner, so the maximum value of the measured temperature gradually increases over time, and the upward trend over time is consistent with the rate at which the remaining thickness of the refractory bricks becomes thinner. handle.

以上のことより、耐火れんが温度の極大値の経時的な上
昇傾向を用いることによって、耐火れんが温度の極大値
が、設定された耐火れんが必要残存厚さに対応する耐火
れんが上限温度値に達する時期を求めれば、その時期よ
り、耐火れんががすでに保護必要な時期にあるか否かを
判別できる。
Based on the above, by using the increasing tendency of the maximum value of refractory brick temperature over time, we can determine when the maximum value of refractory brick temperature reaches the upper limit temperature value of the refractory brick corresponding to the set required residual thickness of refractory brick. By determining the period, it can be determined whether the refractory bricks are already in need of protection or not.

これにより、従来のように耐火れんが温度測定時点のみ
のれんが損傷程度を知るのではなく、将来的なれんが損
傷程度をも予測することによって耐火れんがが保護必要
時期にあるか否かを判別することになるので、迅速な保
護対策を講じることができる。特に、上記のように多数
の点で温度測定すると、炉底全体の損傷傾向を予測する
ことができ、炉底寿命を推定することもできる。
As a result, instead of knowing the degree of damage to bricks only at the time of measuring the temperature of the refractory bricks, as in the past, it is possible to determine whether or not the refractory bricks are in need of protection by predicting the degree of damage to the bricks in the future. This allows prompt protective measures to be taken. In particular, by measuring the temperature at multiple points as described above, it is possible to predict the damage tendency of the entire hearth bottom, and it is also possible to estimate the hearth bottom life.

(発明の効果) 本発明方法によれば、耐火れんが温度の極大値の経時的
な上昇傾向を用いることによって、耐火れんが温度の極
大値が、設定された耐火れんが必要残存厚さに対応する
耐火れんが上限温度値に達する時期を求め、その時期よ
り、耐火れんががすでに保護必要な時期にあるか否かを
判別する。これにより、従来のように耐火れんが温度測
定時点のみのれんが損傷程度を知るのではなく、将来的
なれんが損傷程度をも予測することによって耐火れんが
が保護必要時期にあるか否かを判別することができ、耐
火れんかに迅速な保護対策を講じることができる。
(Effects of the Invention) According to the method of the present invention, by using the tendency of the maximum value of the refractory brick temperature to rise over time, the maximum value of the refractory brick temperature is determined to be the refractory that corresponds to the required residual thickness of the refractory brick. The time when the bricks reach the upper limit temperature value is determined, and from that time it is determined whether the refractory bricks are already at the point where protection is required. As a result, instead of knowing the degree of damage to bricks only at the time of measuring the temperature of the refractory bricks, as in the past, it is possible to determine whether or not the refractory bricks are in need of protection by predicting the degree of damage to the bricks in the future. This allows immediate protective measures to be taken against the refractory bricks.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に係り、第1図は耐火れんが温度
の経時的変化の測定図、第2図及び第3図は同極大値の
経時的上昇傾向を示す図、第4図は同異なった二側定点
における極大値の経時的上昇傾向を示す図、第5図は耐
火れんかに保護対策を講じることによる極大値の上昇傾
向の推移を示す図である。 1・−極大値。
The drawings relate to embodiments of the present invention, and FIG. 1 is a measurement diagram of changes in the temperature of refractory bricks over time, FIGS. 2 and 3 are diagrams showing the tendency of the maximum value to increase over time, and FIG. FIG. 5 is a diagram showing the tendency of the maximum value to increase over time at different fixed points on two sides, and FIG. 1.-Local maximum value.

Claims (1)

【特許請求の範囲】[Claims] 1、稼動中の高炉の耐火れんが温度の経時的変化を測定
し、その測定温度の極大値の経時的な上昇傾向を定量的
に求め、該定量的上昇傾向を用いることによって、耐火
れんが温度の極大値が、設定された耐火れんが必要残存
厚さに対応する耐火れんが上限温度値に達する時期を求
め、その時期より、耐火れんがが保護必要時期にあるか
否かを判別することを特徴とする高炉耐火れんがの保護
必要時期判別方法。
1. Measure the change in the temperature of the refractory bricks in the operating blast furnace over time, quantitatively determine the upward trend of the maximum value of the measured temperature over time, and use this quantitative upward trend to determine the temperature of the refractory bricks. The present invention is characterized in that the time when the maximum value reaches the upper limit temperature value of the refractory brick corresponding to the required residual thickness of the refractory brick is determined, and based on that time, it is determined whether or not the refractory brick is in a period where protection is required. Method for determining when blast furnace refractory bricks require protection.
JP2723485A 1985-02-13 1985-02-13 Method for discriminating period when protection of refractory brick of blast furnace is necessary Granted JPS61186411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2723485A JPS61186411A (en) 1985-02-13 1985-02-13 Method for discriminating period when protection of refractory brick of blast furnace is necessary

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2723485A JPS61186411A (en) 1985-02-13 1985-02-13 Method for discriminating period when protection of refractory brick of blast furnace is necessary

Publications (2)

Publication Number Publication Date
JPS61186411A true JPS61186411A (en) 1986-08-20
JPH0365404B2 JPH0365404B2 (en) 1991-10-11

Family

ID=12215380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2723485A Granted JPS61186411A (en) 1985-02-13 1985-02-13 Method for discriminating period when protection of refractory brick of blast furnace is necessary

Country Status (1)

Country Link
JP (1) JPS61186411A (en)

Also Published As

Publication number Publication date
JPH0365404B2 (en) 1991-10-11

Similar Documents

Publication Publication Date Title
CN114896546A (en) High-precision calculation method for residual thickness of carbon brick in blast furnace hearth
JP2008075950A (en) Furnace bottom monitoring method and device for melting furnace
JPS61186411A (en) Method for discriminating period when protection of refractory brick of blast furnace is necessary
JP4119620B2 (en) In-furnace situation estimation method for blast furnace
JPH0894264A (en) Refractory residual thickness detecting method for electric furnace
Filatov et al. Extending the campaign life of an intensively operating blast furnace
JPH01288741A (en) Protective tube type temperature sensor
JP4081248B2 (en) Control method of the lower part of the blast furnace
JP2867918B2 (en) Method for estimating effective thickness of slag coating in smelting vessel
JPS60141813A (en) Method for controlling refractory wall of refining furnace for molten steel
JPS5912306A (en) Method for measuring thickness of refractory for furnace body
JPH10273708A (en) Method for estimating furnace bottom condition in blast furnace
JP2530059Y2 (en) Wall electrode of DC arc furnace
RU2044058C1 (en) Method for control of erosion of blast-furnace well
JP3385831B2 (en) Estimation method of hearth erosion line and hearth structure
JP2686980B2 (en) Operation method of kiln and hot stove
JP3590442B2 (en) Blast furnace operation method
JPS62238308A (en) Temperature measuring method for bottom part of blast furnace
SU1640175A1 (en) Method of control of metal melting process in induction crucible furnace
JPH04285105A (en) Method for grasping wall dropping condition in high temperature heating furnace
JPS6059510B2 (en) Method for understanding wear and tear on refractory linings of batch-operated high-temperature containers lined with refractories
JPH01198412A (en) Method for presuming remaining slag quantity in blast furnace
JPS58117804A (en) Estimating method for position of melt-stuck zone in blast furnace
JPS6137327B2 (en)
JPS6184314A (en) Method for arc heating molten steel