JP3590442B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP3590442B2
JP3590442B2 JP12295695A JP12295695A JP3590442B2 JP 3590442 B2 JP3590442 B2 JP 3590442B2 JP 12295695 A JP12295695 A JP 12295695A JP 12295695 A JP12295695 A JP 12295695A JP 3590442 B2 JP3590442 B2 JP 3590442B2
Authority
JP
Japan
Prior art keywords
slag
metal
mno
temperature
feo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12295695A
Other languages
Japanese (ja)
Other versions
JPH08295909A (en
Inventor
隆 折本
誠章 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12295695A priority Critical patent/JP3590442B2/en
Publication of JPH08295909A publication Critical patent/JPH08295909A/en
Application granted granted Critical
Publication of JP3590442B2 publication Critical patent/JP3590442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、操業悪化の前兆を検知し短時間で操業を安定化し、炉底長寿命化を目指した高炉操業方法に関する。
【0002】
【従来の技術】
高炉の通気・通液性、特に、炉芯部の通気性および炉底部の通液性を良好に保つことは、高炉の安定操業にとって不可欠なことである。通気・通液性を良好に保つためには、温度を低下させないことが重要である。この理由は、温度の低下とともに液相、特にスラグ相の粘度が増大し、コークス層中にホールドアップする割合が増え、通気・通液性を妨げるからである。
ところで、炉底部の温度は主に溶銑顕熱により入熱する。すなわち、炉底部の湯流れが良好な部分は入熱量が多く温度も高い。
【0003】
一方で、炉底保護の観点から、レンガ表面に溶銑凝固層を生成させることが必要である。溶銑凝固層を生成させるためには入熱量を減らさなければならないので、湯流れを停滞させる必要がある。
炉底部で特に浸食を受けやすい部位が側壁部であることは、高炉解体調査結果や過去の炉底破損事故から知られており、この部分に溶銑凝固層を生成させ保護する必要がある。つまり、通気・通液性を良好に保ちながら炉底を保護するためには、湯流れが炉底周辺部に集中しないようにすればよい。
【0004】
これまで、炉底部の湯流れは炉底レンガ温度で推定されていた。すなわち、炉底底部レンガの円周方向、半径方向および側壁部レンガの円周方向、高さ方向の数ケ所から数十ケ所に熱電対を埋設し、温度の測定結果から高炉内のレンガ表面に生成する溶銑凝固層の厚さを計算し、溶銑凝固層の薄い部分では湯流れが活発であり、溶銑凝固層の厚い部分では湯流れが停滞していると推定していた。従って、通気・通液性を良好に保ちながら炉底を保護するためには、炉底底部の温度が高く炉底側壁部の温度が低い状態に保持する必要がある。
【0005】
逆に、炉底底部の温度が低下し、側壁部の温度が高くなった場合には、炉底底部に溶銑凝固層が発達した状態になっている。このため、もとの状態に戻すためには燃料比を増大させ、炉底底部の溶銑凝固層を溶解させる必要がある。この場合、アクションを行ってから炉底の変化がレンガ温度に表れるまでには約2〜3週間かかるため、対応が遅れがちになる。
また、スラグ−メタル反応を利用した炉内状況推定方法がいくつか文献(例えば日本鉄鋼協会編、中間報告書「高炉内現象とその解析」(1979),p.126)で報告されているが、スラグ−メタル界面の温度を溶銑温度あるいは(溶銑温度+ΔT)で代用するものであり、必ずしも実際のスラグ−メタル界面温度を表すものではない。
【0006】
【発明が解決しようとする課題】
炉底の湯流れは、炉体保護と炉芯の通気・通液性を良好に保持するという観点から炉底底部全体に流れるのが望ましい。炉底の湯流れを均等化する直接的なアクションは無いが、燃料比を上げたり炉底底部の冷却を緩和する等の対応を行い炉底底部の溶銑凝固層を薄層化する方法が一般的である。
しかし、従来の技術では、炉底の変化を短時間のうちに推定することが不可能であるため、溶銑凝固層が肥大した状態から対応せざるを得なかった。さらに、実際には炉底の状態が良好に戻っても、それがレンガ温度に表れるまでの間はそれを検知する手段が無いため、燃料比増大等のアクション等を行い続けなければならない等の問題がある。
本発明は、炉底の状態を短時間のうちに検知することにより、溶銑凝固層が肥大する前に対応することを可能にするとともに、過剰なアクションを行わずに対処することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記の課題を解決するために、以下の手段をとることにある。すなわち、
(1)高炉の出銑時に、スラグ中のFeO,MnO濃度の測定値およびメタル中のC,Si,Mn濃度の測定値と、高炉内のFeとMnのスラグ−メタル間の平衡反応より、下記(1)式より高炉内のスラグ−メタル界面の温度を求め、その温度を用い、下記(2)式から酸素分圧を求め、さらにスラグ中のCaO,SiO2 ,Al23 ,MgO濃度の測定値と、前記スラグ−メタル界面の温度および酸素分圧より高炉内のSiのスラグ−メタル反応の平衡到達率を算出し、前記平衡到達率の値が通常操業時の平衡到達率の70%未満となる場合に燃料比を増大させることを特徴とする高炉操業方法。
T=(20124−4233[%Si]−t 1 lnγ MnO (t1) +t 2 lnγ FeO (t2) +3915(x C /(1−x C )) 2 /(9.41+0.124[%C]−2.22[%Si] −0.829(x C /(1−x C )) 2 +ln(X MnO ・(1−2x C
/([%Mn]・X FeO ・(1−x C )))) ・・・(1)
O2 =((γ MnO ・X MnO )/(f Mn ・[%Mn])) 2 ・exp(−97518/T+30.58) ・・・(2)
【0008】
(2)高炉の出銑時に、スラグ中のFeO,MnO濃度の測定値およびメタル中のC,Si,Mn濃度の測定値と、高炉内のFeとMnのスラグ−メタル間の平衡反応より、下記(1)式より高炉内のスラグ−メタル界面の温度を求め、その温度を用い、下記(2)式から酸素分圧を求め、さらにメタル中のSおよびスラグ中のCaO,SiO2 ,Al23 ,MgO,S濃度の測定値と、前記スラグ−メタル界面の温度および酸素分圧より高炉内のSのスラグ−メタル反応の平衡到達率を算出し、前記平衡到達率の値が通常操業時の平衡到達率の80%未満となる場合に燃料比を増大させることを特徴とする高炉操業方法。
【0009】
この時の温度T[K]におけるγMnO .fMnは(3)式、(4)式により求める。

Figure 0003590442
【0010】
【作用】
スラグ−メタル間の各成分の分配平衡はスラグ−メタル間の温度と酸素分圧により大きく影響される。スラグ−メタル間の酸素分圧を決める反応としては、下記(5)式が一般的である。
Fe+1/2O =FeO ・・・(5)
ところで、(5)式からPO2を求めるためにはTの値を知る必要がある。従来は、このTとして、溶銑温度または(溶銑温度+ΔT)を代入して求めていた。しかし、これらの温度は必ずしもスラグ−メタル間の温度を表しているとはいえない。このため、湯だまりでの溶銑の滞留時間の変動内ではほぼ平衡に到達していると考えられるMnとの反応を考え、スラグ組成とメタル組成のデータのみからスラグ−メタル界面温度Tを推定する。すなわち、下記(6)式の反応を考えることにより、スラグ組成とメタル組成からスラグ−メタル界面温度を推定することができる。さらに、このようにして算出したTを前記(2)式に代入することにより、スラグ−メタル界面の酸素分圧を求めることができる。
【0011】
以下に、Fe,Mnのスラグ−メタル間の分配平衡から、炉内のスラグ−メタル界面温度と酸素分圧を計算する方法を示す。
スラグ−メタル間のFe,Mnの反応として、下記(6)式の反応を考える。
Figure 0003590442
ここで、ln γFeO =t lnγFeO (t2)/T
log aFe(1) =−(0.36+1700/T)(x /(1−x )) +log((1−2x )/(1−x ))
の関係および前記(3)式および(4)式を用いてTについて整理すると、下記(1)式が得られる。
【0012】
T=(20124−4233[%Si]−t lnγMnO (t1)+t lnγFeO (t2)+3915(x /(1−x )) )/(9.41+0.124[%C]−2.22[%Si]−0.829(x /(1−x )) +ln(XMnO ・(1−2x )/([%Mn]・XFeO ・(1−x )))) ・・・(1)
ここで、
ΔG°(6) :(6)式の反応の標準自由エネルギー変化[J/mol]
(6) :(6)式の反応の平衡定数[−]
Mn:温度T[K]におけるメタル中のMnの活量係数[−]
γMnO :温度T[K]におけるスラグ中のMnOの活量係数[−]
γFeO :Feと平衡する純溶融FeOを基準とする温度T[K]
におけるスラグ中のFeOの活量係数[−]
Fe(1) :メタル中のFeの活量[−]
:メタル中のCのモル分率[−]
R:気体定数[J/K]
【0013】
また、下記(7)式の反応を考える。
Figure 0003590442
O2について整理すると、下記(2)式が得られる。(2)式中のTは、前記(1)式により算出した値を用いる。
O2=((γMnO ・XMnO )/(fMn・[%Mn])) ・exp(−97518/T+30.58) ・・・(2)
ここで、
ΔG°(7) :(7)式の反応の標準自由エネルギー変化[J/mol]
(7) :(7)式の反応の平衡定数[−]
【0014】
以上の方法で求めたTおよびPO2は、γMnO (t1)等の物性値により異なるが、通常の管理では常に一定の値を用いる限りにおいては、これらの物性値は概略値を用いても差し支えない。つまり、TおよびPO2の絶対値はγMnO (t1)等の物性値により変わるが、通常操業時との比較において平衡到達率は大きく変わらないからである。
【0015】
平衡到達率が炉底温度と相関がある理由については、以下のように推定できる。
炉底底部の温度が高い場合、すなわち湯流れが炉底底部全体を通る場合は、炉底側壁部の温度が高い場合、すなわち湯流れが炉底周辺部に集中する場合に比べ、湯の滞留時間が長い。これは、出銑速度が一定ならば、湯流れが炉底周辺部に集中する場合は、湯が通る部分の体積が小さいためである。従って、湯流れが炉底周辺部に集中する場合には、スラグ−メタルの接触時間が短く、平衡到達率が低くなると推定される。
ここで、発明者らはSi,Sは湯だまりでの溶銑の滞留時間の変動に対応して平衡到達率が変動することを見出したことにより、本発明を完成するに至ったものである。
【0016】
次に、前記(1)式および(2)式で求めた温度、酸素分圧を用いて、平衡Si濃度、平衡S分配比を求める方法を示す。
スラグ−メタル界面でのSiの反応は下記(8)式で表される。
Figure 0003590442
ここで、
ΔG°(8) :(8)式の反応の標準自由エネルギー変化[J/mol]
(8) :(8)式の反応の平衡定数[−]
[%Si]eq:平衡Si濃度[mass%]
【0017】
また、スラグの脱硫能の尺度である、サルファイドキャパシティC が、温度とスラグ組成の関数として、高炉スラグの場合には下記(9)式で表される。
lnC =7.92XCaO +0.79XMgO −6.34XAl2O3 −7.92XSiO2−22780/T+4.72 ・・・(9)
一方、定義より、
=(%S)・(PO2/PS21/2 ・・・(10)
【0018】
ここで、下記(11)式の反応を考える。
Figure 0003590442
(9)式、(10)式、(12)式からC ,PS2を消去すると、
Figure 0003590442
【0019】
前記(13)式に前記(1)式および(2)式で求めた温度、酸素分圧および他の数値を代入し、L eqを求めることができる。
ここで、
ΔG°(11):(11)式の反応の標準自由エネルギー変化[J/mol]
(11):(11)式の反応の平衡定数[−]
S2:S 分圧[atm]
CaO :スラグ中のCaOのモル分率[−]
MgO :スラグ中のMgOのモル分率[−]
Al2O3 :スラグ中のAl のモル分率[−]
:S分配比[−]
eq:平衡S分配比[−]
【0020】
次に、炉内のスラグ−メタル反応の平衡到達率NSi’,N ’を下記(14)式および(15)式で定義する。
Si’=[%Si]eq/[%Si]×100 ・・・(14)
’=L eq/L ×100 ・・・(15)
【0021】
本発明者らは、このように定義したNSi’,N ’が、炉底底部の温度が高く側壁部の温度が低い場合、すなわち炉況が良好な場合には100に近い値となり、側壁部の温度が上昇し炉底底部の温度が低下する場合には低下することを見出した。
従って、NSi’,N ’を管理し、所定の基準値よりも低下した場合に燃料比を増大させることにより、炉底レンガ温度で検知する方法よりも速やかにアクションを行うことができる。
【0022】
また、燃料比増大等のアクションにより、炉底底部の溶銑凝固層が薄層化した場合、従来の方法ではレンガ温度に表れるまでの期間は炉内の状況を検知する手段が無いために燃料比増大等のアクションを行い続けなければならないが、本発明方法では、速やかに炉内の状況が検知できるため、余分なアクションを行う必要がなくなる。
平衡到達率が通常操業時に対し、Siの場合は70%未満、Sの場合は80%未満となる場合に燃料比を増大させる理由は、SiはSに比べ平衡するまでの時間が長いためであり、実炉データを解析した結果、Siで70%未満、Sで80%未満の状態が続くケースで炉底底部の温度が低下することが見出されたからである。
【0023】
【実施例】
以下に、本発明での実施例を説明する。
実施例1は、日平均データを基にSiの平衡到達率NSi’を管理し、対応した例である。
A高炉では安定操業を継続している時は、[%Si]eq=0.2〜0.4に対して、[%Si]=0.25〜0.5であり、NSi’=80〜85の範囲である。ところが、ある時期からNSi’が低下し、[%Si]eq=0.3に対し、[%Si]=0.6となり、通常操業時のほぼ60%である50まで低下した。このため、燃料比をそれまでの480kg/tから485kg/tまで増加した操業を1週間継続したところ、NSi’は従来の安定域である82まで回復した。また、このとき炉底中心部のレンガ温度は管理下限である200℃を下回らなかった。
【0024】
実施例2は、日平均データを基にSの平衡到達率N ’を管理し、対応した例である。
B高炉では安定操業を継続している時は、L eq=25〜30,N ’=95〜100の範囲である。ところが、N ’が低下し、L eq=25に対し、L =37となり、通常操業時のほぼ70%である68まで低下した。このため、燃料比をそれまでの475kg/tから480kg/tまで増加し、炉底底部の冷却水量を50%少なくした操業を5日間継続したところ、N ’は従来の安定域である96まで回復した。この場合も、炉底中心部のレンガ温度は管理下限である150℃以上確保されていた。
【0025】
比較例1は、炉底レンガ温度による管理を行った例である。
A高炉では安定操業を継続している時は、炉底中心部のレンガ温度は200〜350℃の範囲にある。ところが、ある時期からレンガ温度が低下し始め管理下限を下回ったため、燃料比をそれまでの480kg/tから485kg/tまで増加し、炉底底部の冷却水量を30%少なくした操業を継続したが、炉底中心部のレンガ温度が管理下限の200℃以上になるまでに約2ケ月かかった。この間は、減産操業となり経済的損失は膨大なものであった。
【0026】
比較例2は、A高炉で炉底中心部のレンガ温度が管理範囲内にあったが、レンガ温度が低下し始めた時点で対応した例である。
それまで炉底中心部のレンガ温度は250℃に保たれていたが、ある時期からレンガ温度が低下し始めた。直ちに燃料比をそれまでの480kg/tから485kg/tまで増加した操業を行ったが、レンガ温度の低下は止まらず管理下限である200℃を下回った。このため、さらに炉底底部の冷却水量を30%少なくした操業を継続したが、炉底中心部のレンガ温度が管理範囲になるまでに約1ケ月を要した。
【0027】
【発明の効果】
本発明により、炉底状況を回復させるための速やかな対応が可能である。これにより、生産率を下げる期間を大幅に短縮することが可能となった。[0001]
[Industrial applications]
The present invention relates to a blast furnace operating method for detecting a precursor of operation deterioration, stabilizing the operation in a short time, and extending the life of the furnace bottom.
[0002]
[Prior art]
Maintaining good ventilation and liquid permeability of the blast furnace, in particular, good ventilation of the furnace core and liquid permeability of the furnace bottom is essential for stable operation of the blast furnace. In order to maintain good ventilation and liquid permeability, it is important not to lower the temperature. The reason for this is that the viscosity of the liquid phase, particularly the slag phase, increases as the temperature decreases, and the rate of hold-up in the coke layer increases, impeding ventilation and liquid permeability.
By the way, the temperature of the furnace bottom is mainly input by the hot metal sensible heat. That is, the portion of the furnace bottom where the hot water flow is good has a large heat input and a high temperature.
[0003]
On the other hand, from the viewpoint of hearth protection, it is necessary to generate a solidified layer of hot metal on the brick surface. Since the amount of heat input must be reduced in order to form a molten iron solidified layer, it is necessary to stop the flow of molten metal.
It is known from the results of blast furnace dismantling investigations and past hearth breakage accidents that the part of the hearth that is particularly susceptible to erosion is the side wall, and it is necessary to form a molten iron solidified layer in this part to protect it. That is, in order to protect the furnace bottom while maintaining good ventilation and liquid permeability, the flow of the molten metal may be prevented from concentrating around the furnace bottom.
[0004]
Until now, the flow of hot water at the bottom was estimated at the bottom brick temperature. In other words, thermocouples are buried in the circumferential direction of the furnace bottom brick, in the radial direction and in the circumferential direction of the side wall bricks, at several places to several tens of places in the height direction, and on the brick surface in the blast furnace from the temperature measurement results. The thickness of the formed hot metal solidified layer was calculated, and it was estimated that the hot metal flow was active in the thin portion of the hot metal solidified layer and that the hot metal flow was stagnant in the thick portion of the hot metal solidified layer. Therefore, in order to protect the furnace bottom while maintaining good ventilation and liquid permeability, it is necessary to keep the temperature of the furnace bottom bottom high and the temperature of the furnace bottom side wall low.
[0005]
Conversely, when the temperature of the bottom of the furnace bottom decreases and the temperature of the side wall increases, the molten iron solidified layer has developed in the bottom of the furnace bottom. For this reason, in order to return to the original state, it is necessary to increase the fuel ratio and dissolve the molten iron solidified layer at the bottom of the furnace bottom. In this case, it takes about two to three weeks from when the action is performed until a change in the furnace bottom appears in the brick temperature, so that the response tends to be delayed.
In addition, several methods for estimating the conditions inside the furnace using the slag-metal reaction have been reported in the literature (for example, edited by the Iron and Steel Institute of Japan, Interim Report “Blast Furnace Phenomena and Analysis” (1979), p. 126). The temperature of the slag-metal interface is substituted by the hot metal temperature or (hot metal temperature + ΔT), and does not necessarily represent the actual slag-metal interface temperature.
[0006]
[Problems to be solved by the invention]
It is desirable that the molten metal flow in the furnace bottom flows over the entire bottom of the furnace bottom from the viewpoint of protecting the furnace body and maintaining good ventilation and liquid permeability of the furnace core. There is no direct action to equalize the flow of hot water at the bottom of the furnace, but a method of increasing the fuel ratio or relaxing the cooling of the bottom of the furnace bottom and thinning the molten iron solidified layer at the bottom of the furnace bottom is common. It is a target.
However, in the related art, it is impossible to estimate a change in the hearth in a short time, so that it is necessary to cope with a state in which the solidified layer of hot metal is enlarged. Furthermore, even if the furnace bottom actually returns to a good state, there is no means to detect it until it appears at the brick temperature, so actions such as increasing the fuel ratio must be continued. There's a problem.
An object of the present invention is to detect a state of a furnace bottom in a short time, thereby enabling to cope before a hot metal solidified layer is enlarged and to cope without performing excessive action. .
[0007]
[Means for Solving the Problems]
The present invention is to take the following means in order to solve the above problems. That is,
(1) At the time of tapping in the blast furnace, the measured values of the FeO and MnO concentrations in the slag and the measured values of the C, Si and Mn concentrations in the metal, and the equilibrium reaction between the slag and metal of Fe and Mn in the blast furnace, The temperature of the slag-metal interface in the blast furnace is obtained from the following equation (1) , the oxygen partial pressure is obtained from the following equation (2) using the temperature, and CaO, SiO 2 , Al 2 O 3 and MgO in the slag are further obtained. From the measured value of the concentration and the temperature of the slag-metal interface and the oxygen partial pressure, the equilibrium attainment rate of the slag-metal reaction of Si in the blast furnace was calculated, and the value of the equilibrium attainment rate was the equilibrium attainment rate during normal operation. A blast furnace operating method characterized by increasing the fuel ratio when the fuel ratio is less than 70%.
T = (20124-4233 [% Si] -t 1 lnγ MnO (t1) + t 2 lnγ FeO (t2) +3915 (x C / (1-x C )) 2 ) / ( 9.41 + 0.124 [ % C ] -2.22 [ % Si] -0.829 ( xC / (1-x C )) 2 + Ln (X MnO ・ (1-2x C )
/ ([% Mn] · X FeO ・ (1-x C )))) ・ ・ ・ (1)
P O2 = ((γ MnO ・ X MnO ) / (F Mn · [% Mn])) 2 · exp (-97518 / T + 30.58) ··· (2)
[0008]
(2) At the time of tapping in the blast furnace, the measured values of the FeO and MnO concentrations in the slag and the measured values of the C, Si and Mn concentrations in the metal, and the equilibrium reaction between the slag and metal of Fe and Mn in the blast furnace, The temperature of the slag-metal interface in the blast furnace is obtained from the following equation (1) , the oxygen partial pressure is obtained from the following equation (2) using the temperature, and S in the metal and CaO, SiO 2 , Al in the slag are further obtained. The equilibrium attainment rate of the slag-metal reaction of S in the blast furnace is calculated from the measured values of the 2 O 3 , MgO, and S concentrations and the temperature at the slag-metal interface and the oxygen partial pressure. A blast furnace operating method characterized by increasing the fuel ratio when the equilibrium attainment rate during operation is less than 80%.
[0009]
At this time, γ MnO . f Mn is obtained by the equations (3) and (4).
Figure 0003590442
[0010]
[Action]
The distribution equilibrium of each component between slag and metal is greatly affected by the temperature and oxygen partial pressure between slag and metal. The following equation (5) is generally used as a reaction for determining the oxygen partial pressure between slag and metal.
Fe + 1 / 2O 2 = FeO (5)
Incidentally, it is necessary to know the value of T in order to obtain P02 from equation (5). Conventionally, T has been determined by substituting the hot metal temperature or (hot metal temperature + ΔT). However, these temperatures do not always represent the temperature between the slag and the metal. For this reason, considering the reaction with Mn, which is considered to have reached almost equilibrium within the variation of the residence time of the hot metal in the basin, the slag-metal interface temperature T is estimated only from the data of the slag composition and the metal composition. . That is, by considering the reaction of the following equation (6), the slag-metal interface temperature can be estimated from the slag composition and the metal composition. Further, the oxygen partial pressure at the slag-metal interface can be obtained by substituting T calculated in this way into the above equation (2).
[0011]
Hereinafter, a method for calculating the slag-metal interface temperature and the oxygen partial pressure in the furnace from the slag-metal distribution equilibrium of Fe and Mn will be described.
As a reaction between Fe and Mn between slag and metal, a reaction represented by the following formula (6) is considered.
Figure 0003590442
Here, ln γ FeO = t 2 lnγ FeO (t2) / T
log a Fe (1) = - (0.36 + 1700 / T) (x C / (1-x C)) 2 + log ((1-2x C) / (1-x C))
The following equation (1) is obtained by rearranging T using the relation (1) and the equations (3) and (4).
[0012]
T = (20124-4233 [% Si] -t 1 lnγ MnO (t1) + t 2 lnγ FeO (t2) +3915 (x C / (1-x C)) 2) / (9.41 + 0.124 [% C] -2.22 [% Si] -0.829 (x C / (1-x C)) 2 + ln (X MnO · (1-2x C) / ([% Mn] · X FeO · (1-x C )))) ・ ・ ・ (1)
here,
ΔG ° (6) : Standard free energy change [J / mol] of the reaction of formula (6)
K (6) : equilibrium constant [-] for the reaction of equation (6)
f Mn : activity coefficient of Mn in metal at temperature T [K] [-]
γ MnO : activity coefficient of MnO in slag at temperature T [K] [-]
γ FeO : Temperature T [K] based on pure molten FeO equilibrating with Fe
Activity coefficient of FeO in slag [-]
a Fe (1) : Activity of Fe in metal [-]
x C: molar fraction of C in the metal [-]
R: gas constant [J / K]
[0013]
Also, consider the reaction of the following equation (7).
Figure 0003590442
When P O2 is arranged, the following equation (2) is obtained. As the T in the expression (2), a value calculated by the expression (1) is used.
P O2 = ((γ MnO · X MnO ) / (f Mn · [% Mn])) 2 · exp (−97518 / T + 30.58) (2)
here,
ΔG ° (7) : Standard free energy change [J / mol] of the reaction of formula (7)
K (7) : equilibrium constant [-] for the reaction of equation (7)
[0014]
Although T and PO2 obtained by the above method differ depending on physical properties such as γ MnO (t1), as long as a constant value is always used in normal management, these physical properties can be approximated by using approximate values. No problem. That is, the absolute value of T and P O2 is varied by physical properties such as gamma MnO (t1), but the equilibrium arrival rate in comparison with the normal operation because no large difference.
[0015]
The reason why the equilibrium attainment rate has a correlation with the furnace bottom temperature can be estimated as follows.
When the temperature at the bottom of the furnace bottom is high, that is, when the flow of the molten metal passes through the entire bottom of the furnace bottom, the temperature of the side wall of the furnace bottom is high, that is, when the flow of the molten metal is concentrated around the bottom of the furnace bottom, Time is long. This is because if the tapping speed is constant, the volume of the portion through which the hot water flows is small when the flow of the hot water is concentrated around the furnace bottom. Therefore, when the flow of the molten metal is concentrated on the periphery of the furnace bottom, it is estimated that the contact time between the slag and the metal is short and the equilibrium attainment rate is low.
Here, the inventors have completed the present invention by finding that the equilibrium attainment rate of Si and S changes in response to the change of the residence time of the hot metal in the hot water pool.
[0016]
Next, a method for obtaining the equilibrium Si concentration and the equilibrium S distribution ratio using the temperature and the oxygen partial pressure obtained by the above equations (1) and (2) will be described.
The reaction of Si at the slag-metal interface is represented by the following equation (8).
Figure 0003590442
here,
ΔG ° (8) : Standard free energy change [J / mol] of the reaction of formula (8)
K (8) : Equilibrium constant [-] for the reaction of equation (8)
[% Si] eq : equilibrium Si concentration [mass%]
[0017]
Furthermore, a measure of the desulfurization capacity of the slag, sulfide capacity C S is, as a function of temperature and slag composition in the case of blast furnace slag is expressed by the following equation (9).
lnC S = 7.92X CaO + 0.79X MgO -6.34X Al2O3 -7.92X SiO2 -22780 / T + 4.72 ··· (9)
On the other hand, by definition,
C S = (% S) · (P O2 / P S2 ) 1/2 (10)
[0018]
Here, the reaction of the following equation (11) is considered.
Figure 0003590442
Eliminating C S and P S2 from equations (9), (10), and (12) gives:
Figure 0003590442
[0019]
L S eq can be determined by substituting the temperature, oxygen partial pressure and other numerical values determined by the expressions (1) and (2) into the expression (13).
here,
ΔG ° (11) : Standard free energy change [J / mol] of the reaction of formula (11)
K (11) : equilibrium constant [-] for the reaction of equation (11)
P S2: S 2 partial pressure [atm]
X CaO : molar fraction of CaO in slag [-]
X MgO : molar fraction of MgO in slag [-]
X Al2 O3: mole fraction of Al 2 O 3 in the slag [-]
L S : S distribution ratio [-]
L S eq: equilibrium S distribution ratio [-]
[0020]
Next, the equilibrium attainment ratios N Si ′ and N S ′ of the slag-metal reaction in the furnace are defined by the following equations (14) and (15).
N Si ′ = [% Si] eq / [% Si] × 100 (14)
N S '= L S eq / L S × 100 ··· (15)
[0021]
The present inventors have determined that N Si ′, N s ′ thus defined is close to 100 when the temperature of the furnace bottom is high and the temperature of the side wall is low, that is, when the furnace condition is good, It has been found that when the temperature at the side wall increases and the temperature at the bottom of the furnace bottom decreases, the temperature decreases.
Therefore, by managing N Si ′ and N S ′ and increasing the fuel ratio when the value falls below a predetermined reference value, an action can be taken more quickly than in the method of detecting the temperature of the hearth brick.
[0022]
In addition, when the molten iron solidified layer at the bottom of the furnace is thinned due to an action such as increasing the fuel ratio, the conventional method has no means to detect the condition inside the furnace until the temperature of the furnace reaches the brick temperature. Although the action such as increase must be continuously performed, the method of the present invention can quickly detect the condition in the furnace, so that it is not necessary to perform an extra action.
The reason why the fuel ratio is increased when the equilibrium attainment ratio is less than 70% for Si and less than 80% for S with respect to the normal operation is that Si takes longer to equilibrate than S. This is because, as a result of analyzing actual furnace data, it has been found that the temperature at the bottom of the furnace bottom decreases in the case where the state of less than 70% for Si and less than 80% for S continues.
[0023]
【Example】
Hereinafter, embodiments of the present invention will be described.
The first embodiment is an example in which the equilibrium attainment rate N Si ′ of Si is managed based on the daily average data, and corresponding.
When we continue stable operations in A blast furnace, against [% Si] eq = 0.2~0.4, a [% Si] = 0.25~0.5, N Si '= 80 ~ 85. However, from a certain time, N Si ′ decreased, and [% Si] eq = 0.3, compared with [% Si] = 0.6, and decreased to 50, which is almost 60% of the normal operation. Therefore, when the operation in which the fuel ratio was increased from 480 kg / t to 485 kg / t was continued for one week, N Si ′ recovered to 82, which is the conventional stable range. At this time, the temperature of the brick at the center of the furnace bottom did not fall below the control lower limit of 200 ° C.
[0024]
The second embodiment is an example in which the equilibrium attainment ratio NS of S is managed based on the daily average data, and corresponding thereto.
When continues stable operations in B blast furnace, L S eq = 25~30, in the range of N S '= 95~100. However, N S ′ decreased, and L S eq = 25, whereas L S = 37, which decreased to 68, which is almost 70% of the normal operation. Therefore, the fuel ratio increased to 480 kg / t from 475 kg / t until then, was continued operations where the cooling water of the hearth bottom and 50% less for 5 days, N S 'is a conventional stable zone 96 Recovered. Also in this case, the temperature of the brick at the center of the furnace bottom was maintained at 150 ° C. or more, which is the lower control limit.
[0025]
Comparative Example 1 is an example in which control was performed based on the furnace bottom brick temperature.
When the stable operation is continued in the blast furnace A, the brick temperature at the center of the furnace bottom is in the range of 200 to 350 ° C. However, since the brick temperature began to drop from a certain point and fell below the lower control limit, the fuel ratio was increased from 480 kg / t to 485 kg / t, and the operation was continued with the cooling water volume at the bottom of the furnace bottom reduced by 30%. It took about two months for the temperature of the brick at the center of the furnace bottom to reach or exceed the lower control limit of 200 ° C. During this time, the operation was reduced and the economic loss was enormous.
[0026]
Comparative Example 2 is an example in which the brick temperature at the center of the furnace bottom in the blast furnace A was within the control range, but the brick temperature started to decrease.
Until then, the temperature of the brick in the center of the furnace bottom was kept at 250 ° C, but from a certain point the brick temperature began to drop. Immediately, an operation was performed in which the fuel ratio was increased from 480 kg / t to 485 kg / t, but the temperature of the brick did not stop decreasing and fell below the control lower limit of 200 ° C. For this reason, the operation was continued with the cooling water amount at the bottom of the furnace bottom further reduced by 30%, but it took about one month until the temperature of the brick at the center of the furnace bottom became within the control range.
[0027]
【The invention's effect】
According to the present invention, a prompt response for restoring the furnace bottom condition is possible. This has made it possible to significantly reduce the period during which the production rate is reduced.

Claims (2)

高炉の出銑時に、スラグ中のFeO,MnO濃度の測定値およびメタル中のC,Si,Mn濃度の測定値と、高炉内のFeとMnのスラグ−メタル間の平衡反応より、下記(1)式より高炉内のスラグ−メタル界面の温度を求め、その温度を用い下記(2)式から酸素分圧を求め、さらにスラグ中のCaO,SiO2 ,Al23 ,MgO濃度の測定値と、前記スラグ−メタル界面の温度および酸素分圧より、高炉内のSiのスラグ−メタル反応の平衡到達率を算出し、前記平衡到達率の値が通常操業時の平衡到達率の70%未満となる場合に燃料比を増大させることを特徴とする高炉操業方法。
T=(20124−4233[%Si]−t 1 lnγ MnO (t1) +t 2 lnγ FeO (t2) +3915(x C /(1−x C )) 2 /(9.41+0.124[%C]−2.22[%Si] −0.829(x C /(1−x C )) 2 +ln(X MnO ・(1−2x C
/([%Mn]・X FeO ・(1−x C )))) ・・・(1)
O2 =((γ MnO ・X MnO )/(f Mn ・[%Mn])) 2 ・exp(−97518/T+30.58) ・・・(2)
ただし、T :絶対温度[K]
γ MnO (t1) :温度t 1 [K]におけるスラグ中のMnOの活量係数[−]
γ FeO (t2) :Feと平衡する純溶融FeOを基準とする温度t 2 [K]におけるスラグ中のFeOの活量係数[−]
[%C]:メタル中のC濃度[mass%]
[%Si]:メタル中のSi濃度[mass%]
[%Mn]:メタル中のMn濃度[mass%]
C :メタル中のCのモル分率[−]
Mn :温度T[K]におけるメタル中のMnの活量係数[−]
MnO :スラグ中のMnOのモル分率[−]
FeO :スラグ中のFeOのモル分率[−]
O2 :酸素分圧[atm]
γ MnO :温度T[K]におけるスラグ中のMnOの活量係数[−]
From the measured values of the FeO and MnO concentrations in the slag and the measured values of the C, Si and Mn concentrations in the metal during the tapping of the blast furnace and the equilibrium reaction between the slag and metal of Fe and Mn in the blast furnace, the following (1) ) , The temperature of the slag-metal interface in the blast furnace is determined, the oxygen partial pressure is determined from the following equation (2) using the temperature, and the measured values of CaO, SiO 2 , Al 2 O 3 , and MgO concentrations in the slag And the temperature of the slag-metal interface and the oxygen partial pressure to calculate the equilibrium attainment rate of the slag-metal reaction of Si in the blast furnace, and the value of the equilibrium attainment rate is less than 70% of the equilibrium attainment rate during normal operation. A blast furnace operating method characterized by increasing the fuel ratio when:
T = (20124-4233 [% Si] -t 1 lnγ MnO (t1) + t 2 lnγ FeO (t2) +3915 (x C / (1-x C )) 2 ) / ( 9.41 + 0.124 [ % C ] -2.22 [ % Si] -0.829 ( xC / (1-x C )) 2 + Ln (X MnO ・ (1-2x C )
/ ([% Mn] · X FeO ・ (1-x C )))) ・ ・ ・ (1)
P O2 = ((γ MnO ・ X MnO ) / (F Mn · [% Mn])) 2 · exp (-97518 / T + 30.58) ··· (2)
Here, T: absolute temperature [K]
γ MnO (t1): Temperature t 1 Activity coefficient of MnO in slag at [K] [-]
γ FeO (t2) : temperature t 2 based on pure molten FeO equilibrating with Fe Activity coefficient of FeO in slag at [K] [-]
[% C]: C concentration in metal [mass%]
[% Si]: Si concentration in metal [mass%]
[% Mn]: Mn concentration in metal [mass%]
x C : Mole fraction of C in metal [-]
f Mn : activity coefficient of Mn in metal at temperature T [K] [-]
X MnO : Molar fraction of MnO in slag [-]
X FeO : Mole fraction of FeO in slag [-]
P O2 : oxygen partial pressure [atm]
γ MnO : Activity coefficient of MnO in slag at temperature T [K] [-]
高炉の出銑時に、スラグ中のFeO,MnO濃度の測定値およびメタル中のC,Si,Mn濃度の測定値と、高炉内のFeとMnのスラグ−メタル間の平衡反応より、下記(1)式より高炉内のスラグ−メタル界面の温度を求め、その温度を用い下記(2)式から酸素分圧を求め、さらにメタル中のSおよびスラグ中のCaO,SiO2 ,Al23 ,MgO,S濃度の測定値と、前記スラグ−メタル界面の温度および酸素分圧より高炉内のSのスラグ−メタル反応の平衡到達率を算出し、前記平衡到達率の値が通常操業時の平衡到達率の80%未満となる場合に燃料比を増大させることを特徴とする高炉操業方法。
T=(20124−4233[%Si]−t 1 lnγ MnO (t1) +t 2 lnγ FeO (t2) +3915(x C /(1−x C )) 2 /(9.41+0.124[%C]−2.22[%Si] −0.829(x C /(1−x C )) 2 +ln(X MnO ・(1−2x C
/([%Mn]・X FeO ・(1−x C )))) ・・・(1)
O2 =((γ MnO ・X MnO )/(f Mn ・[%Mn])) 2 ・exp(−97518/T+30.58) ・・・(2)
ただし、T :絶対温度[K]
γ MnO (t1) :温度t 1 [K]におけるスラグ中のMnOの活量係数[−]
γ FeO (t2) :Feと平衡する純溶融FeOを基準とする温度t 2 [K]におけるスラグ中のFeOの活量係数[−]
[%C]:メタル中のC濃度[mass%]
[%Si]:メタル中のSi濃度[mass%]
[%Mn]:メタル中のMn濃度[mass%]
C :メタル中のCのモル分率[−]
Mn :温度T[K]におけるメタル中のMnの活量係数[−]
MnO :スラグ中のMnOのモル分率[−]
FeO :スラグ中のFeOのモル分率[−]
O2 :酸素分圧[atm]
γ MnO :温度T[K]におけるスラグ中のMnOの活量係数[−]
From the measured values of the FeO and MnO concentrations in the slag and the measured values of the C, Si and Mn concentrations in the metal during the tapping of the blast furnace and the equilibrium reaction between the slag and metal of Fe and Mn in the blast furnace, the following (1) ) , The temperature of the slag-metal interface in the blast furnace is determined, and the temperature is used to determine the oxygen partial pressure from the following expression (2) . Further, S in the metal and CaO, SiO 2 , Al 2 O 3 , The equilibrium attainment rate of the slag-metal reaction of S in the blast furnace is calculated from the measured values of the MgO and S concentrations and the temperature of the slag-metal interface and the oxygen partial pressure. A method for operating a blast furnace, wherein the fuel ratio is increased when the arrival rate is less than 80%.
T = (20124-4233 [% Si] -t 1 lnγ MnO (t1) + t 2 lnγ FeO (t2) +3915 (x C / (1-x C )) 2 ) / ( 9.41 + 0.124 [ % C ] -2.22 [ % Si] -0.829 ( xC / (1-x C )) 2 + Ln (X MnO ・ (1-2x C )
/ ([% Mn] · X FeO ・ (1-x C )))) ・ ・ ・ (1)
P O2 = ((γ MnO ・ X MnO ) / (F Mn · [% Mn])) 2 · exp (-97518 / T + 30.58) ··· (2)
Here, T: absolute temperature [K]
γ MnO (t1): Temperature t 1 Activity coefficient of MnO in slag at [K] [-]
γ FeO (t2) : temperature t 2 based on pure molten FeO equilibrating with Fe Activity coefficient of FeO in slag at [K] [-]
[% C]: C concentration in metal [mass%]
[% Si]: Si concentration in metal [mass%]
[% Mn]: Mn concentration in metal [mass%]
x C : Mole fraction of C in metal [-]
f Mn : activity coefficient of Mn in metal at temperature T [K] [-]
X MnO : Molar fraction of MnO in slag [-]
X FeO : Mole fraction of FeO in slag [-]
P O2 : oxygen partial pressure [atm]
γ MnO : Activity coefficient of MnO in slag at temperature T [K] [-]
JP12295695A 1995-04-25 1995-04-25 Blast furnace operation method Expired - Lifetime JP3590442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12295695A JP3590442B2 (en) 1995-04-25 1995-04-25 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12295695A JP3590442B2 (en) 1995-04-25 1995-04-25 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH08295909A JPH08295909A (en) 1996-11-12
JP3590442B2 true JP3590442B2 (en) 2004-11-17

Family

ID=14848794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12295695A Expired - Lifetime JP3590442B2 (en) 1995-04-25 1995-04-25 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP3590442B2 (en)

Also Published As

Publication number Publication date
JPH08295909A (en) 1996-11-12

Similar Documents

Publication Publication Date Title
Sridhar et al. Break temperatures of mould fluxes and their relevance to continuous casting
JP3590442B2 (en) Blast furnace operation method
Khadhraoui et al. A new approach for modelling and control of dephosphorization in BOF converter
JPS62270708A (en) Control system for blast furnace heat
JP4081248B2 (en) Control method of the lower part of the blast furnace
JP3590466B2 (en) Blast furnace operation method
RU2044058C1 (en) Method for control of erosion of blast-furnace well
JPH04285105A (en) Method for grasping wall dropping condition in high temperature heating furnace
JPH04365807A (en) Method for predicting lowering of furnace heat accompanying wall falling in high temperature furnace
JPS61217516A (en) Detection of slag level in converter
JPH08291313A (en) Method for estimating slag coating effective thickness of refining vessel
JP2718305B2 (en) Estimation method of erosion line at blast furnace bottom
JPH0551620A (en) Method or measuring slag height by sub-lance
JP2002194406A (en) Method for protecting furnace bottom part in blast furnace
JPS6137327B2 (en)
JPS61139610A (en) Method for carrying out low silicon operation of blast furnace
JPH09227911A (en) Operation of blast furnace
JPH11222611A (en) Operation of blast furnace
JPS58153714A (en) Operation of blast furnace
JPH01242711A (en) Method for controlling converter blowing
JPS63210216A (en) Method for prediction of furnace heat in blast furnace
JPS60141813A (en) Method for controlling refractory wall of refining furnace for molten steel
JPH0365404B2 (en)
JPS61117208A (en) Operating method of blast furnace
JP2001234212A (en) Method for managing bottom of blast furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term