JP2718305B2 - Estimation method of erosion line at blast furnace bottom - Google Patents

Estimation method of erosion line at blast furnace bottom

Info

Publication number
JP2718305B2
JP2718305B2 JP27712091A JP27712091A JP2718305B2 JP 2718305 B2 JP2718305 B2 JP 2718305B2 JP 27712091 A JP27712091 A JP 27712091A JP 27712091 A JP27712091 A JP 27712091A JP 2718305 B2 JP2718305 B2 JP 2718305B2
Authority
JP
Japan
Prior art keywords
brick
temperature
erosion
furnace bottom
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27712091A
Other languages
Japanese (ja)
Other versions
JPH0586411A (en
Inventor
興一 栗田
安則 谷沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27712091A priority Critical patent/JP2718305B2/en
Publication of JPH0586411A publication Critical patent/JPH0586411A/en
Application granted granted Critical
Publication of JP2718305B2 publication Critical patent/JP2718305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、高炉炉底の侵食状況
を的確に把握するための炉底侵食ラインの推定方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating a bottom erosion line for accurately grasping the state of erosion of a blast furnace bottom.

【0002】[0002]

【従来の技術】高炉操業において、高炉の吹止め時期
は、炉底耐火物煉瓦の侵食が限界点に達したと判断され
る推定に基づいて決定される。したがって、この推定の
精度の如何により炉体寿命が1〜2年延びたり縮んだり
することになり、経済的影響は大である。従来より、炉
底の侵食ラインの推定は、炉底煉瓦中に埋設した複数の
温度計の実測値を用いて炉底煉瓦内温度分布を推定計算
し、銑鉄が凝固すると考えられる1150℃等温線を煉
瓦面の侵食平衡ラインとして定義していた。この煉瓦内
温度分布の推定計算に際しては、煉瓦の熱伝導率として
健全な煉瓦の熱伝導度を用い、1150℃等温線を煉瓦
侵食平衡ラインとして求めていた。
2. Description of the Related Art In the operation of a blast furnace, the blow-off timing of the blast furnace is determined based on an estimation that it is determined that the erosion of the refractory brick at the bottom has reached a critical point. Therefore, the life of the furnace body is extended or shortened by one to two years depending on the accuracy of the estimation, and the economical effect is great. Conventionally, the estimation of the erosion line at the hearth has been performed by estimating and calculating the temperature distribution in the hearth brick using the measured values of a plurality of thermometers buried in the hearth brick, and the 1150 ° C isotherm where pig iron is considered to be solidified. Was defined as the erosion equilibrium line of the brick surface. When calculating the temperature distribution in the brick, the thermal conductivity of a healthy brick was used as the thermal conductivity of the brick, and the 1150 ° C. isotherm was determined as the brick erosion equilibrium line.

【0003】[0003]

【発明が解決しようとする課題】しかるに、吹き卸し後
解体した高炉の炉底侵食平衡ラインを確認すると、実際
は煉瓦内への溶銑の侵透(目地差し)により煉瓦の侵食
面の温度は1150℃より高い等温線に一致すること、
また侵透の生じた煉瓦は変質しており見掛けの熱伝導率
は健全煉瓦の数倍大きくなっていることが実測により判
明した。したがって、従来の炉底侵食ラインの推定方法
では、推定精度が低く、炉底寿命延長のための判断が的
確に行われないという問題があった。
However, when the furnace bottom erosion equilibrium line of the blast furnace disassembled after blowing off is confirmed, the temperature of the eroded surface of the brick is actually 1150 ° C. due to penetration of hot metal into the brick (joint joint). Coincide with a higher isotherm,
In addition, it was found by actual measurement that the infiltrated bricks were altered and the apparent thermal conductivity was several times larger than that of healthy bricks. Therefore, the conventional method of estimating the bottom erosion line has a problem that the estimation accuracy is low and a determination for extending the life of the bottom is not accurately performed.

【0004】この発明は、このような従来の問題を解決
するため、炉底侵食ラインの推定精度を向上させ、炉底
寿命の予測精度を高めるとともに、炉底寿命延長のため
の操業変更手段(TiO装入タイミング、装入量、羽
口吹込位置、コークス粒度管理、O/C半径方向分布
等)の時期を明確にすることが可能な高炉炉底の侵食ラ
イン推定方法を提案しようとするものである。
The present invention solves such a conventional problem by improving the accuracy of estimating the bottom erosion line, increasing the accuracy of predicting the bottom life, and changing the operation for increasing the bottom life. TiO 2 loading timing, SoIriryou tuyere blow position, the coke particle size management, and to propose an O / C radial distribution, etc.) timing to be able to clarify a blast furnace bottom erosion line estimation method of Things.

【0005】[0005]

【課題を解決するための手段】この発明は、高炉の解体
調査により知見した炉底侵食煉瓦の熱伝導率、煉瓦侵食
面の温度、すなわち目地差しの存在により熱伝導率が健
全煉瓦の数倍大きくなっていること、煉瓦侵食面の温度
が溶銑の凝固温度(1150℃程度)より高くなってい
ることを考慮して、炉底侵食ラインの推定精度を向上さ
せるもので、その要旨は、炉底煉瓦侵食面の温度を溶銑
の凝固温度と出銑温度との間に設定し、炉底煉瓦侵食面
と溶銑の凝固温度等温面との間の領域における侵食煉瓦
の熱伝導率を当該健全煉瓦の熱伝導率に対して数倍大き
設定した条件下で、炉底の複数箇所で測定した炉底温
度値のうち過去最高の炉底温度値に基づいて炉底煉瓦内
温度分布を推定計算し、該温度分布計算値の等温線に基
づき炉底侵食ラインを推定する方法にある。
SUMMARY OF THE INVENTION According to the present invention, the thermal conductivity of the bottom erosion brick and the temperature of the brick erosion surface, which are found by the dismantling inspection of the blast furnace, that is, the thermal conductivity is several times that of a healthy brick due to the presence of joints. In consideration of the fact that the temperature of the brick erosion surface is larger than the solidification temperature of the hot metal (about 1150 ° C.), the accuracy of estimating the furnace bottom erosion line is improved. The temperature of the bottom brick eroded surface is set between the solidification temperature and the tapping temperature of the hot metal, and the thermal conductivity of the eroded brick in the region between the furnace bottom brick eroded surface and the hot metal solidification temperature isotherm is determined by the sound brick. Several times larger than thermal conductivity
Under the conditions ku set, based on the highest of the furnace bottom temperature values past out of the furnace bottom temperature values measured at a plurality of locations of the furnace bottom furnace bottom bricks
Estimate the temperature distribution and calculate it based on the isotherm of the calculated temperature distribution.
To estimate the bottom erosion line .

【0006】[0006]

【作用】A高炉(炉容積4300m)の解体調査結果
を図1に示す。図中、1はシャモット煉瓦、2はカーボ
ン煉瓦、3は炉底煉瓦温度実測位置である。すなわち、
銑鉄が凝固する1150℃等温ラインまでは目地差しが
確認された。一方、目地差しの存在しない領域の煉瓦
は、高温ながら変質は極めて少なく、煉瓦の熱伝導率は
健全煉瓦のそれと一致していた。しかし、1150℃以
上で、煉瓦の侵食面までの領域では、溶銑の目地差しお
よび侵透のため煉瓦の熱伝導率は、健全煉瓦(熱伝導率
4.4kcal/m/hr/℃)の約4倍にも達して
いた。そこで、稼働中における炉底煉瓦温度の実測値の
うち最高の温度を選択し、その温度に合致するように炉
底侵食ラインを推定したところ、A高炉の場合1350
℃等温線と一致した。
FIG. 1 shows the result of the dismantling inspection of the blast furnace A (furnace volume: 4300 m 3 ). In the figure, 1 is a chamotte brick, 2 is a carbon brick, and 3 is a furnace bottom brick temperature measurement position. That is,
Joints were confirmed up to the 1150 ° C isothermal line where the pig iron solidified. On the other hand, the bricks in the region where no joints existed had very little alteration at high temperatures, and the thermal conductivity of the bricks was the same as that of healthy bricks. However, in the region above 1150 ° C. and up to the erosion surface of the brick, the thermal conductivity of the brick is less than that of a sound brick (thermal conductivity of 4.4 kcal / m 2 / hr / ° C.) due to the jointing and penetration of hot metal. It had reached about four times. Therefore, the highest temperature was selected from the actually measured values of the furnace bottom brick temperature during operation, and the furnace bottom erosion line was estimated to match that temperature.
° C isotherm.

【0007】次に、B高炉(炉容積5100m3)にお
ける炉底侵食ラインの推定を実施した。この場合も、A
高炉と同様に炉底煉瓦最高温度に合致するように、炉底
侵食ラインを1350℃等温線として求め、解体調査結
果と比較した結果、±5cmの範囲内で両者が一致し
た。ただし、この場合には、銑鉄凝固温度1150℃と
1350℃の間の領域にある煉瓦の熱伝導率は健全煉瓦
(健全煉瓦の熱伝導率4.4kcal/m /hr/
℃)の4倍とした。
[0007] Next, the furnace bottom erosion line in the B blast furnace (furnace volume 5100 m3) was estimated. Again, A
As in the case of the blast furnace, the bottom erosion line was determined as an isothermal line at 1350 ° C. so as to match the maximum temperature of the bottom brick, and as a result of comparison with the dismantling inspection results, the two were within the range of ± 5 cm. However, in this case, the thermal conductivity of the brick in the region between the pig iron solidification temperature of 1150 ° C and 1350 ° C is a sound brick.
(The thermal conductivity of sound brick 4.4 kcal / m 2 / hr /
° C) .

【0008】以上の解体調査結果より、この発明におけ
る炉底煉瓦侵食面の温度としては、溶銑の凝固温度(1
150℃)と出銑温度(1500℃)との間とし、熱伝
導率としては健全煉瓦の熱伝導率に対し数倍大きく設定
するのが好ましいことが判明した。したがって、このよ
うな条件下で、炉底複数箇所の炉底温度値のうち過去最
高の炉底温度値に基づいて炉底煉瓦内温度分布を推定計
算し、該温度分布計算値の等温線に基づき求められた炉
底侵食ライン推定値は、必然的に精度の高いものとな
る。
From the results of the above dismantling survey, the temperature of the eroded surface of the furnace bottom brick in the present invention was determined as the solidification temperature (1
150 ° C) and tapping temperature (1500 ° C), and the thermal conductivity is set several times larger than the thermal conductivity of healthy bricks
It is preferable to have been found. Therefore, under such conditions, among the bottom temperature values at
Estimator of temperature distribution in hearth brick based on high hearth temperature
Then, the estimated value of the bottom erosion line obtained based on the isotherm of the calculated value of the temperature distribution necessarily becomes highly accurate.

【0009】[0009]

【実施例】炉底煉瓦温度の実測値を用いて炉底侵食ライ
ンを推定するに際し、過去の最高温度を用い、銑鉄の凝
固温度1150℃と煉瓦侵食面との間の溶銑目地差し領
域での煉瓦熱伝導率を、健全煉瓦85%と溶銑15%か
らなるとして推定計算して求めた熱伝導度を用いる。そ
して、前記過去の最高温度に合致するように、炉底煉瓦
内温度分布を求め、1150℃等温ラインを目地差しラ
インとする。この目地差しラインより温度の高い135
0℃までの領域は、溶銑の侵入した変質煉瓦層として取
扱い、1350℃等温ラインを煉瓦侵食面とする。
EXAMPLES In estimating the bottom erosion line using the actually measured value of the bottom brick temperature, the highest temperature in the past was used, and the solidification temperature of pig iron at 1150 ° C. and the hot metal joint between the brick erosion surface in the hot metal joint area were determined. The thermal conductivity obtained by estimating and calculating the thermal conductivity of the brick assuming that it consists of 85% of healthy brick and 15% of hot metal is used. Then, a temperature distribution in the furnace bottom brick is determined so as to match the highest temperature in the past, and the 1150 ° C. isothermal line is used as a jointing line. 135 higher in temperature than this jointing line
The region up to 0 ° C. is treated as a deteriorated brick layer into which molten iron has penetrated, and the 1350 ° C. isothermal line is used as a brick erosion surface.

【0010】稼働中、温度実測値は時々刻々変化する
が、温度が低下してきた場合には、1350℃等温ライ
ンは煉瓦侵食面より炉内側に移動することになる。煉瓦
侵食面が1150℃以下となると、煉瓦侵食面と115
0℃等温面との間の領域は、溶銑が凝固している層と考
えられる。図2はこの種々の温度変化に対応した炉底の
状態を示す模式図であり、(a)は過去最高の煉瓦温度
での炉底煉瓦状態、(b)は炉底煉瓦温度が低下した状
態で、侵食面が1150℃以上1350℃以下の温度と
なっている場合、(c)は侵食面上で1150℃以上と
なり、侵食面上に凝固層が成長する状態を、それぞれ示
す。
During operation, the measured temperature value changes every moment, but when the temperature decreases, the 1350 ° C. isothermal line moves from the brick erosion surface to the inside of the furnace. When the brick erosion surface becomes 1150 ° C. or less, the brick erosion surface becomes 115
The region between the 0 ° C. isothermal surface is considered to be the layer where the hot metal has solidified. FIGS. 2A and 2B are schematic diagrams showing the state of the hearth corresponding to these various temperature changes. FIG. 2A shows the state of the hearth brick at the highest brick temperature in the past, and FIG. When the temperature of the eroded surface is 1150 ° C. or more and 1350 ° C. or less, (c) shows a state where the temperature of the eroded surface is 1150 ° C. or more and a solidified layer grows on the eroded surface.

【0011】この発明方法を適用したB高炉での炉底侵
食ラインの経時変化を図3に示す。図中、実線は従来法
による銑鉄の凝固ライン(約1150℃)で推定した侵
食ライン、点線は本発明法で推定した炉底煉瓦侵食ライ
ンである。このデータより、従来法では9年目で侵食限
界に到達することになるが、本発明法で推定し直すと、
10年目でも炉底侵食に余裕のあることが判明し、それ
まで実施してきた炉底保護のためのTiOの装入、ま
たはコークスの大粒径化等が不要となり、コスト合理化
がはかられた。
FIG. 3 shows a change with time of the bottom erosion line in the B blast furnace to which the method of the present invention is applied. In the figure, the solid line is the erosion line estimated on the solidification line of pig iron (about 1150 ° C.) according to the conventional method, and the dotted line is the hearth brick erosion line estimated on the method of the present invention. From this data, the erosion limit will be reached in the ninth year with the conventional method, but when re-estimated with the method of the present invention,
Even in the tenth year, it was found that there was room for hearth erosion, and it was not necessary to insert TiO 2 for protecting the furnace bottom or increase the particle size of coke, which had been implemented up to that point, so that cost reduction was not possible. Was.

【0012】[0012]

【発明の効果】この発明は上記のごとく、高炉の解体調
査結果より見出だした実際の炉底侵食煉瓦の熱伝導率、
煉瓦侵食面の温度を取り込んで炉底の侵食ラインを推定
する方法であるから、炉底侵食ラインをより精度よく推
定可能となる。したがって、この発明によれば、炉底寿
命の予測精度が高められることにより、炉底寿命延長の
ための操業変更手段の時期を明確にすることが可能とな
りコスト合理化がはかられるとともに、高炉の吹卸し時
期を正確に決定することができるという、優れた効果を
奏する。
According to the present invention, as described above, the thermal conductivity of the actual furnace bottom erosion brick found from the dismantling investigation of the blast furnace,
Since this method estimates the erosion line at the hearth by taking in the temperature of the brick erosion surface, the erosion line at the hearth can be estimated more accurately. Therefore, according to the present invention, by improving the accuracy of predicting the life of the hearth, it is possible to clarify the timing of the operation change means for extending the life of the hearth, thereby reducing the cost, This has an excellent effect that the time of blowing can be accurately determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明におけるA高炉の解体調査結果と炉底
侵食推定ラインを示す説明図である。
FIG. 1 is an explanatory diagram showing a result of a dismantling inspection of a blast furnace A and a furnace bottom erosion estimation line in the present invention.

【図2】この発明の実施例における炉底煉瓦の侵食状態
を示す説明図で、(a)は過去最高の炉底煉瓦状態、
(b)は炉底侵食面が1350℃より低い場合の炉底侵
食状態、(c)は炉底侵食面上に凝固層が存在する状態
をそれぞれ示す。
FIG. 2 is an explanatory view showing an erosion state of a hearth brick in an embodiment of the present invention, wherein (a) is a state of a hearth brick which is the highest ever;
(B) shows the state of the bottom erosion when the bottom erosion surface is lower than 1350 ° C., and (c) shows the state where a solidified layer exists on the bottom erosion surface.

【図3】同上実施例における炉底侵食ラインの経時変化
を示す図である。
FIG. 3 is a diagram showing a temporal change of a furnace bottom erosion line in the embodiment.

【符号の説明】[Explanation of symbols]

1 シャモット煉瓦 2 カーボン煉瓦 3 炉底煉瓦温度実測位置 1 Chamotte brick 2 Carbon brick 3 Hearth brick temperature measurement position

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高炉炉底煉瓦の侵食ラインを伝熱計算に
より推定する方法において、炉底煉瓦侵食面の温度を溶
銑の凝固温度と出銑温度との間に設定し、炉底煉瓦侵食
面と溶銑の凝固温度等温面との間の領域における侵食煉
瓦の熱伝導率を当該健全煉瓦の熱伝導率に対して数倍大
きく設定した条件下で、炉底の複数箇所で測定した炉底
温度値のうち過去最高の炉底温度値に基づいて炉底煉瓦
内温度分布を推定計算し、該温度分布計算値の等温線に
基づき炉底侵食ラインを推定することを特徴とする高炉
炉底の侵食ライン推定方法。
1. A method for estimating an erosion line of a blast furnace bottom brick by heat transfer calculation, wherein the temperature of the erosion surface of the bottom furnace brick is set between the solidification temperature of hot metal and the tapping temperature, and The thermal conductivity of the eroded brick in the region between the hot metal and the solidification temperature isothermal surface is several times larger than that of the healthy brick.
Listen at the set conditions, the furnace bottom bricks based on record of the furnace bottom temperature value of the furnace bottom temperature values measured at a plurality of locations of the furnace bottom
Estimate the internal temperature distribution and calculate the isotherm of the calculated temperature distribution.
A method for estimating an erosion line on a blast furnace bottom, comprising estimating a bottom erosion line based on the blast furnace.
JP27712091A 1991-09-27 1991-09-27 Estimation method of erosion line at blast furnace bottom Expired - Lifetime JP2718305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27712091A JP2718305B2 (en) 1991-09-27 1991-09-27 Estimation method of erosion line at blast furnace bottom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27712091A JP2718305B2 (en) 1991-09-27 1991-09-27 Estimation method of erosion line at blast furnace bottom

Publications (2)

Publication Number Publication Date
JPH0586411A JPH0586411A (en) 1993-04-06
JP2718305B2 true JP2718305B2 (en) 1998-02-25

Family

ID=17579068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27712091A Expired - Lifetime JP2718305B2 (en) 1991-09-27 1991-09-27 Estimation method of erosion line at blast furnace bottom

Country Status (1)

Country Link
JP (1) JP2718305B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110781566B (en) * 2019-10-21 2023-06-27 中冶赛迪信息技术(重庆)有限公司 Hearth iron solidification layer calculation method, hearth iron solidification layer calculation system, storage medium and electronic terminal

Also Published As

Publication number Publication date
JPH0586411A (en) 1993-04-06

Similar Documents

Publication Publication Date Title
JP4752021B2 (en) Reduced blast operation method of blast furnace
JP2718305B2 (en) Estimation method of erosion line at blast furnace bottom
JP4119620B2 (en) In-furnace situation estimation method for blast furnace
JP4081248B2 (en) Control method of the lower part of the blast furnace
CN101798609A (en) Method for measuring lining temperature by adopting thermo-couple to diagnose lining conditions of blast-furnace bottom and lower hearth
JP2867918B2 (en) Method for estimating effective thickness of slag coating in smelting vessel
KR20030050868A (en) Estimation method for blast furnace hearth refractory thickness
Van Larr et al. Blast furnace refractories and cooling systems-the Hoogovens solution
JPS5848344Y2 (en) hot metal trough
JPH055117A (en) Method for detecting molten material level in refining vessel for metallurgy
JPH0978113A (en) Method for designing structure of furnace bottom in blast furnace
JP4276563B2 (en) Blast furnace bottom condition diagnosis method
JPS61104008A (en) Furnace body of blast furnace and other metallurgical furnace
JPH0227625B2 (en) TATEGATARONIOKERUROHEKIHYOMENGASURYUNOTSUYOSASUITEIHOHO
JP4276564B2 (en) Blast furnace operation method
JPH05295410A (en) Method for operating blast furnace
CN109186793A (en) Method for measuring heat preservation performance of metallurgical melt heat preservation agent
JPH09227911A (en) Operation of blast furnace
JPH0770617A (en) Method for repairing furnace bottom part in blast furnace
SU142655A1 (en) Blast Furnace High Temperature Nozzle
JP3740108B2 (en) Blast furnace hearth structure
JPS58153714A (en) Operation of blast furnace
Markarian et al. Understanding Blast Furnace Shell Behavior With Modern Engineering Techniques.(Retroactive Coverage)
JPS60141813A (en) Method for controlling refractory wall of refining furnace for molten steel
JPH0598330A (en) Structure for gas flow passage between smelting reduction furnace and pre-reduction furnace in smelting reduction iron-making device