KR20030050868A - Estimation method for blast furnace hearth refractory thickness - Google Patents

Estimation method for blast furnace hearth refractory thickness Download PDF

Info

Publication number
KR20030050868A
KR20030050868A KR1020010081404A KR20010081404A KR20030050868A KR 20030050868 A KR20030050868 A KR 20030050868A KR 1020010081404 A KR1020010081404 A KR 1020010081404A KR 20010081404 A KR20010081404 A KR 20010081404A KR 20030050868 A KR20030050868 A KR 20030050868A
Authority
KR
South Korea
Prior art keywords
thickness
thermocouple
blast furnace
temperature
furnace
Prior art date
Application number
KR1020010081404A
Other languages
Korean (ko)
Inventor
정진수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010081404A priority Critical patent/KR20030050868A/en
Publication of KR20030050868A publication Critical patent/KR20030050868A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/04Blast furnaces with special refractories
    • C21B7/06Linings for furnaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/28Arrangements of monitoring devices, of indicators, of alarm devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE: A method for estimating thickness of bricks of the bottom of blast furnace is provided to extend life cycle of the blast furnace by estimating accurate thickness of the bottom of the blast furnace reflecting change of cooling conditions of the outer part of metal case, thereby effectively controlling bricks of the bottom of the blast furnace. CONSTITUTION: In a method for estimating thickness of bricks of the bottom of blast furnace from heat information measured by first thermocouple (TC1) and second thermocouple (TC2) respectively installed on carbon brick and metal case having the same height, the method for estimating thickness of bricks of the bottom of the blast furnace comprises a step of measuring flow of heat flux flown to the side of the metal case of the outside by change of flow of inner molten iron and temperature of molten iron from the first thermocouple; a step of measuring change of heat transfer characteristics according to temperature of cooling water sprayed from the outer part of the metal case, flow rate variation and number of operation years from the second thermocouple; and a step of calculating thickness of bricks of the bottom of the blast furnace from the measured values by using temperature difference between carbon bricks and metal case and heat conductivity and thickness of components of the bottom part of the blast furnace.

Description

고로의 노저 연와 두께 추정 방법 {Estimation method for blast furnace hearth refractory thickness}Estimation method for blast furnace hearth refractory thickness

본 발명은 고로 노저 연와 두께를 추정하는 방법에 관한 것으로서, 보다 상세하게는, 철피 외부의 냉각 조건의 변화를 반영하여 정확한 노저 연와 두께를 추정함으로써, 고로 노저 연와를 효과적으로 관리하여 고로 수명을 연장시키는 고로 노저 연와 두께 추정 방법에 관한 것이다.The present invention relates to a method for estimating the furnace furnace lead and thickness, and more particularly, by accurately estimating the furnace lead and thickness by reflecting the change of cooling conditions outside the shell, thereby effectively managing the furnace furnace lead and extending the life of the furnace. Therefore, the present invention relates to a method of estimating the furnace lead and thickness.

고로 노저부의 연와는 1550 ℃ 이상 고온의 용선과 슬래그를 일시 저장하는 기능을 한다. 노저의 연와는 고온에 의한 연와내 열응력 발생에 의해 탈락되거나 용융물 배출시 용선 및 슬래그의 유동에 의해 기계적으로 침식된다. 이러한 노저부 연와의 침식이 상당한 두께까지 이루어지면, 고로 조업을 더 이상 진행하지 못하고 개수를 실시하여야 한다. 따라서, 고로 노저 연와는 고로 개수 시점을 판단하는 중요한 인자가 되며, 고로 노저 연와를 효과적으로 관리하기 위해서는 노저 연와의 침식 상태를 상시 감시하여야 한다.The edges of the furnace bottom section serve to temporarily store molten iron and slag with a high temperature of 1550 ℃ or higher. The flue of the furnace is eliminated by the generation of thermal stress in the follicle due to the high temperature or mechanically eroded by the flow of molten iron and slag when the melt is discharged. If the erosion of the bottom part reaches a considerable thickness, the blast furnace operation can no longer proceed and repair should be carried out. Therefore, the furnace blast furnace is an important factor in determining the number of blast furnaces, and in order to effectively manage the blast furnace, the erosion state of the furnace furnace should be constantly monitored.

일반적으로 노저 연와 두께를 추정하는 방법으로는 노저 연와에 삽입한 열전대의 온도로부터 열전달 해석에 의한 방법을 사용하고 있다. 일본 공개 특허 공보 昭56-1632207에서는 1차원 열전도 해석에 의해 이를 빠르게 계산하고 있으며, 昭 61-37328에서는 경계 요소법에 의한 2차원 열전도 해석과 선형 계획법을 이용하여 보다 정확한 잔존 연와 두께를 계산하고 있다.In general, as a method for estimating the bottom edge and thickness, a method by heat transfer analysis is used from the temperature of a thermocouple inserted into the bottom edge. Japanese Laid-Open Patent Publication No. 56-1632207 calculates this quickly by one-dimensional heat conduction analysis, and in 61-37328 calculates more accurate residual years and thicknesses using two-dimensional thermal conduction analysis by the boundary element method and linear programming.

한국 특허 출원 번호 1996-55995에서는 고로 노저 연와의 구조에 따른 열 유속선의 흐름을 각 열전대별로 계산하여, 이 선상에서 잔존 연와 추정식을 도출하여 계산의 정확성과 함께 소요 시간을 단축하는 방법을 사용하고 있다.In Korean Patent Application No. 1996-55995, a method of calculating the flow rate of heat flux according to the structure of blast furnace furnace tail is calculated for each thermocouple. have.

이러한 계산 과정에 필요한 냉각수 온도와 냉각수의 열전달 계수(h)는 철피 외부로 살수되는 냉각수의 유량 및 철피와 냉각수간의 열전달 특성을 고려하여 고정의 값으로 설정하여 사용하고 있다. 그러나, 냉각수 온도의 경우 계절에 따라 동절기 및 하절기에 큰 차이가 날 뿐 아니라, 냉각수의 유량 역시 시간에 따라 변화가 발생하고 있다. 그리고, 조업 연수의 증가에 따라 고로 철피에는 얇은 스케일 피막이 형성되기 때문에, 초기에 설정한 열전달 계수와는 차이가 발생하게 된다. 따라서, 1차원 혹은 2차원 모델을 이용하여 연와 두께 추정 방법을 개발하더라도 근본적으로 정확한 냉각수의 냉각 조건을 모델에 반영하지 못하면, 계산 결과가 실제 상황과는 큰 차이를 보이게 되는 문제점을 갖고 있다.The cooling water temperature and the heat transfer coefficient (h) of the cooling water required for the calculation process are set to a fixed value in consideration of the flow rate of the cooling water sprayed to the outside of the shell and the heat transfer characteristics between the shell and the cooling water. However, in the case of the coolant temperature, not only a big difference occurs in winter and summer depending on the season, but the flow rate of the coolant is also changing with time. In addition, since a thin scale film is formed on the blast furnace bark as the number of operating years increases, a difference arises from the heat transfer coefficient set initially. Therefore, even if the method for estimating the lead and thickness using a one-dimensional or two-dimensional model does not reflect the cooling conditions of the coolant fundamentally accurate, there is a problem that the calculation results show a big difference from the actual situation.

따라서, 실제 조업상에서 냉각수의 유량 및 온도 변화나 조업 연수에 따른 열전달 능력의 변화를 고려하여 정확한 노저 연와 두께를 추정할 수 있는 방법이 요구된다.Therefore, there is a need for a method capable of accurately estimating the edge and thickness of the cooler in consideration of changes in the flow rate and temperature of the coolant or the change in heat transfer capacity according to the number of years of operation.

상기와 같은 종래 기술의 문제점을 해결하기 위한 본 발명의 목적은 동일한 높이의 카본 연와 및 철피에 2단의 열전대를 설치함으로써, 실조업에서의 냉각수의 유량 및 온도 변화를 반영하여 정확한 노저 연와 두께를 추정하는 방법을 제공하기 위한 것이다.An object of the present invention for solving the problems of the prior art as described above is to install a two-stage thermocouple at the same height carbon lead and steel shell, to reflect the change in the flow rate and temperature of the cooling water in the actual industry to accurately measure the edge and edge thickness It is to provide a method for estimating.

도 1은 본 발명의 일 실시예에 따른 열전대의 설치 구조를 개략적으로 나타낸 개념도이고,1 is a conceptual diagram schematically showing an installation structure of a thermocouple according to an embodiment of the present invention;

도 2는 동일한 높이에 설치한 카본 연와와 철피에서의 열전대의 온도를 도시한 그래프이고,2 is a graph showing the temperature of thermocouples in carbon wire and steel bar installed at the same height,

도 3은 본 발명과 기존 발명의 열전대 두께 추정치의 일예를 보여주는 예시도이다.Figure 3 is an exemplary view showing an example of the thermocouple thickness estimate of the present invention and the existing invention.

※ 도면의 주요 부분에 대한 부호의 설명 ※※ Explanation of code about main part of drawing ※

101 : 카본 연와 102 : 스탬프 충진재101: carbon lead 102: stamp filler

103 : 철피 104 : 출선구103: shelter 104: exit

105 : 슬래그 106 : 용선105: slag 106: molten iron

상기한 목적을 달성하기 위하여 본 발명에 따르면, 동일한 높이의 카본 연와 및 철피에 각각 설치된 제 1 열전대(TC1) 및 제 2 열전대(TC2)가 측정한 열 정보로부터 고로 노저 연와 두께를 추정하는 방법에 있어서, 상기 제 1 열전대로부터 내부 용선 유동 및 용선 온도의 변화에 의하여 상기 외부의 철피측으로 흐르는 열 유속의 흐름을 측정하는 단계; 상기 제 2 열전대로부터 상기 철피 외부에서 살수되는 냉각수의 온도, 유량 변화 및 조업 연수에 따른 열전달 특성 변화를 측정하는 단계; 및 상기 측정값들로부터 카본 연와 온도 및 철피 온도의 차와 노저부의 구성 성분의 열전도도 및 두께를 이용하여 노저의 연와 두께를 계산하는 단계; 를 포함하는 것을 특징으로 하는 고로의 노저 연와 두께 추정 방법을 제공한다.In order to achieve the above object, according to the present invention, in the method of estimating the furnace furnace edge and thickness from the thermal information measured by the first thermocouple (TC1) and the second thermocouple (TC2) respectively installed in the carbon lead and the bark of the same height The method of claim 1, further comprising: measuring a flow of heat flux flowing from the first thermocouple to the outer shell side by a change in the internal molten iron flow and the molten iron temperature; Measuring a change in heat transfer characteristics of the cooling water sprinkled outside the shell from the second thermocouple according to a temperature, a flow rate change, and operation years; And calculating the lead and thickness of the furnace from the measured values using the difference in carbon lead and temperature and the shell temperature and the thermal conductivity and thickness of the components of the furnace. It provides a method of estimating the edge and thickness of the furnace blast furnace comprising a.

이하, 첨부된 도면을 참조하면서 본 발명의 일 실시예에 따른 고로의 노저 연와 두께 추정 방법을 보다 상세하게 설명하기로 한다.Hereinafter, the method of estimating the bottom edge and thickness of the blast furnace according to an embodiment of the present invention with reference to the accompanying drawings will be described in more detail.

도 1은 본 발명의 일 실시예에 따른 열전대의 설치 구조를 개략적으로 나타낸 개념도이다.1 is a conceptual diagram schematically showing the installation structure of a thermocouple according to an embodiment of the present invention.

동일한 높이의 카본 연와 및 철피에 각각 제 1 열전대(TC1) 및 제 2 열전대(TC2)를 설치한다. 이때, 카본 연와에 설치한 상기 제 1 열전대는 내부 용선 유동 및 용선 온도의 변화에 의하여 외부의 철피측으로 흐르게 되는 열 유속의 흐름을 측정하게 된다. 그리고, 철피에 설치한 상기 제 2 열전대는 철피 외부에서 살수되는 냉각수의 온도, 유량 변화 및 조업 연수에 따른 열전달 특성의 변화를 측정하게 된다. 따라서, 이와 같은 두개의 열전대 정보를 이용하여 열전달 방정식을세울 수 있으며, 이때 노저 연와 두께의 추정식은 아래의 [수학식 1]과 같이 표현된다.The first thermocouple TC1 and the second thermocouple TC2 are respectively installed on carbon edges and steel bar of the same height. At this time, the first thermocouple installed in the carbon edema is to measure the flow of the heat flux flowing to the outer shell side by the change of the internal molten iron flow and the molten iron temperature. In addition, the second thermocouple installed on the steel bar measures the change in temperature, flow rate change and heat transfer characteristics of the cooling water sprayed outside the steel bar according to the number of years of operation. Therefore, a heat transfer equation can be established using the two thermocouple information. In this case, the equation of the bottom edge and the thickness is expressed as Equation 1 below.

여기서, TC1은 카본 연와 내의 열전대 온도(℃)이고, TC2는 철피내의 열전대 온도이며, k1은 카본 연와의 열전도도(kcal/mh℃)이고, k2는 스탬프 충진재 열전도도(kcal/mh℃)이며, k3는 철피의 열전도도(kcal/mh℃)이고, lx는 연와 침식선의 두께(m)이며, l1은 제 1 열전대에서 스탬프까지의 거리이고, l2는 스탬프 충진재의 두께(m)이며, l3는 스탬프 충진재에서 제 2 열전대까지의 거리(m)이다.Where TC1 is the thermocouple temperature (° C.) in the carbon lead, TC2 is the thermocouple temperature in the bark, k 1 is the thermal conductivity (kcal / mh ° C.) of the carbon lead, and k 2 is the thermal conductivity of the stamp filler (kcal / mh). ° C), k 3 is the thermal conductivity of the bark (kcal / mh ° C), l x is the thickness of the lead and erosion line (m), l 1 is the distance from the first thermocouple to the stamp, and l 2 is the stamp filler Thickness m and l 3 is the distance m from the stamp filler to the second thermocouple.

도 2는 동일한 높이에 설치한 카본 연와와 철피에서의 열전대의 온도를 도시한 그래프이다.Fig. 2 is a graph showing the temperatures of thermocouples in carbon wire and steel bar installed at the same height.

카본 연와 온도(TC1)는 고로 내부 용선 온도의 변화에 의해 200 ℃ ~ 300 ℃ 사이에서 변화하고, 철피 온도(TC2)는 냉각수 유속, 온도 및 철피에 형성된 스케일과 같은 열전달 특성의 변화에 따라 20 ℃ ~ 55 ℃ 사이에서 변화하고 있다.Carbon lead and temperature (TC1) are changed between 200 ℃ and 300 ℃ by the change of the molten iron temperature inside the blast furnace, the shell temperature (TC2) is 20 ℃ depending on the change of heat transfer characteristics such as cooling water flow rate, temperature and scale formed on the shell It is changing between -55 degreeC.

아래의 [표 1]은 본 계산에 사용되는 물성치이다.Table 1 below shows the physical properties used in this calculation.

열전도도(kcal/mh℃)Thermal conductivity (kcal / mh ℃) 두께(m)Thickness (m) k1 k 1 1010 l1 l 1 0.10.1 k2 k 2 1One l2 l 2 0.080.08 k3 k 3 4040 l3 l 3 0.060.06

이러한 온도 정보 및 상기 [표 1]에 도시된 각 고로 성분의 물성치를 상기 [수학식 1]에 입력하여 노저 연와 두께를 추정하면 도 3과 같이 나타난다.The temperature information and the physical property values of each blast furnace component shown in [Table 1] are input to [Equation 1] to estimate the edge length and thickness of the furnace, as shown in FIG. 3.

기존 발명과 본 발명은 날짜에 따라 노저 연와 두께의 추정 결과에 차이를 나타내고 있는데 이러한 차이는 기본 발명의 경우, 냉각수 유속과 온도의 변화를 반영하지 못하였기 때문이다.The present invention and the present invention show a difference in the estimation result of the bottom lead and thickness according to the date, because the difference did not reflect the change in the coolant flow rate and temperature in the case of the basic invention.

즉, 기존 발명의 경우는 냉각수 온도를 20 ℃, 철피와 냉각수 사이의 열전달 계수를 6000kcal/m2hr로 일정하게 설정하여 계산하였다. 따라서, 1월 ~ 2월의 경우에는 온도가 유사하기 때문에 계산의 차이가 심하지 않지만, 7월 ~ 9월의 경우에는 큰 차이를 보이고 있다.That is, in the case of the existing invention was calculated by setting the cooling water temperature constant 20 ℃, constant heat transfer coefficient between the shell and the cooling water to 6000kcal / m 2 hr. Therefore, in January-February, the difference in calculation is not significant because the temperature is similar, but in July-September, there is a big difference.

위에서 양호한 실시예에 근거하여 이 발명을 설명하였지만, 이러한 실시예는 이 발명을 제한하려는 것이 아니라 예시하려는 것이다. 이 발명이 속하는 분야의 숙련자에게는 이 발명의 기술사상을 벗어남이 없이 위 실시예에 대한 다양한 변화나 변경 또는 조절이 가능함이 자명할 것이다. 그러므로, 이 발명의 보호범위는 첨부된 청구범위에 의해서 한정될 것이며, 위와 같은 변화예나 변경예 또는 조절예를 모두 포함하는 것으로 해석되어야 할 것이다.While the invention has been described above based on the preferred embodiments thereof, these embodiments are intended to illustrate rather than limit the invention. It will be apparent to those skilled in the art that various changes, modifications, or adjustments to the above embodiments can be made without departing from the spirit of the invention. Therefore, the protection scope of the present invention will be limited by the appended claims, and should be construed as including all such changes, modifications or adjustments.

이상과 같이 본 발명에 의하면, 2단 열전대에 의한 잔존 연와 추정식을 사용하여 냉각수 온도 및 유동의 변화에 따른 효과를 반영함으로써, 정확한 잔존 연와 두께의 추정이 가능하며, 이에 따라 고로 노저 연와를 안정적으로 관리함으로써, 고로 수명을 연장시키는 효과가 있다.As described above, according to the present invention, it is possible to accurately estimate the remaining lead and thickness by reflecting the effect of the change in the cooling water temperature and flow by using the residual lead and the estimation equation by the two-stage thermocouple, and thus the blast furnace furnace lead is stable. In this way, the blast furnace life is extended.

Claims (2)

동일한 높이의 카본 연와 및 철피에 각각 설치된 제 1 열전대(TC1) 및 제 2 열전대(TC2)가 측정한 열 정보로부터 고로 노저 연와 두께를 추정하는 방법에 있어서,In the method of estimating the blast furnace furnace edge and thickness from the thermal information measured by the first thermocouple (TC1) and the second thermocouple (TC2) respectively installed on the carbon wire and the iron bar of the same height, 상기 제 1 열전대로부터 내부 용선 유동 및 용선 온도의 변화에 의하여 상기 외부의 철피측으로 흐르는 열 유속의 흐름을 측정하는 단계;Measuring a flow rate of the heat flux flowing from the first thermocouple to the outer shell side by a change in the inner molten iron flow and the molten iron temperature; 상기 제 2 열전대로부터 상기 철피 외부에서 살수되는 냉각수의 온도, 유량 변화 및 조업 연수에 따른 열전달 특성 변화를 측정하는 단계; 및Measuring a change in heat transfer characteristics of the cooling water sprinkled outside the shell from the second thermocouple according to a temperature, a flow rate change, and operation years; And 상기 측정값들로부터 카본 연와 온도 및 철피 온도의 차와 노저부의 구성 성분의 열전도도 및 두께를 이용하여 노저의 연와 두께를 계산하는 단계;Calculating the lead and thickness of the furnace from the measured values using the difference in carbon lead and temperature and the shell temperature and the thermal conductivity and thickness of the components of the furnace; 를 포함하는 것을 특징으로 하는 고로의 노저 연와 두께 추정 방법.The furnace edge and thickness estimation method of the blast furnace, characterized in that it comprises a. 제 1 항에 있어서,The method of claim 1, 상기 노저 연와 두께는 아래의 [식 1]에 의하여 결정하는 것을 특징으로 하는 고로의 노저 연와 두께 추정 방법.The furnace edge and thickness estimation method of the furnace edge and thickness of the blast furnace, characterized in that determined by the following formula (1). [식 1][Equation 1] 여기서, TC1은 카본 연와 내의 열전대 온도(℃)이고, TC2는 철피내의 열전대 온도이며, k1은 카본 연와의 열전도도(kcal/mh℃)이고, k2는 스탬프 충진재 열전도도(kcal/mh℃)이며, k3는 철피의 열전도도(kcal/mh℃)이고, lx는 연와 침식선의 두께(m)이며, l1은 제 1 열전대에서 스탬프까지의 거리이고, l2는 스탬프 충진재의 두께(m)이며, l3는 스탬프 충진재에서 제 2 열전대까지의 거리(m)이다.Where TC1 is the thermocouple temperature (° C.) in the carbon lead, TC2 is the thermocouple temperature in the bark, k 1 is the thermal conductivity (kcal / mh ° C.) of the carbon lead, and k 2 is the thermal conductivity of the stamp filler (kcal / mh). ° C), k 3 is the thermal conductivity of the bark (kcal / mh ° C), l x is the thickness of the lead and erosion line (m), l 1 is the distance from the first thermocouple to the stamp, and l 2 is the stamp filler Thickness m and l 3 is the distance m from the stamp filler to the second thermocouple.
KR1020010081404A 2001-12-19 2001-12-19 Estimation method for blast furnace hearth refractory thickness KR20030050868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010081404A KR20030050868A (en) 2001-12-19 2001-12-19 Estimation method for blast furnace hearth refractory thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010081404A KR20030050868A (en) 2001-12-19 2001-12-19 Estimation method for blast furnace hearth refractory thickness

Publications (1)

Publication Number Publication Date
KR20030050868A true KR20030050868A (en) 2003-06-25

Family

ID=29576556

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010081404A KR20030050868A (en) 2001-12-19 2001-12-19 Estimation method for blast furnace hearth refractory thickness

Country Status (1)

Country Link
KR (1) KR20030050868A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433409A (en) * 2011-12-08 2012-05-02 南通宝钢钢铁有限公司 Embedding and thickness measuring method for thermocouple on erosion part of blast furnace crucible
CN110527769A (en) * 2018-07-18 2019-12-03 广东韶钢松山股份有限公司 A kind of residual thick judgment method of blast furnace crucibe carbon brick
CN111854668A (en) * 2020-08-25 2020-10-30 中冶赛迪工程技术股份有限公司 Blast furnace lining thickness calculation device and method based on distributed optical fiber temperature measurement
WO2022150897A1 (en) * 2021-01-14 2022-07-21 Saint-Gobain do Brasil Produtos Industriais e para Construção Ltda. System and method for measuring the thickness of refractories
CN115466809A (en) * 2021-06-10 2022-12-13 宝山钢铁股份有限公司 Control method for cooling system of blast furnace drying
CN115747399A (en) * 2022-11-22 2023-03-07 武汉钢铁有限公司 Method for repairing hearth thermocouple of blast furnace in later campaign

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154509A (en) * 1979-05-23 1980-12-02 Kawasaki Steel Corp Estimating method for remaining thickness of brick in blast furnace hearth bottom
KR940008056A (en) * 1992-09-22 1994-04-28 김광호 Semiconductor device and manufacturing method thereof
KR20000043425A (en) * 1998-12-29 2000-07-15 이구택 Method and apparatus for measuring thickness of brick in bottom part of shaft furnace by measuring thermal flux

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154509A (en) * 1979-05-23 1980-12-02 Kawasaki Steel Corp Estimating method for remaining thickness of brick in blast furnace hearth bottom
KR940008056A (en) * 1992-09-22 1994-04-28 김광호 Semiconductor device and manufacturing method thereof
KR20000043425A (en) * 1998-12-29 2000-07-15 이구택 Method and apparatus for measuring thickness of brick in bottom part of shaft furnace by measuring thermal flux

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433409A (en) * 2011-12-08 2012-05-02 南通宝钢钢铁有限公司 Embedding and thickness measuring method for thermocouple on erosion part of blast furnace crucible
CN110527769A (en) * 2018-07-18 2019-12-03 广东韶钢松山股份有限公司 A kind of residual thick judgment method of blast furnace crucibe carbon brick
CN110527769B (en) * 2018-07-18 2021-04-30 广东韶钢松山股份有限公司 Method for judging residual thickness of carbon brick in blast furnace hearth
CN111854668A (en) * 2020-08-25 2020-10-30 中冶赛迪工程技术股份有限公司 Blast furnace lining thickness calculation device and method based on distributed optical fiber temperature measurement
WO2022150897A1 (en) * 2021-01-14 2022-07-21 Saint-Gobain do Brasil Produtos Industriais e para Construção Ltda. System and method for measuring the thickness of refractories
CN115466809A (en) * 2021-06-10 2022-12-13 宝山钢铁股份有限公司 Control method for cooling system of blast furnace drying
CN115466809B (en) * 2021-06-10 2023-10-17 宝山钢铁股份有限公司 Control method for cooling system of blast furnace baking furnace
CN115747399A (en) * 2022-11-22 2023-03-07 武汉钢铁有限公司 Method for repairing hearth thermocouple of blast furnace in later campaign
CN115747399B (en) * 2022-11-22 2024-05-31 武汉钢铁有限公司 Repairing method of furnace hearth thermocouple in later stage of blast furnace service

Similar Documents

Publication Publication Date Title
JP4752021B2 (en) Reduced blast operation method of blast furnace
KR20030050868A (en) Estimation method for blast furnace hearth refractory thickness
CN110781566B (en) Hearth iron solidification layer calculation method, hearth iron solidification layer calculation system, storage medium and electronic terminal
US3247714A (en) Pyrometer
JP4119620B2 (en) In-furnace situation estimation method for blast furnace
JP5007945B2 (en) Estimation method of electric furnace slag coating thickness by unsteady heat transfer analysis
JP2000088247A (en) Preheating display system for chicken cooking pan
RU2286523C2 (en) Method of control of refractory wearing out
RU2044058C1 (en) Method for control of erosion of blast-furnace well
JP4081248B2 (en) Control method of the lower part of the blast furnace
KR100332909B1 (en) Method for calculating radiation heat from staves of furnace body in corex melting furnace
KR940009666B1 (en) Temperature revision method of thermo-couple
JPS5818401B2 (en) Continuous heating furnace control method
JPS5826989A (en) Method of cooling furnace bottom section of shaft furnace, etc.
JPH0978113A (en) Method for designing structure of furnace bottom in blast furnace
Kotacska et al. Prediction of Glass Furnace Life by Refractory Thermal Conductivity
KR100348064B1 (en) Method for selecting optimal drilling position of tap hole on bottom of blast furnace
KR100429146B1 (en) Method for measuring the erasion of cooling plate in the blast furnace
JP2718305B2 (en) Estimation method of erosion line at blast furnace bottom
KR100851188B1 (en) method for prolonging of blast furnace stave campaign life
JPS62257004A (en) Method for detecting eroded state of furnace floor wall of shaft furnace
KR950018499A (en) Estimation method of refractory erosion of Daetang Island
JPS58153714A (en) Operation of blast furnace
Jaeger et al. Thermal shock resistant zirconia nozzles for continuous copper casting
JP2005076935A (en) Billet heating furnace and operation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application