KR100332909B1 - Method for calculating radiation heat from staves of furnace body in corex melting furnace - Google Patents

Method for calculating radiation heat from staves of furnace body in corex melting furnace Download PDF

Info

Publication number
KR100332909B1
KR100332909B1 KR1019970067752A KR19970067752A KR100332909B1 KR 100332909 B1 KR100332909 B1 KR 100332909B1 KR 1019970067752 A KR1019970067752 A KR 1019970067752A KR 19970067752 A KR19970067752 A KR 19970067752A KR 100332909 B1 KR100332909 B1 KR 100332909B1
Authority
KR
South Korea
Prior art keywords
temperature
heat
dissipation
radiation heat
thermocouple
Prior art date
Application number
KR1019970067752A
Other languages
Korean (ko)
Other versions
KR19990048925A (en
Inventor
서영근
Original Assignee
이구택
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 주식회사 포스코 filed Critical 이구택
Priority to KR1019970067752A priority Critical patent/KR100332909B1/en
Publication of KR19990048925A publication Critical patent/KR19990048925A/en
Application granted granted Critical
Publication of KR100332909B1 publication Critical patent/KR100332909B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • C21B13/143Injection of partially reduced ore into a molten bath
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/24Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE: A method which is capable of calculating radiation heat having credibility even when supply of cooling water is stopped at one or more staves of the furnace body by analyzing thermal conduction for staves of the furnace body using finite element method and calculating thus applying radiation heat. CONSTITUTION: The method for calculating radiation heat from staves of the furnace body in COREX melting furnace comprises first step of determining the range in which temperature of thermocouples is capable of being changed, and setting the minimum of the range as the lowest temperature and the maximum of the range as the highest temperature; second step of obtaining temperature distribution by using the lowest temperature as temperature of the boundary surface at position of the thermocouples, applying convection current boundary condition in case that cooling water is steadily flown on the boundary surface of the inner surface of cooling pipes, applying adiabatic condition in case that supply of cooling water is stopped, applying convection current condition to the boundary surface of the outer surface of metal case and applying adiabatic conditions to the rest of boundary surfaces, thereby solving a thermal conduction equation using finite element method; third step of obtaining radiation heat of the furnace body using the temperature distribution using the following equation I: Qr=Q1+Q2=hAs(Ts-Ta)+QHAt(Tt-Tw) where Qr is radiation heat emitted from stave , Q1 is radiation heat emitted from iron shell, Q2 is radiation heat emitted from cooling pipe, h is thermal conductivity coefficient on outer surface of iron shell, As is area of stave, Ts is mean temperature on outer surface of iron shell, Ta is atmosphere temperature, H is thermal conductivity coefficient in cooling pipe, At is sectional area of cooling pipe, Tt is mean temperature on outer surface of cooling pipe, and Tw is temperature of cooling water; fourth step of repeating the above steps from the second step by increasing temperature of the thermocouples of the second step as much as a certain amount of temperature if the temperature of the boundary surface is lower than the highest temperature and proceeding the following fifth step if the temperature of the boundary surface is higher than the highest temperature after determining whether temperature of the boundary surface at the position of thermocouples is higher or lower than the highest temperature; fifth step of deriving relation of the set thermocouple temperature (T) and obtained radiation heat (Qr) into a linear expression; and sixth step of obtaining radiation heat by substituting the actually measured temperatures of the thermocouples for the obtained linear expression.

Description

코렉스 용융로 노체 스테이브의 방산열 산정방법Calculation method of heat dissipation of corex melting furnace furnace stave

본 발명은 코렉스 용융로 노체 스테이브(stave)의 방산열 산정방법에 관한 것으로, 보다 상세하게는 노체 스테이브 내의 냉각관으로 냉각수 유입이 하나 중단되거나, 냉각수 유입중단이 여러개일 때도 방산열을 산정할 수 있는 방법에 관한 것이다.The present invention relates to a method for calculating the heat dissipation of a furnace stave of a corex furnace, and more particularly, the heat dissipation heat can be calculated even when one of the cooling water is stopped in the cooling pipe in the furnace stave or there are several cooling water inlet stops. It is about how it can be.

코렉스 용융로는 도 1에서 보인 바와 같으며, 용융로 상부에서 장입되는 환원광석을 풍구를 통해 취입되는 산소와 석탄의 연소반응에 의해 발생하는 반응열을 열원으로하여 용해시켜 선철을 생산하는 설비이다. 이러한 용융로의 내부에는 고온(1000 - 1200℃)을 유지하기 때문에 노체 철피를 보호하기 위해서 냉각장치로서 스테이브를 채용하고 있다. 그런데 노내조건이나 냉각조건 등에 의해서 철피가 과도한 열부하를 받게되는 경우가 조업중에 종종 발생하는 문제가 발생기도 한다. 따라서 조업자들은 스테이브가 받는 방산열을 정량적으로 산정하여 철피의 열부하를 항상 모니터링하고 관리하고 있다.Correx melting furnace is shown in Figure 1, is a facility for producing pig iron by melting the heat of reaction generated by the combustion reaction of oxygen and coal blown through the ore reduced ore charged from the top of the furnace as a heat source. Since a high temperature (1000-1200 degreeC) is maintained inside such a melting furnace, the stave is employ | adopted as a cooling apparatus in order to protect a furnace shell. However, the problem that often occurs during operation is the case in which the shell is subjected to excessive heat load due to the furnace conditions or cooling conditions. Therefore, operators quantitatively calculate the heat dissipated by the stave and always monitor and manage the heat load of the shells.

종래에 방산열의 산정방법으로 냉각수의 입출력의 온도를 이용하는 방법이 있다. 이 방법은 방산열을 산정하기 위해서 냉각수의 입구온도와 출구온도를 측정하여 방산열을 하기식 1로 산정하였다.Conventionally, there is a method of using the temperature of the input and output of the cooling water as a method of calculating the heat of dissipation. In this method, in order to calculate the heat of dissipation, the heat dissipation was calculated by the following equation 1 by measuring the inlet temperature and the outlet temperature of the cooling water.

Qr= m Cp (Tout- Tin)Q r = m Cp (T out -T in )

상기식 1에서 m은 냉각수의 유량을, Cp는 냉각수의 비열을, Tour, Tin은 냉각수의 출구온도와 입구온도를 나타낸다. 즉, 방산열을 냉각수의 승온에 의한 현열의 변화로 나타낸 것이다. 하지만 이 방법은 스테이브등이 파손되어 냉각수의 공급이 중단되거나 하면 적용할 수 없는 문제점이 있다. 또한, 보통 스테이브 내에는 4-5개의 냉각관이 있는데 이중 냉각수의 공급이 중단된 냉각관의 갯수가 여러개일 때는 이 방법에 의한 방산열에 큰 오차가 발생하게 되는 문제점이 있다.In Equation 1, m represents the flow rate of the cooling water, Cp represents the specific heat of the cooling water, and T our , T in represents the outlet temperature and the inlet temperature of the cooling water. That is, the heat of dissipation is represented by the change of sensible heat by the temperature increase of cooling water. However, this method has a problem that can not be applied if the supply of cooling water is interrupted because the stave is damaged. In addition, there are usually 4-5 cooling tubes in the stave, there is a problem that a large error occurs in the heat of dissipation by this method when the number of cooling tubes in which double cooling water supply is stopped.

이에, 본 발명자는 상기 문제점을 해결하기 위해 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 노체 스테이브에 대하여 유한요소법으로 열전도 해석을 행하여 방산열을 계산하여 이를 적용함으로써, 노체 스테이브에 냉각수 공급이 하나 또는 그 이상 중단되는 경우에도 신빙성 있는 방산열을 산정할 수 있는 방법을 제공하고자 하는데, 그 목적이 있다.In order to solve the above problems, the present inventors have repeatedly conducted research and experiments and propose the present invention based on the results. The present invention calculates heat dissipation by performing heat conduction analysis by finite element method on a furnace stave. By applying this, it is an object of the present invention to provide a method for calculating reliable heat dissipation even when one or more cooling water supply to the furnace stave is stopped.

도 1은 코렉스 용융로의 모식도1 is a schematic diagram of a corex melting furnace

도 2는 본 발명에 의한 노체 방산열 산정방법에 관한 순서도2 is a flow chart related to a method for calculating heat dissipation heat according to the present invention.

도 3은 노체 스테이브의 단면도3 is a cross-sectional view of the furnace stave

도 4는 노체 스테이브를 해석영역으로 구분한 모식도4 is a schematic diagram of a furnace stave divided into analysis regions;

도 5는 본 발명 실시예에 적용된 노체 스테이브의 모식도5 is a schematic diagram of a furnace stave applied to an embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 ,,,, 철피 2 .... 스탬프(stamp)1 ,,,, sill 2 .... stamp

3 .... 스테이브(stave) 4 .... 냉각관3 .... stave 4 .... cooling line

5 .... 연와 7 .... 열전대5 .... lead and 7 .... thermocouple

상기 목적을 달성하기 위한 본 발명은 철피, 스탬프, 스테이브, 및 열전대를 갖는 연와로 구성되고, 일정갯수의 냉각관을 내부에 포함하는 코렉스 용융로의 노체 스테이브 방산열을 산정하는 방법에 있어서,In the present invention for achieving the above object is a method for calculating the heat dissipation heat of the core stave of the Korex melting furnace consisting of a lead, having a shell, a stamp, a stave, and a thermocouple, comprising a certain number of cooling tubes therein,

철피, 스탬프, 스테이브, 및 열전대를 갖는 연와로 구성되고, 일정갯수의 냉각관을 내부에 포함하는 코렉스 용융로의 노체 스테이브 방산열을 산정하는 방법에 있어서,In the method for calculating the heat dissipation heat of the furnace stave of the Korex fusion furnace consisting of a shell, a stamp, a stave, and a lead having a thermocouple, and including a certain number of cooling tubes therein,

열전대의 온도가 변화할 수 있는 범위를 정하고, 그 범위의 최소를 최소온도로 하고, 최대를 최고온도로 설정하는 1단계;Determining a range in which the temperature of the thermocouple can change, setting a minimum of the range as a minimum temperature, and setting a maximum to a maximum temperature;

열전대위치에서의 경계면의 온도를 최소온도로 주고, 냉각관 내면의 경계면에서는 냉각수가 정상적으로 흐르는 경우에는 대류 경계조건을 주고 냉각수의 공급이 중단된 경우에는 단열조건을 주며, 철피외면의 경계면에는 대류조건을 주고, 그외의 경계면에는 모두 단열조건을 주어서, 유한요소법으로 열전도 방정식을 풀이하여 온도분포를 구하는 2단계;The minimum temperature of the interface at the thermocouple location is given to the minimum temperature, convection boundary condition is given when the coolant flows normally at the interface of the inner surface of the cooling tube, and adiabatic condition is provided when the supply of cooling water is stopped. 2 steps of obtaining a temperature distribution by solving the heat conduction equation by the finite element method by giving a thermal insulation condition to all other interfaces;

상기 온도분포를 하기식 2에 적용하여 노체의 방산열을 구하는 3단계;Applying the temperature distribution to Equation 2 below to obtain dissipation heat of the furnace body;

Qr=Q1+Q2 Q r = Q 1 + Q 2

Figure 1019970067752_B1_M0003
Figure 1019970067752_B1_M0003

( 여기서, Qr은 스테이브의 방산열, Q1은 철피로 나가는 방산열, Q2는 냉각관으로 나가는 방산열, h는 철피외면에서의 열전달계수, AS는 스테이브의 면적, TS는 철피외면의 평균온도, Ta는 외부대기온도를 나타내고, H는 냉각관에서의 열전달계수, At는 냉각관의 단면적, Tt는 냉각관외면에서의 평균온도, Tw는 냉각수의 온도를 나타낸다.)Where Q r is the heat of dissipation of the stave, Q 1 is the heat of dissipation to the shell, Q 2 is the heat of dissipation to the cooling tube, h is the heat transfer coefficient at the outer surface of the shell, A S is the area of the stave, and T S Is the average temperature of the outer surface of the shell, T a is the external air temperature, H is the heat transfer coefficient in the cooling tube, A t is the cross-sectional area of the cooling tube, T t is the average temperature on the outer surface of the cooling tube, and T w is the temperature of the cooling water. Is displayed.)

상기 열전대위치에서의 경계면의 온도가 최고온도보다 높은가 낮은가를 판단하여, 낮으면 상기 2단계의 열전대온도를 일정량의 온도만큼 증가시켜서 2단계 부터 반복 수행하고, 높으면 다음의 5단계를 진행시킴을 판단하는 4단계;It is determined whether the temperature of the interface at the thermocouple position is higher or lower than the maximum temperature. If the temperature is low, the thermocouple temperature of step 2 is increased by a certain amount of temperature and repeated from step 2, and if it is high, the next step 5 is determined. 4 steps;

상기 설정된 열전대 온도(T) 와 얻어진 방산열(Qr)의 관계를 하기식 3과 같은 일차식으로 도출하는 5단계;A fifth step of deriving the relationship between the set thermocouple temperature (T) and the obtained heat of dissipation (Q r ) by a first equation such as the following Equation 3;

Qr= aT + b ( 여기서, a, b 는 상수)Q r = aT + b, where a and b are constants

상기 얻어진 일차식에 열전대의 실측온도를 대입하여 방산열을 구하는 6단계를 포함하여 구성되는 코렉스 용융로의 노체 스테이브 방산열 산정방법에 관한 것이다.It relates to a method for calculating the heat dissipation heat of the furnace stave of the Korex smelting furnace comprising six steps of obtaining the dissipation heat by substituting the measured temperature of the thermocouple into the primary equation obtained above.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

도 2는 본 발명에 의한 노체 스테이브에서의 방산열 산정방법에 관한 흐름도를 나타내고 있다. 이 흐름도를 중심으로 본 발명을 상세히 설명하고자 한다.2 is a flowchart illustrating a method for calculating dissipation heat in a furnace stave according to the present invention. The present invention will be described in detail with reference to this flowchart.

먼저, 본 발명에서는 열전대의 온도가 변화할 수 있는 범위를 정하고, 그 범위의 최소를 최소온도로 하고, 최대를 최고온도로 설정하는 단계를 거친다.First, in the present invention, the temperature range of the thermocouple can be determined, the minimum of the range is set to the minimum temperature, and the maximum is set to the maximum temperature.

또한, 본 발명에서는, 노체 스테이브에 대하여 유한요소법으로 열전도해석을 행하는 단계를 거친다.Further, in the present invention, thermal conduction analysis is performed on the furnace stave by the finite element method.

이 단계에서 노체 스테이브를 열전도해석하기 위해서 해석영역을 도 3에 보인 바와 같이 노체 연와전부를 잡게되면 노내면에서 노내온도를 알아야 한다. 하지만 노내온도는 조업중에 특별히 측정하지 않기 때문에 알 수가 없다. 따라서 본 발명에서는 해석영역을 열전대가 삽입된 위치까지의 연와를 잡는다. 이 해석영역을 나타낸 것이 도 4이다. 이렇게 하면 노내온도나 연와의 잔존두께에 상관없이 노체 스테이브에 대한 열전도해석이 가능해진다. 한편 경계조건은 다음과 같다.In this step, in order to analyze the heat conduction of the furnace body stave, as shown in FIG. However, the furnace temperature is not known because it is not specially measured during operation. Therefore, in the present invention, the analysis region is connected to the position where the thermocouple is inserted. 4 shows this analysis region. This makes it possible to analyze the thermal conductivity of the furnace stave irrespective of the furnace temperature or the remaining thickness of the smoke. The boundary conditions are as follows.

즉, 열전대위치에서의 경계면은 상기 최소온도를 주며, 열전도해석이 반복됨에 따라 일정량의 온도만큼 증가시켜가면서 주어진다. 냉각관내면의 경계면에서는 냉각수가 정상적으로 흐를 경우에는 대류경게조건을 주고 냉각수의 공급이 중단된 경우에는 단열조건을 준다. 철피외면의 경계면에서는 공랭에 의한 냉각이 이루어지므로 대류조건으로 준다. 그리고 그외의 경계면에서는 모두 단열조건을 준다. 이와같이 선정된 해석영역과 경계조건하에서 유한요소법으로 열전도방정식을 풀이하여 해석영역에서의 온도를 구한다.That is, the interface at the thermocouple position gives the minimum temperature and is given by increasing the temperature by a certain amount as the thermal conductivity analysis is repeated. At the interface of the cooling tube, the convection warning condition is given when the coolant flows normally, and the insulation condition is given when the supply of coolant is stopped. Cooling by air cooling takes place in the boundary surface of the outer shell, so it is convective. All other interfaces give insulation. The thermal conductivity equation is solved by finite element method under the selected analysis range and boundary conditions to find the temperature in the analysis range.

또한, 본 발명에서는 노체의 방산열을 하기 식에 의해서 구하는 단계를 거친다.In the present invention, the heat dissipation of the furnace body is obtained by the following formula.

Qr=Q1+Q2 Q r = Q 1 + Q 2

Figure 1019970067752_B1_M0003
Figure 1019970067752_B1_M0003

여기서 Qr은 스테이브의 방산열을, Q1은 철피로 나가는 방산열을, Q2는 냉각관으로 나가는 방산열을 나타낸 것이다. 위식에서 h는 철피외면에서의 열전달계수를, As는 스테이브의 면적을, Ts는 철피외면의 평균온도를, TA는 외부대기온도를 나타낸다. 그리고, H는 냉각관에서의 열전달계수를, At는 냉각관의 단면적을, Tt는 냉각관외면에서의 평균온도를, TW는 냉각수의 온도를 나타낸다.Where Q r is the heat of dissipation of the stave, Q 1 is the heat of dissipation to the shell, and Q 2 is the heat of dissipation to the cooling tube. In the above formula, h is the heat transfer coefficient at the outer shell surface, A s is the area of the stave, T s is the average temperature of the outer shell surface, and T A is the outside air temperature. H denotes the heat transfer coefficient in the cooling tube, A t denotes the cross-sectional area of the cooling tube, T t denotes the average temperature on the outer surface of the cooling tube, and T W denotes the temperature of the cooling water.

한편, 철피외면에서의 평균온도와 냉각관 외면에서의 평균온도는 다음과 같다. 먼저, 철피외면의 평균온도는 열전도해석의 결과에서 철피외면에 속한 절점들의 온도의 평균값으로 한다. 즉, 평균온도(TS)는 하기 식와 같이 내타낼 수 있다.On the other hand, the average temperature on the outer surface of the steel shell and the average temperature on the outer surface of the cooling tube are as follows. First, the average temperature of the outer shell surface is the average value of the temperatures of the nodes belonging to the outer shell surface in the thermal conductivity analysis. That is, the average temperature T S can be expressed as in the following equation.

Figure 1019970067752_B1_M0001
Figure 1019970067752_B1_M0001

여기서, Tsi는 철피외면에 속한 절점에서의 온도, Ns는 철피외면에 속한 절점의 개수를 나타낸다. 그리고 냉각관 외면에서의 평균온도도 같은 방법으로 다음식 3에 의해서 구해진다.Here, Tsi is the temperature at the node belonging to the outer shell surface, Ns is the number of nodes belonging to the outer shell surface. The average temperature at the outer surface of the cooling tube is also obtained by the following equation (3).

Figure 1019970067752_B1_M0002
Figure 1019970067752_B1_M0002

여기서, Tti는 냉각관 외면에 속한 절점에서의 온도, Nt은 냉각관 외면에 속한 절점의 개수를 나타낸다.Here, Tti represents the temperature at the node belonging to the outer surface of the cooling tube, and Nt represents the number of nodes belonging to the outer surface of the cooling tube.

또한, 본 발명에서는 상기 열전대위치에서의 경계면의 온도가 최고온도보다 높은가 낮은가를 판단하여, 낮으면 상기 2단계의 열전대온도를 일정량의 온도만큼 증가시켜서 2단계 부터 반복 수행하고, 높으면 다음의 5단계를 진행시킴을 판단하는 과정을 거친다.In addition, in the present invention, it is determined whether the temperature of the interface at the thermocouple position is higher or lower than the maximum temperature, and if it is low, the thermocouple temperature of step 2 is increased by a predetermined amount of temperature and repeated from step 2, and if higher, the next 5 steps Go through the process of judging the progress.

되풀이 하면서 상기 열전대위치에서의 경계면 온도를 최초 상기 최소온도에서 일정량씩 증가시키다가 그 온도가 상기 최고온도보다 커지면 다음과정을 수행하는 것이다.While repeating, the interface temperature at the thermocouple position is initially increased by a predetermined amount from the minimum temperature, and when the temperature becomes larger than the maximum temperature, the following process is performed.

또한, 본 발명에서는 상기 되풀이되는 과정중에 얻어진 열전대 온도별 방산열을 정리하여 하기 식과 같은 상관식을 도출하는 단계를 거친다.In addition, in the present invention, the dissipation heat for each thermocouple temperature obtained during the repetitive process is arranged to derive a correlation equation as shown in the following equation.

Qr= aT + bQ r = aT + b

상기 상관식은 일차식으로써, 계수 a, b를 얻으므로써 도출할 수 있는 것이다.The correlation is a linear equation that can be derived by obtaining the coefficients a and b.

또한, 본 발명에서는 열전대의 현재온도 (실측온도)를 상기식 4에 대입하여 현재의 방산열을 구하는 단계를 거친다.In the present invention, the current temperature (actual temperature) of the thermocouple is substituted into Equation 4 to obtain the current dissipation heat.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

일일 생산량이 2000톤인 코렉스의 용융로에서 본 발명에 의한 열부하의 산정을 실시하였다.The heat load according to the present invention was calculated in a Korex smelter with a daily yield of 2000 tons.

본 실시예에서는 코렉스 용융로의 7단에서의 스테이브로써 도 5와 같이 5개의 냉각관이 있는데, 이중 냉각수의 공급이 중단된 냉각관이 1개 있다. 냉각수의 공급이 중단된 냉각관은 도 5에서 보는 바와 같이 a번의 냉각관이다.In the present embodiment, there are five cooling tubes as shown in Fig. 5 as staves at the seventh stage of the Korex melting furnace, and one cooling tube in which the supply of double cooling water is stopped. As shown in FIG. 5, the cooling tube in which the supply of cooling water is stopped is a cooling tube of a.

먼저, 열전대의 변화할 수 있는 범위를 300-500℃로 설정하였다.First, the changeable range of the thermocouple was set to 300-500 ° C.

또한, 상기와 같이 주어진 조건에 대해서 노체 스테이브에 대한 열전도해석을 행하였다. 유한요소법을 적용하기 위해서 요소분할과 경계조건을 다음과 같이 주었다. 영역에서의 요소분할은 철피에서는 10개의 요소를, 스테이브에서는 20개의 요소를, 노벽연와에서는 20개의 요소를 정하였다. 그리고 경계조건은 철피외면에서는 공랭인 상태이므로 대류경계조건을 주었으며 대기온도는 20℃, 열전달계수는 20㎉/㎡ hr℃이다. 냉각관에서는 냉각수의 공급이 중단된 a번 냉각관의 경계면에서는 단열조건을 주고 다른 냉각관에서는 냉각수에 의한 대류가 일어나므로 대류조건을 주며 냉각수온도는 35℃, 열전달계수는 2100㎉/㎡ hr℃으로 주었다. 그리고 노벽연와의 열전대위치 경계에서는 온도를 주며 상기에서 설정한 바와 같이 온도는 300℃를 주었다. 이상과 같은 유한요소분할과 경계조건하에서 유한요소법에 의해서 열전도방정식을 풀면 해석영역에서의 온도를 구하였다.In addition, thermal conductivity analysis was performed on the furnace stave under the conditions given above. In order to apply the finite element method, element division and boundary conditions are given as follows. The element division in the area was set to 10 elements in the bark, 20 elements in the stave, and 20 elements in the furnace wall edge. The boundary condition is air-cooled at the outer surface of the shell, which gives convective boundary conditions. The atmospheric temperature is 20 ℃ and the heat transfer coefficient is 20㎉ / ㎡ hr ℃. In the cooling tube, adiabatic conditions are given at the interface of cooling tube a, which stops the supply of cooling water. In other cooling tubes, convection is caused by the cooling water, which gives convection conditions. The cooling water temperature is 35 ℃ and the heat transfer coefficient is 2100㎉ / ㎡ hr ℃. Gave as. The temperature was given at the boundary of the thermocouple position with the furnace wall edge, and the temperature was 300 ° C as set above. Under the above finite element partition and boundary conditions, the thermal conductivity equation is solved by the finite element method to find the temperature in the analysis domain.

또한, 상기에서 구한 온도결과로 부터 철피외면에 속하는 각 절점에서의 온도를 정리하면 하기 표1과 같았다.In addition, the temperature at each node belonging to the outer surface of the iron shell from the temperature results obtained above was summarized in Table 1 below.

절점번호Node number 철피외면온도Exterior skin temperature 1One 88℃88 22 88℃88 33 95℃95 44 112℃112 55 151℃151 ℃ 66 206℃206 ℃

이상에서, 상기 식(2)에 의해서 철피외면에서의 평균온도를 구하면 123℃가 된다. 같은 방법으로 냉각관 내면에서의 온도를 정리하면 각 냉각관외면에서의 평균온도를 상기 식(3)에 의해서 구하여 정리하면 하기 표2와 같았다.In the above, the average temperature at the outer surface of the steel bar is obtained by Equation (2), which is 123 ° C. By arranging the temperature at the inner surface of the cooling tube in the same manner, the average temperature at the outer surface of each cooling tube was calculated by Equation (3) and summarized as in Table 2 below.

냉각관번호Cooling pipe number 냉각관외면 평균온도Average temperature outside cooling tube aa 251℃251 ℃ bb 235℃235 ℃ cc 224℃224 ℃ dd 210℃210 ℃ ee 205℃205 ℃

한편, 방산열은 상기 식(1)에 의해서 다음과 같이 계산된다. 이때 코렉스 용융로의 제원상 철피외면이 면적은 1.2㎡, 냉각관외면의 면적은 0.10㎡으로 주어진다.On the other hand, the heat of dissipation is calculated as follows by the above formula (1). At this time, the outer surface of the iron shell of the corex melting furnace is given an area of 1.2 m 2 and the cooling tube outer surface of 0.10 m 2.

Qr= 20 * 1.2 * (123-20) + 2100 * 0.01 * (251-35) + 2100 * 0.01 * (235 - 35) + 2100 * 0.01 * (224 - 35) + 2100 * 0.01 (210 - 35) + 2100 * 0.01 * (205 - 35) = 22Mcal/hrQ r = 20 * 1.2 * (123-20) + 2100 * 0.01 * (251-35) + 2100 * 0.01 * (235-35) + 2100 * 0.01 * (224-35) + 2100 * 0.01 (210-35 ) + 2100 * 0.01 * (205-35) = 22Mcal / hr

또한, 상기에서 설정한 열전대의 온도(100℃)가 최대온도(500℃)보다 작은지 판단하여, 아니면 열전대의 온도를 100℃승온하여, 400℃에서 다시 시작하여 그때의 열전대 온도에 대해서 방산열을 구하는 과정을 반복하고, 다시 500℃에서 행하는 과정을 반복하였다. 500℃이상에서 반복루프를 빠져나와 다음단계를 시작하였다.In addition, it is determined whether or not the temperature (100 ° C) of the thermocouple set above is smaller than the maximum temperature (500 ° C), or the temperature of the thermocouple is increased to 100 ° C and started again at 400 ° C to dissipate heat with respect to the thermocouple temperature at that time. The process of obtaining was repeated, and the process which was performed at 500 degreeC again was repeated. At 500 ° C or higher, the loop was exited and the next step started.

또한, 이상에서 구해진 열전대 온도와 방산열을 정리하면 하기 식3과 같이 얻어진다.Moreover, when the thermocouple temperature and the heat of dissipation calculated | required above are put together, it is obtained as following Formula 3.

열전대 온도Thermocouple temperature 방 산 열Room acid heat 300℃300 ℃ 22 Mcal/hr22 Mcal / hr 400℃400 ℃ 31 Mcal/hr31 Mcal / hr 500℃500 ℃ 40 Mcal/hr40 Mcal / hr

이로부터 열전대 온도와 방산열과의 상관식을 구하면 다음과 같다.From this, the correlation between the thermocouple temperature and the heat of dissipation is obtained as follows.

Qr= 0.0913 T - 3.72Q r = 0.0913 T-3.72

여기서 Qr는 방산열을, T는 열전대 온도를 나타낸다.Q r is the heat of dissipation, and T is the thermocouple temperature.

또한, 가동중인 코렉스 용융로의 열전대의 현재온도가 370℃로 나타나므로 상기식에 대입하면 방산열은 30㎉/hr로 구해진다.In addition, since the current temperature of the thermocouple of the Corex melting furnace in operation is shown to be 370 ° C, the heat of dissipation is obtained at 30 kW / hr by substituting the above formula.

이상과 같은 실시예를 통하여 코렉스 용융로의 방산열을 산정하는 방법을 설명하였다.Through the above examples, the method for calculating the heat of dissipation of the Corex melting furnace has been described.

이상에서 설명한 바와같이, 본 발명의 노체 스테이브에서의 방산열 산정방법을 사용하면, 냉각수의 공급이 중단되거나 또는 이러한 냉각관의 갯수가 여러개일 때도 정확하게 반산열을 산정할 수 있는 효과가 있다.As described above, when the dissipation heat calculation method in the furnace stave of the present invention is used, there is an effect that the heat dissipation can be accurately calculated even when the supply of cooling water is stopped or the number of such cooling tubes is several.

Claims (1)

철피, 스탬프, 스테이브, 및 열전대를 갖는 연와로 구성되고, 일정갯수의 냉각관을 내부에 포함하는 코렉스 용융로의 노체 스테이브 방산열을 산정하는 방법에 있어서,In the method for calculating the heat dissipation heat of the furnace stave of the Korex fusion furnace consisting of a shell, a stamp, a stave, and a lead having a thermocouple, and including a certain number of cooling tubes therein, 열전대의 온도가 변화할 수 있는 범위를 정하고, 그 범위의 최소를 최소온도로 하고, 최대를 최고온도로 설정하는 1단계;Determining a range in which the temperature of the thermocouple can change, setting a minimum of the range as a minimum temperature, and setting a maximum to a maximum temperature; 열전대위치에서의 경계면의 온도를 최소온도로 주고, 냉각관 내면의 경계면에서는 냉각수가 정상적으로 흐르는 경우에는 대류 경계조건을 주고 냉각수의 공급이 중단된 경우에는 단열조건을 주며, 철피외면의 경계면에는 대류조건을 주고, 그외의 경계면에는 모두 단열조건을 주어서, 유한요소법으로 열전도 방정식을 풀이하여 온도분포를 구하는 2단계;The minimum temperature of the interface at the thermocouple location is given to the minimum temperature, convection boundary condition is given when the coolant flows normally at the interface of the inner surface of the cooling tube, and adiabatic condition is provided when the supply of cooling water is stopped. 2 steps of obtaining a temperature distribution by solving the heat conduction equation by the finite element method by giving a thermal insulation condition to all other interfaces; 상기 온도분포를 하기식에 적용하여 노체의 방산열을 구하는 3 단계;Applying the temperature distribution to the following equation to obtain dissipation heat of the furnace body; Qr=Q1+Q2 Q r = Q 1 + Q 2
Figure 1019970067752_B1_M0003
Figure 1019970067752_B1_M0003
( 여기서, Qr은 스테이브의 방산열, Q1은 철피로 나가는 방산열, Q2는 냉각관으로 나가는 방산열, h는 철피외면에서의 열전달계수, AS는 스테이브의 면적, TS는 철피외면의 평균온도, Ta는 외부대기온도를 나타내고, H는 냉각관에서의 열전달계수, At는 냉각관의 단면적, Tt는 냉각관외면에서의 평균온도, Tw는 냉각수의 온도를 나타낸다.)Where Q r is the heat of dissipation of the stave, Q 1 is the heat of dissipation to the shell, Q 2 is the heat of dissipation to the cooling tube, h is the heat transfer coefficient at the outer surface of the shell, A S is the area of the stave, and T S Is the average temperature of the outer surface of the shell, T a is the external air temperature, H is the heat transfer coefficient in the cooling tube, A t is the cross-sectional area of the cooling tube, T t is the average temperature on the outer surface of the cooling tube, and T w is the temperature of the cooling water. Is displayed.) 상기 열전대위치에서의 경계면의 온도가 최고온도보다 높은가 낮은가를 판단하여, 낮으면 상기 2단계의 열전대온도를 일정량의 온도만큼 증가시켜서 2단계 부터 반복 수행하고, 높으면 다음의 5단계를 진행시킴을 판단하는 4단계;It is determined whether the temperature of the interface at the thermocouple position is higher or lower than the maximum temperature. If the temperature is low, the thermocouple temperature of step 2 is increased by a certain amount of temperature and repeated from step 2, and if it is high, the next step 5 is determined. 4 steps; 상기 설정된 열전대 온도(T) 와 얻어진 방산열(Qr)의 관계를 하기식과 같은 일차식으로 도출하는 5단계;A fifth step of deriving the relationship between the set thermocouple temperature (T) and the obtained heat of dissipation (Q r ) by the following equation; Qr= aT + b ( 여기서, a, b 는 상수)Q r = aT + b, where a and b are constants 상기 얻어진 일차식에 열전대의 실측온도를 대입하여 방산열을 구하는 6단계를 포함하여 구성되는 코렉스 용융로의 노체 스테이브 방산열 산정방법A method for calculating the heat dissipation heat of a furnace body of a Korex smelting furnace comprising six steps of obtaining dissipation heat by substituting the measured temperature of a thermocouple into the first equation obtained above.
KR1019970067752A 1997-12-11 1997-12-11 Method for calculating radiation heat from staves of furnace body in corex melting furnace KR100332909B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970067752A KR100332909B1 (en) 1997-12-11 1997-12-11 Method for calculating radiation heat from staves of furnace body in corex melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970067752A KR100332909B1 (en) 1997-12-11 1997-12-11 Method for calculating radiation heat from staves of furnace body in corex melting furnace

Publications (2)

Publication Number Publication Date
KR19990048925A KR19990048925A (en) 1999-07-05
KR100332909B1 true KR100332909B1 (en) 2002-06-20

Family

ID=37479542

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970067752A KR100332909B1 (en) 1997-12-11 1997-12-11 Method for calculating radiation heat from staves of furnace body in corex melting furnace

Country Status (1)

Country Link
KR (1) KR100332909B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456250B (en) * 2019-09-16 2024-05-17 中国科学技术大学 TEC refrigerating performance measuring method and measuring device

Also Published As

Publication number Publication date
KR19990048925A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
Short Jr et al. Performance of pin fin cast aluminum coldwalls, part 2: Colburn j-factor correlations
US20160209306A1 (en) Gas-sampling probe and method for operating a gas-sampling probe
JP5212407B2 (en) Thermal fatigue test equipment
JP2007071686A (en) Method and device for estimating temperature of container wall or heat flux, computer program, computer-readable recording medium, and method of estimating container wall thickness
KR100332909B1 (en) Method for calculating radiation heat from staves of furnace body in corex melting furnace
JP4752021B2 (en) Reduced blast operation method of blast furnace
JP5068559B2 (en) Container wall state management method, apparatus, and computer program
JP4753374B2 (en) Container wall thickness estimation method, apparatus, and computer program
Allard et al. Improved heat transfer modeling of the top of aluminum electrolysis cells
KR101951873B1 (en) Method for cooling of an electric furnace
JP4695376B2 (en) Heating or cooling characteristic evaluation method and apparatus, reaction vessel operation management method and apparatus, computer program, and computer-readable recording medium
JP4743781B2 (en) Method, apparatus, and computer program for estimating temperature and heat flux of inner wall surface of container
JP4119620B2 (en) In-furnace situation estimation method for blast furnace
KR20030050868A (en) Estimation method for blast furnace hearth refractory thickness
KR100332908B1 (en) Method for repairing stave of furnace body of corex melting furnace
JP4833621B2 (en) Method, apparatus, computer program, and computer-readable recording medium for estimating temperature or heat flux of reaction vessel
JP4292830B2 (en) Uptake cooling jacket
CN210742174U (en) Water-cooled wall heating surface heat flux density measuring device
JP2018072027A (en) Method, apparatus and program for determining timing of performing chemical cleaning of boiler water-cooled wall pipe material
JP2009085549A (en) Method for estimating thickness of electric furnace slag coating by unsteady heat transfer analysis
JP7277744B2 (en) Hot Diagnosis Method for Refractories
RU2000880C1 (en) Method for control of casting processes
SU550008A1 (en) Method of determining heat-transfer factor
SU908835A1 (en) Device for continuously controlling metal temperature
KR20010002440A (en) Estimation method for erosion of carbon brick in blast furnace

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060404

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee