JPS58153714A - Operation of blast furnace - Google Patents
Operation of blast furnaceInfo
- Publication number
- JPS58153714A JPS58153714A JP3619382A JP3619382A JPS58153714A JP S58153714 A JPS58153714 A JP S58153714A JP 3619382 A JP3619382 A JP 3619382A JP 3619382 A JP3619382 A JP 3619382A JP S58153714 A JPS58153714 A JP S58153714A
- Authority
- JP
- Japan
- Prior art keywords
- viscous layer
- tapping
- slag
- furnace
- hearth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/24—Test rods or other checking devices
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Blast Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、高炉の操業方法に関し、特に炉内通気性並び
に出銑滓状態(作業)を安定化すると共に銑中S(%)
を低位、安定化する高炉の操業方法を提供するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a blast furnace, in particular, stabilizing the ventilation inside the furnace and the tapping slag condition (operation), and reducing the S (%) in the iron.
This provides a method for operating a blast furnace that lowers and stabilizes the
高炉の操業において、出銑滓作業を安定的に管理するこ
とは炉内通気性の安定のみならず、溶銑品質を高位に安
定化し維持する上で非常に重げである。In the operation of a blast furnace, stable management of the tap iron slag operation is extremely important not only to stabilize the ventilation inside the furnace but also to stabilize and maintain the quality of hot metal at a high level.
出銑滓作業の安定とは、高炉出銑[1の開孔時に、適正
な速度で銑滓を抽出できることであり、このためには一
般に、適正な出銑口深度、出銑口径、出銑1]閉塞材と
なる高炉マッド材貿及び炉床部熱状態、更には高炉内の
通気性の安定等が、高炉操裟Fの重要な管理項目になる
と考えられている。Stability in the tap slag operation means being able to extract the slag at an appropriate speed when opening the blast furnace tap hole [1]. 1] It is believed that the trade of blast furnace mud material, which acts as a plugging material, the thermal condition of the hearth, and the stability of ventilation inside the blast furnace are important control items for blast furnace operation.
ところで現状の高炉では、同一出銑1」から溶銑と溶滓
を抽出しており、出銑[]からの溶溶銑滓受ける出銑価
に設置されたスギ/マーにより、(−れらの比重差を利
用して銑・滓分離金行ってい71)。By the way, in the current blast furnace, hot metal and molten slag are extracted from the same tap 1. The difference is used to separate pig iron and slag71).
そして通常、出銑口の開孔時、溶銑が先行し、ある時間
継続し、溶銑滓が同時に出る。この出銑滓状態の安定性
を示す指標として、一般にIf、、i i跣開始から出
滓開始”までの時間(以下出銑〜出滓時間と略す)がよ
く用いられ、この時間が短く出銑毎のバラツキが少なく
安定している場合、後述するラップ率が小さく出銑滓状
況が良く、溶銑滓が適切な速度で抽出されていると評価
されている。上記ラップ率とは一股に現状の高炉では、
2つ以上の出銑口を備えて、2つけ一ヒの出銑口を適宜
に使用して出銑するようになっており、一般に銑滓残り
による炉内通気性が不安定になるのを防止するために、
ラップ出銑(2つ以上の出銑1−1から同時に出銑する
こと)が行、bれ1例えば1.: (Iliにア・する
全ラップ出銑時間/1日の全出銑時間)x+o+))で
ラップ率が定義されている。上記ラッグ出銑時間とは2
つ以」〕(通常は2つ)の出銑[1から同時に出銑さγ
してい6時間である。従って出iN:滓1ノニ況の安定
性は、このランプ率すなわち出銑−Ili 静時間で評
価でき、ラップ率が小さい程出銑滓状態が安定し、従っ
て出銑滓状況に起因する炉内油気性不良はないと評価さ
れている−
従来、高炉の出銑滓状況全安定に保つだめの方法として
、前述した様な出銑「」深度、出銑1−」径、マッド材
質の変更による出銑〜出滓時間の管理が行すれているが
、相互の定宿的な関係金兄い出せr1時間バラツキが大
きく操業管理としては不充分である。Usually, when the taphole is opened, hot metal flows first, continues for a certain period of time, and hot metal slag comes out at the same time. Generally, the time from the start of tapping to the start of slag (hereinafter abbreviated as the time from tapping to slag) is often used as an index to indicate the stability of the tapped slag condition. If the variation between pig irons is small and stable, the lapping ratio described below is small and the slag condition is good, and it is evaluated that hot metal slag is extracted at an appropriate speed. In the current blast furnace,
It is equipped with two or more tapholes, and taps are made by using two or more tapholes as appropriate to prevent the ventilation in the furnace from becoming unstable due to residual iron slag. In order to prevent
Lap tapping (tapping from two or more tap irons 1-1 at the same time) is performed in rows, b raps 1, for example 1. : The lap rate is defined as (total tapping time for Ili/total tapping time for one day)x+o+)). What is the above lug tapping time?2
Two (usually two) pig iron taps [from 1 to simultaneous tap γ
It's been 6 hours since then. Therefore, the stability of the slag condition can be evaluated by this ramp rate, that is, the tapping time.The smaller the rap rate, the more stable the slag condition is. It has been evaluated that there are no oily problems. - Conventionally, the method of keeping the tapped slag condition of the blast furnace completely stable was to change the tap depth, tap diameter, and mud material as described above. The time from tapping to slag is managed, but due to the mutual fixed relationship, there is a large variation in the time taken to tap iron, which is insufficient for operational management.
なお高炉炉床部は、炉床部レンガ保護(rl−II的に
、炉床壁レンガの外周に配置されたステーブクーラー、
電炉の炉底基礎内、あるいは炉底し/ガ内にtM設され
た炉底冷却用パイプへ冷却流体(冷却水)を常時一定流
量供給して、炉床壁並びに炉底レンJjの冷却ケ行って
いる。In addition, the blast furnace hearth is protected by a stave cooler placed around the outer periphery of the hearth wall bricks (rl-II).
Cooling fluid (cooling water) is constantly supplied at a constant flow rate to the bottom cooling pipe installed in the bottom foundation of the electric furnace or in the bottom wall/gauge to cool the hearth wall and bottom pipe Jj. Is going.
本発明の尚炉操業万lムは、」二記実状に鑑みなさlし
たもので、出銑滓状況が炉床部に形成さlしる粘稠層の
形状に大きく関係することに着目し、粘稠層の厚さと出
銑滓状況との関係ケ定量的に見い出し、粘稠層の厚さ管
理を行うものである。これにより出銑〜出滓時間短縮に
よる安定的な出銑滓抽出を継続し同時に出銑〜出滓時間
短縮によって得られる銑滓接触時間延長によるスラグ−
メタル反応の活発化で溶銑品質の向上(銑中S%の低イ
1我)を図るものである。The furnace operation system of the present invention was developed in view of the following two facts, and it was focused on the fact that the tap slag condition is greatly related to the shape of the viscous layer formed in the hearth. The purpose is to quantitatively find out the relationship between the thickness of the viscous layer and the state of the tap slag, and manage the thickness of the viscous layer. This allows stable extraction of slag by shortening the time from tapping to slag, and at the same time extends the contact time of the slag, which is achieved by shortening the time from tapping to slag.
The purpose is to improve the quality of hot metal (lower S% in the pig iron) by activating the metal reaction.
以下本発明の高炉操業方法について説明する。The blast furnace operating method of the present invention will be explained below.
まf粘稠層について説明する。The viscous layer will be explained.
第1図〔A〕〔B〕 は、高炉の炉床部の垂直断面概略
図を示し、炉床部1は炉床部シ//ガ2、詳しくは炉底
レンガ3と炉床壁17ンガ4とで形成されており、通常
炉床部レンガ2は長期にわたる湯流れ、):・
炉床熱等の影響により浸食が進行し、第1図(A)の状
況から同図(13)の如く浸食され、浸食ライン5が形
成される。1 [A] and [B] show vertical cross-sectional schematic diagrams of the hearth part of a blast furnace. 4, and normally the hearth bricks 2 are eroded due to the long-term flow of hot water. As a result, erosion lines 5 are formed.
12かし前記浸食要因の変化及び生産量調整(にもとづ
く送風1且変化等の操業条件の変化、外部からのレンガ
冷却状態の変化特にステーブクーラー、冷却用パイプの
冷却水の季節による水温変化等によっては炉床部1の浸
食ライン5に沿って非常に粘性の1幼いイく活性な高粘
度の粘稠層(〕が形成され見損け」二、浸食ライン5が
ライン7に後退した状況となる。この高粘度の粘稠層6
は固液混オロ状態にあると考えられる。この粘稠層6、
例えば第11dl二B〕の出銑1−1(図示ぜr)の[
ノベル下のF高レベルhVc>vfる炉床壁レンガ4前
方の粘稠層の形成量(j2−tm) は、上記レベル
Aでの温度勾配と絶対温度で計算できる。12 However, changes in the above-mentioned erosion factors and production volume adjustment (changes in operating conditions such as changes in air blowing, changes in brick cooling conditions from the outside, especially changes in water temperature depending on the season of cooling water in stave coolers and cooling pipes, etc.) In some cases, a very viscous layer ( ) of high viscosity is formed along the erosion line 5 of the hearth part 1 and is easily overlooked. This high viscosity viscous layer 6
is considered to be in a mixed solid-liquid state. This viscous layer 6,
For example, tap iron 1-1 (r shown in the figure) of [11dl2B]
The amount of viscous layer formed in front of the hearth wall brick 4 (j2-tm) at the lower F high level hVc>vf can be calculated using the temperature gradient and absolute temperature at level A.
令弟1,2図に示す炉床壁レンガのts[l:m、11
位置及び+9〔m〕位置に埋設(7た炉床壁レンガ温度
計8及び9の検出温度1T(ta)及びrctq)とす
る。ts[l:m, 11 of the hearth wall brick shown in Figures 1 and 2
and +9 [m] position (temperatures detected by hearth wall brick thermometers 8 and 9, 1T (ta) and rctq).
この時の炉床壁レンガの伝熱係数λCはλC=K] T
m 十に2−−−・(lj但し’l”m −(T(7s
)+TC1cr ) 〕/2. Kt 、 K2 :
定数温度T(ts)とT(+9)(D関係はΔT= T
(4s) T(19) −−= (2)ΔT二 K3
T(+9) K4 −−・ (31但し Ka
+ K4 :定数
となる。一方貫流熱量Q (kcaA/m’hr )は
(4)式に(1,)、 +3)式を代入することにより
Q−に5ΔT2+に6T(+9)十に7ΔT・・ (5
)但しに5 、 Ka 、 K7 ;定数また(4)式
に(2)式を代入することによりとなる。The heat transfer coefficient λC of the hearth wall brick at this time is λC=K] T
m 10 to 2---・(ljHowever'l"m -(T(7s
)+TC1cr) ]/2. Kt, K2:
Constant temperature T(ts) and T(+9) (D relationship is ΔT=T
(4s) T(19) --= (2)ΔT2 K3
T (+9) K4 --- (31 However, Ka
+K4: Becomes a constant. On the other hand, by substituting equations (1,) and +3) into equation (4), the flow-through heat amount Q (kcaA/m'hr) can be calculated as follows:
) However, 5, Ka, K7 are constants or by substituting equation (2) into equation (4).
今Am点での温度Txとし、第1図(A)に示す如く初
期レンガ厚みfLcとしt□1(7cの条件下では、が
成立する。今、例えば1150℃ラインを浸食ライン5
とする。Lmは、(7)式から
で求まる。Let the temperature at point Am be Tx, and the initial brick thickness fLc as shown in Figure 1 (A), t□1 (7c) holds.Now, for example, the 1150℃ line is the erosion line 5.
shall be. Lm can be found from equation (7).
土呂己の如くして求めたAm を最太浸共ラインと呼
ぶ。The Am obtained by Doroki is called the thickest dipping line.
このように1 + 5 o−cラインを浸食ラインとし
て現時点での最大浸食を既知としたにで、以降時々刻々
、」二記tm 点での温度Tx f 」H記(7)式よ
り求めることにより、以下の様に粘稠層厚みが算定でき
る。即ち(7)式より
そして(D 上記Txが’rx≧]、150℃ノ時、L
/ 7 Jjの浸食が上記最大浸食ラインより進行して
いると判断し、新しい浸食ラインである第2図のtlは
、として求め、このt]ヲ新しい最大浸食ライン1mと
して、すなわちtm=t1として保有しておく。In this way, the maximum erosion at the present time is known with the 1 + 5 o-c line as the erosion line, and from then on, the temperature at point tm is calculated from equation (7) in H. The viscous layer thickness can be calculated as follows. That is, from equation (7), when (D above Tx is 'rx≧], at 150°C, L
/7 Judging that the erosion of Jj has progressed from the maximum erosion line above, the new erosion line tl in Figure 2 is found as t], and this t] is the new maximum erosion line 1m, that is, tm = t1. Keep it.
一方■、上記Txが’f’x(] I 50°cの、時
、粘+m 1m カ生成と判断する。そして第2図の粘
稠ハー−−溶銑滓外面フィンであるI2は
どして求める。On the other hand, when the above Tx is 'f'x (] I 50°C, it is judged that a force of viscosity + m 1 m is generated.Then, the viscous hearth in Fig. 2 - I2, which is the outer surface fin of the hot metal slag, is removed. demand.
なお開式のλSは、粘稠層の伝熱係数で、1mは(9)
式V(よる’l” x算定時の1m f使用する。In addition, λS in the open equation is the heat transfer coefficient of the viscous layer, and 1 m is (9)
Formula V (according to 'l' x calculation time 1 m f is used.
従って(11)式からAレベルでの粘稠層の厚み(12
−4m)は
λS
(I2−1m)=−(115O−Tx )−(12)と
なり(I21式に(9)弐全代入してで求捷る。Therefore, from equation (11), the thickness of the viscous layer at level A (12
-4m) becomes λS (I2-1m)=-(115O-Tx)-(12) (calculated by substituting (9) into equation I21).
第(J3)式に於いて
λS; 粘稠層の伝熱係数
λC; レンガの成熱係数
tm; 最大浸食ライン(過去R尺)Q ; 貫通熱
量−λCΔT/zs−ム1、。In Equation (J3), λS; heat transfer coefficient λC of the viscous layer; heat growth coefficient tm of the brick; maximum erosion line (past R scale) Q; penetration heat amount −λCΔT/zs−m1.
ai” ; 深さlsc”?Jの温度’r(I8)と
t9cm’Jの温度T(I9)との差
以−Hの様に粘稠層厚さはΔT、T(I9)を検出する
ことで算出できる。なお上記Δ′1゛とr(z、+)
とは第3図に示す如く互い相関関係があり、粘稠層厚
さく I2−1m)はT(I9)の関数とし−C表わす
こともできる。ai”; depth lsc”? The viscous layer thickness can be calculated by detecting ΔT and T(I9) as shown in the difference between the temperature 'r(I8) of J and the temperature T(I9) of t9cm'J. Note that the above Δ′1゛ and r(z, +)
and have a mutual correlation as shown in FIG. 3, and the viscous layer thickness (I2-1m) can also be expressed as -C as a function of T(I9).
第4図は、本発明の実施以前すなわち粘稠層厚さ制御開
始以前の温度T(I9)と演算ラインt2との関係を示
したものであり、同図Lmは、最大浸食ラインを示し’
F(79)が尚くなるに従って粘稠層厚さが小さくなる
こと全示している。FIG. 4 shows the relationship between the temperature T (I9) and the calculation line t2 before the implementation of the present invention, that is, before the start of the viscous layer thickness control, and Lm in the figure shows the maximum erosion line.
It is clearly shown that as F(79) increases, the viscous layer thickness decreases.
また粘稠層厚さは、レンガ温度を積極的に操作すること
により制御できることを示している。なおレンガ温度は
レンガの冷却条件即ちステープクーラー、炉底冷却パイ
プ等のレンガ冷却装置の冷却条件を操作することで制御
できる。It also shows that the viscous layer thickness can be controlled by actively manipulating the brick temperature. The temperature of the bricks can be controlled by controlling the cooling conditions of the bricks, that is, the cooling conditions of a brick cooling device such as a staple cooler or a furnace bottom cooling pipe.
従ってレンガ冷却装置の冷却条件を操作することでレン
ガ温度が制御でき、レンガ温度を操作することで粘稠層
厚さを制御できる。Therefore, by manipulating the cooling conditions of the brick cooling device, the brick temperature can be controlled, and by manipulating the brick temperature, the viscous layer thickness can be controlled.
以上は炉床壁部の粘稠層厚さの求め方を説明したが、炉
底部の粘稠層厚さについても例えば第1図〔B〕に示す
如く炉芯に定距離だけ隔てて設けた炉底1//ガ温1j
支i1 lo、 ] lの検出温度から(12’ tm
)を求めるものである。The above has explained how to determine the thickness of the viscous layer on the hearth wall, but the thickness of the viscous layer on the hearth bottom can also be determined by setting the thickness of the viscous layer at a fixed distance from the hearth as shown in Figure 1 [B]. Hearth bottom 1//ga temperature 1j
From the detected temperature of support i1 lo, ] l (12' tm
).
第5図及び第6図は炉床壁部及び炉底部の粘稠層厚さ6
n)と、出銑〜出滓時間(分)との関係の潤−丘結果・
え示したものでるり、粘稠層、1ツさと出銑・−出滓時
間との間には強い相関がある3、
即ち粘稠層厚さが薄くなる(レンガ温)Wが筒くなる)
に従って、出銑〜出滓時間が短くなる。捷だ逆に粘稠層
厚さが厚くなる(レンガ温度が低くなる)に従って出銑
−出滓時間が長くなる。Figures 5 and 6 show the thickness of the viscous layer at the hearth wall and hearth bottom.
n) and the relationship between iron tapping and slag tapping time (minutes).
As shown in the figure, there is a strong correlation between the roughness, viscous layer, thickness, and tapping/slag tapping time.3 In other words, as the viscous layer becomes thinner (brick temperature), W becomes more cylindrical. )
Accordingly, the time from tapping to slag is shortened. Conversely, as the thickness of the viscous layer increases (brick temperature decreases), the tapping-to-slag time increases.
上記第5,6図及び前記第;3,4図の関係を見い出し
たデータはステープクーラー及び炉底冷却用パイプへ各
々一定流量の冷却水を供給してレンガ冷却保護ケ行った
1年6ケ月間の高炉操業Fで採取したものであり、レン
ガ温度が自然に変動し、粘稠層厚みも変動していること
が明らかである。The data for finding the relationships shown in Figures 5 and 6 above and Figures 3 and 4 above was obtained over a period of 1 year and 6 months when brick cooling protection was carried out by supplying a constant flow of cooling water to the staple cooler and hearth cooling pipe, respectively. This sample was taken during blast furnace operation F during the period, and it is clear that the brick temperature naturally fluctuates and the viscous layer thickness also fluctuates.
第7図は第5,6図のデータを採取した期間に秒ける炉
床壁レンガ温度と炉底レンガ温度の関係忙示したもので
正相関があった。Figure 7 shows the relationship between hearth wall brick temperature and hearth brick temperature during the period during which the data in Figures 5 and 6 were collected, and there was a positive correlation.
従って第5,6図の粘稠層厚さ−出銑〜出滓時間特性は
、炉床部湯溜体積が大きくなる程、出銑〜出滓時間が短
くなると考えられ、更に第0図の特性【は、粘稠層が大
きくなるに従って粘稠層測定レベルの」一方に位置する
出銑1]近傍が粘稠層に埋まって、銑滓抽出の阻害度が
大きくなり、出銑速度が減少し、その結果、出銑・−出
滓時間が長くなると考えられ乙。Therefore, the viscous layer thickness - tapping to slag tapping time characteristics shown in Figures 5 and 6 are considered to be such that the larger the hearth section volume, the shorter the tapping time to slag tapping, and furthermore, as shown in Figure 0. Characteristics [As the viscous layer becomes larger, the area near the tap 1 located on one side of the viscous layer measurement level becomes buried in the viscous layer, the degree of inhibition of pig iron slag extraction increases, and the tapping speed decreases. However, as a result, it is thought that the tapping time and slag tapping time will become longer.
以上の様に粘稠層厚みを管理、操作、制御することで出
銑−出滓時間を管理、操作、制御できる。By managing, operating, and controlling the viscous layer thickness as described above, the tapping-slag tapping time can be managed, operated, and controlled.
そして粘稠層厚みを一定に制御すれば出銑〜出滓時間を
出銑毎に一定にできる。更に粘稠層厚みを零に、すなわ
ち形成させない時、出銑〜出滓時間を最小にすることが
できろ。しかしながら粘稠層が形成されていないと炉床
部レンガと溶銑滓が面接接触することになりレンガ浸食
が激しくなり炉体保護の面から問題となる。If the thickness of the viscous layer is controlled to be constant, the time from tapping to slag tapping can be made constant for each tapping. Furthermore, when the viscous layer thickness is zero, that is, when no viscous layer is formed, the time from tapping to slag can be minimized. However, if a viscous layer is not formed, the hearth bricks and hot metal slag will come into face-to-face contact, resulting in severe brick erosion, which poses a problem in terms of protecting the furnace body.
そこで本発明では、炉体保護の而から問題とならない浸
食ラインすなわち粘稠層が最小限形成されるような領域
で、炉底、炉床壁レンガ温度を管理することにより、出
銑〜出滓時間(ラップ率)奮短く保ち、出銑滓伏況を安
定化し、かつ銑中(S)の低位継続を行う。具体的には
、過去の粘稠4j早さと出銑N作漠性及び炉体保護の両
面/ハら炉床壁及び炉底の粘稠層)1さの管理値(目標
値)を決定する。第・3,6図の実績では、上記谷粘稠
層厚さを0 、3 nl 4%’一度に管理するのが好
ましい。このS合、第4図及び第7図に示す関係からレ
ンガ管理温度金定める。粘稠層厚さo 、 3 (nt
)の場合、炉床壁及び炉底し/ガの管理温度は+10°
G及び+25”にとなる。Therefore, in the present invention, by controlling the temperature of the furnace bottom and hearth wall bricks in the area where the erosion line, that is, the viscous layer, which is not a problem from the perspective of protecting the furnace body, is formed at a minimum, the iron tapping to slag tapping The time (lap rate) is kept short, the tap iron slag condition is stabilized, and the pig iron middle (S) is maintained at a low level. Specifically, we will determine the control value (target value) of past viscosity 4j speed, tapping N, dryness and furnace protection (viscous layer on hearth wall and hearth bottom). . In the results shown in Figures 3 and 6, it is preferable to control the valley viscous layer thickness at 0, 3 nl 4%' at a time. The brick control temperature is determined from this relationship shown in FIGS. 4 and 7. Viscous layer thickness o, 3 (nt
), the control temperature of the hearth wall and hearth bottom/moth is +10°
G and +25”.
具体的て上記管理温度に管理する方法は1例えばステー
ブクーラー、冷却パイプの冷ノミ1]水流量及び冷却水
クーラー冷却能すなわちクーラー向水流耽、クーラー運
転台数等で行う−
次に本発明の具体的1榮条例を説明する。Specifically, the method of controlling the temperature to the above-mentioned temperature is as follows: 1) For example, using a stave cooler or a cold chisel for cooling pipes 1) Using the water flow rate and the cooling capacity of the cooling water cooler, that is, the water flow direction of the cooler, the number of coolers in operation, etc. 1.Explain the Eiho Ordinance.
第8図は昭和54年1月から昭和55年6月までの出銑
〜出滓時間光、粘稠層厚さく炉床壁レンガ温度)の実績
をポリており、昭和55年1月に本発明法全実施開始と
だもので、粘稠層厚みo、3mになるようにレンガの冷
却条件全冷却水流量及び又は冷却水クーラー冷却能を操
作したものである。Figure 8 shows the actual results from January 1974 to June 1980 (from tapping iron to slag tapping time, light, viscous layer thickness, hearth wall brick temperature), and was published in January 1980. When the invention method was fully implemented, the brick cooling conditions, total cooling water flow rate and/or cooling water cooler cooling capacity were manipulated so that the viscous layer thickness was o, 3 m.
具体的には51:1毎にレンガ温度及び粘稠層厚さを検
出し、上記操作手段を操作したものである。Specifically, the brick temperature and viscous layer thickness were detected every 51:1, and the above operating means was operated.
なお昭A155年1月以前は冷却水流l及び玲却水クー
ラー冷却能は一定に保持し操作しておらず。Note that before January 1972, the cooling water flow and cooling water cooler cooling capacity were not maintained constant and operated.
レンガフッ蕃度及び粘稠層厚さが変動している本発明実
施開始後は、粘稠層厚さが目標値の0.3mに近すき、
その結果として出銑〜出滓時間が20分に収束してゆく
ことが明確になっている3゜以上のように炉底、炉床壁
レンガ温度k !till l1lil L。After the start of implementation of the present invention, where the brick varnish degree and viscous layer thickness are fluctuating, the viscous layer thickness is close to the target value of 0.3 m,
As a result, it is clear that the time from tapping to slag will converge to 20 minutes.The temperature of the furnace bottom and hearth wall bricks k! till l1 lil L.
て、粘稠層形成量を炉床部レンガケ保護する」−で必要
最少限の0.3 mに保持することにより出銑・−出滓
時間が短時間で安定し1本発明実施以前に比してう、プ
出銑回数が231Mj/日から13回/日に減少しトー
タル出銑回数が15回、7日から14回/日に減少し開
孔費が′l裂節減できた。By keeping the amount of viscous layer formed at the necessary minimum of 0.3 m to protect the brickwork at the hearth, the tapping time and slag tapping time are shortened and stabilized compared to before the implementation of the present invention. As a result, the number of taps decreased from 231Mj/day to 13 times/day, the total number of taps decreased from 15 times to 14 times/day from 7 days, and drilling costs were reduced by 100%.
また、出銑作業が安定し、炉況が安定し、茜炉燃料比も
低下した。更に銑中S(%)も0.(128%から11
.025%に低Fした。なお上記具体的操業例は粘稠層
厚さを逐時・欧出し、冷却条件を操作したものであるが
、レンガ温度と粘稠層厚さとの相関特性音オC用してレ
ンガ温度を逐時検出し、このレンガ温度が目標の粘稠層
厚さに対応−Tるレンガ温度になるように冷却未件金操
作することもできる。In addition, the tapping work has stabilized, furnace conditions have stabilized, and the madder furnace fuel ratio has decreased. Furthermore, the pig iron S (%) is also 0. (128% to 11
.. F was lowered to 0.025%. In addition, in the above-mentioned specific operation example, the thickness of the viscous layer was determined on a regular basis and the cooling conditions were manipulated. It is also possible to detect the temperature of the viscous layer and to manipulate the cooling material so that this brick temperature corresponds to the target viscous layer thickness.
氾1図(A)[:BEは、萬炉の炉床部の圭直断面概略
葡・1クシ、粘稠層の説明図、第2図は、粘稠層厚さの
形成量の算出説明図、第3図は・p原種レンガに所定距
離たけ離れて設けた一対のレンガ温度H1の一方の温度
と温度差の関係説明図、第4図は17ンガ温度と粘稠層
−溶銑滓界面ラインとの関係説明図、第5及び6図は炉
床壁部及び炉底部の粘稠層厚さと出銑〜出滓時間との関
係説明図、第7図は炉床壁レンガ温度と炉底し/ガ温度
の関係説明図、第8図は本発明の具体的操業例の説明図
である。
1・炉床部 2・炉床部L/ンガ゛(炉底レンガ
4・・炉床壁レンガ5−浸食ライ/ 6 ・粘稠
層(高粘If層)7 粘稠層−溶銑滓界面ライン
8.9 炉床壁レンガ温度計
10、II 炉底レンガ温度計
第2図
−63−
第4Z
l″r2.炸J”lし〉ガ錦ん変丁(力じC)第5図
粘稗)@tSZC酬ノ
第6X
ノ2−をδレン、/75郡Aし丁tp;)にcJ第7図Figure 1 (A) [:BE is a schematic diagram of the perpendicular cross section of the hearth of the hearth, 1 comb, an explanatory diagram of the viscous layer, and Figure 2 is an explanation of calculation of the amount of viscous layer thickness formed. Figure 3 is an explanatory diagram of the relationship between the temperature of one of a pair of bricks H1 provided at a predetermined distance apart from the original brick, and the temperature difference. Figures 5 and 6 are diagrams to explain the relationship between the viscous layer thickness on the hearth wall and hearth bottom and the tapping to slag tapping time. Figure 7 is a diagram to explain the relationship between the hearth wall brick temperature and the hearth bottom. FIG. 8 is an explanatory diagram of a specific example of operation of the present invention. 1. Hearth part 2. Hearth part L/Ngai (hearthstone brick 4. Hearth wall brick 5 - erosion lie/ 6. Viscous layer (high viscosity If layer) 7 Viscous layer-molten metal slag interface line 8.9 Hearth wall brick thermometer 10, II Hearth brick thermometer Fig. 2-63- Fig. 4Z l″r2. ) @tSZC Shuno No. 6
Claims (1)
を保護するに必要な最小厚になるように上記レンガの冷
却条件を操作して、制御することを特徴とする高炉の操
業方法。A blast furnace characterized in that the cooling conditions of the bricks are controlled so that the thickness of the viscous layer of the blast furnace hearth becomes the minimum thickness necessary to protect the hearth wall bricks and the hearth bottom bricks. Operating method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3619382A JPS58153714A (en) | 1982-03-08 | 1982-03-08 | Operation of blast furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3619382A JPS58153714A (en) | 1982-03-08 | 1982-03-08 | Operation of blast furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58153714A true JPS58153714A (en) | 1983-09-12 |
Family
ID=12462880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3619382A Pending JPS58153714A (en) | 1982-03-08 | 1982-03-08 | Operation of blast furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58153714A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60184607A (en) * | 1984-02-29 | 1985-09-20 | Kawasaki Steel Corp | Operating method of blast furnace |
JP2008133900A (en) * | 2006-11-28 | 2008-06-12 | Fujitsu Access Ltd | Screw-fastening structure |
-
1982
- 1982-03-08 JP JP3619382A patent/JPS58153714A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60184607A (en) * | 1984-02-29 | 1985-09-20 | Kawasaki Steel Corp | Operating method of blast furnace |
JPS6137327B2 (en) * | 1984-02-29 | 1986-08-23 | Kawasaki Steel Co | |
JP2008133900A (en) * | 2006-11-28 | 2008-06-12 | Fujitsu Access Ltd | Screw-fastening structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1986001755A1 (en) | A method for producing cast-iron, and in particular cast-iron which contains vermicular graphite | |
Fallah-Mehrjardi et al. | Investigation of freeze-linings in copper-containing slag systems: Part I. Preliminary experiments | |
JP4752021B2 (en) | Reduced blast operation method of blast furnace | |
JP2001234217A (en) | Estimation and prediction method for blast furnace bottom condition | |
US2805851A (en) | Temperature regulating means for furnaces | |
US2102955A (en) | Temperature measuring installation | |
JPS58153714A (en) | Operation of blast furnace | |
JPH06504954A (en) | Adjustment of flow rate of molten product | |
JP4119620B2 (en) | In-furnace situation estimation method for blast furnace | |
Campforts et al. | Freeze-lining formation of a synthetic lead slag: Part II. Thermal history | |
KR880002277B1 (en) | Blast furnace | |
KR20030050868A (en) | Estimation method for blast furnace hearth refractory thickness | |
US3386720A (en) | Metal-coating furnace | |
JP2867918B2 (en) | Method for estimating effective thickness of slag coating in smelting vessel | |
US1376935A (en) | Apparatus for and method of cutting drains in furnace-bottoms | |
US4238118A (en) | Method of permanent protection of the lower part of the blast furnace, in particular of the bottom of the blast furnace hearth | |
Utigard et al. | The measurement of the heat-transfer coefficient between high-temperature liquids and solid surfaces | |
JP2718305B2 (en) | Estimation method of erosion line at blast furnace bottom | |
JP3590442B2 (en) | Blast furnace operation method | |
JPS6137327B2 (en) | ||
Van Winkel et al. | Microstructural changes in freeze linings during zinc fuming processes | |
JP2002363619A (en) | Method for controlling lower part in blast furnace | |
JP7107050B2 (en) | Blast furnace operation method | |
JP3385831B2 (en) | Estimation method of hearth erosion line and hearth structure | |
JPH09227911A (en) | Operation of blast furnace |