JPS60184607A - Operating method of blast furnace - Google Patents

Operating method of blast furnace

Info

Publication number
JPS60184607A
JPS60184607A JP59037477A JP3747784A JPS60184607A JP S60184607 A JPS60184607 A JP S60184607A JP 59037477 A JP59037477 A JP 59037477A JP 3747784 A JP3747784 A JP 3747784A JP S60184607 A JPS60184607 A JP S60184607A
Authority
JP
Japan
Prior art keywords
furnace
refractory
line
erosion
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59037477A
Other languages
Japanese (ja)
Other versions
JPS6137327B2 (en
Inventor
Fumiaki Yoshikawa
文明 吉川
Masatoshi Ichinomiya
一宮 正俊
Seiji Taguchi
田口 整司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59037477A priority Critical patent/JPS60184607A/en
Publication of JPS60184607A publication Critical patent/JPS60184607A/en
Publication of JPS6137327B2 publication Critical patent/JPS6137327B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/04Blast furnaces with special refractories
    • C21B7/06Linings for furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor
    • C21B7/106Cooling of the furnace bottom

Abstract

PURPOSE:To prolong the life of the titled blast furnace by estimating easily the erosion and solidification layer lines of the furnace bottom with use of the boundary element method, grasping always the state of erosion and the distribution of the solidification layers at the furnace bottom, and controlling rapidly and exactly on the basis of such information. CONSTITUTION:The maximum temp. of the furnace bottom is detected by a temp. sensor 6 furnished to the furnace bottom refractory material. The heat transfer at the furnace bottom is analyzed from said detected value with the boundary element method by using an axisymmetric body wherein the vertical axis of the furnace is used as the symmetry axis 1, and the erosion shape of the furnace bottom refractory material 8 is estimated. After detecting said maximum temp., the temp. is detected when the furnace bottom temp. is lowered. The shape of the solidification layer of the melt formed on the furnace bottom refractory material 8 is estimated in the same way as above-mentioned on the basis of the detected temp. and said estimated solidification shape. Subsequently, the thickness and distribution of the shape is controlled by the selection of the operating conditions of the furnace on the basis of said shape to prevent the growth of erosion of the refractory material 8.

Description

【発明の詳細な説明】[Detailed description of the invention]

高炉、電気炉又はガラス溶融炉など、炉内に高温溶融物
を収容して反応を推進させる炉を一括して溶鉱炉と呼ぶ
ことと定義し、該溶鉱炉の操業安1.。 定化と炉寿命の延長を図ることについての開発成果に関
しこの明細書で述べるところは、高炉を代表例としてそ
σy炉底耐大物の浸食状況およびその耐火物浸食面上に
消長する凝固層の分布状況や、その消長の速度を正確か
つ迅速に推定杷握することにより、凝固層の1−厚分布
を制御し出銑出滓など高炉操業の安定化を可能ならしめ
るようにした新規な溶鉱炉の操業方法を提案するもので
ある。 (背鍛技術) 近年の高生産性を追求した高炉の大を化や41ψ業条件
の苛酷化は、炉底1Tr1火物の損耗を速め高炉前・命
を短くしている。そのため低経済成長の状況ドにおける
高炉操業では安定操業を行ない高炉寿命を延長して銑鉄
単価を切りFげることが重要な課題よなっている。 (間、1lLI点) この高炉のな定操業と身命の延長のためには、まず高炉
操業中炉底耐火物の1φ食状況を常時1巴41nし、侵
六箇所の1呆1□11χ4策を迅速かつ的確に取ること
が不可欠である。 また、同時に該保i”I対液に由来し耐火物侵食面上に
生成、消滅を繰返す、Iを銑、コークス、れんが破片、
その他の装入物の混合した凝固層の分布状況を常時把握
し、で、耐火物保護対液の定埒1化を図るとともに凝固
層厚や層厚分布の制−11を行なうことも必須のrh砦
課題である。 すなわち、]二記の凝固層は耐火物の保護の面では・す
1底部耐火物のFψ食面全戦にわたって11<生長して
いるノjが望しいが、厚すぎて出銑ロレベル以」―に凝
固層が生長したならば炉底が冷え込み状jpuとなり易
く出銑滓作業の妨げとなる−1それほど顕5舊でなくと
も、凝固j4が炉底中心部で局部的に大きく生ししたよ
うな場合、溶銑滓の流路が小さくなって1llrffl
抵抗が増加し一回の出(洗滓作猶で排出できる溶銑滓の
量は減少し、溶融物が炉床に残り気味となるので炉内全
体の通気性が悪化したり装入物の荷−ドリが悪くなる。 このように安定した出銑滓作業と炉底1耐火物の有効な
保護を両立させるためには、炉底部凝固ノーの消長を制
f111できる技術を確立し、最適な凝固層厚や分布を
定ト1化して最適集注で高炉操業を行なうことが必要と
なるわけである。 従って炉1戊部耐火物の侵食状況は言うまでもなく、そ
の侵麹面上に生成、消滅を繰返す凝固層のオンラ・イン
によるモニタリングが11iJ提となる。 ここに炉底1耐火物は高炉火入れ以後徐々に損耗して行
くので炉底各部位のセンサーの測温値は1%萌的に徐々
に上昇するが、短期的には高炉操業襲件の変化や耐火物
保護対液の如何によってjけ大物上に凝固1−が生長し
測温1直は低下する。それ放火べれ?+ 各部rへzの
センサーが1′&高・晃度値を示r時点での71J!l
 l雁、直を用い、・耐火物の1是朗状況を1館定し、
そしてセンサー1ilI1.’= 賄が低下した時点で
の測温値を用い1)「時点で推定した耐火物浸食面トに
’を良した凝固°癖の分乍状況を逐次推定して行くこと
が必要となる。 炉1ζ耐火物の4曳ラインや1耐火物受食面上に消長す
る炭固層の層厚分布う・イン、叩も、愛固1−ライン(
以下、士とめて「浸曳堤周層ラインー1と言う)を推定
するために、高炉炉底部に熱電対を復13、配設し炉1
・(部の云燕計搾を行なわなければならないわけである
。 (従来技術) 従昶、炉底部の1食1費因層ラインの喉定には、炉底?
r部の熱厩灼で検出された実測温度を用いて単なる一次
元伝熱、け痺か、またときに二次元伝熱計算として有限
要七法が1采用されて東た。 い底コーナ′部のt)食疑固層ラインの推定は、−次元
の1尺)へaF算によっては元来下ijJ 1屯で、高
炉炉底を炉のたて・1q11を対14、軸とするj!i
ll対称体(単に「軸対称体」という)と簡略化しても
二次元伝熱計算が不可欠である。 この二次元伝熱計算には一般に有限要素法が用いられて
来たが、これは非常に時間を要する面倒な作業である。 有限要素法や差分法など一般の領域法では軸対称間項の
場合、第114に示す如く対称軸を1として、斜線で示
した例えばθ=0の子午線断面2を要素分割し、それぞ
れの要素で熱伝導方程式を満足するように変数(温度)
を決定する。 従って、侵食ラインの推定にはまず、第2図に示す如<
 11情度実測位置での炉底の子午線断面2を考え、4
当に浸食凝固層ライン5を仮定し、第2図の子午線断面
2の領域を要素分割して各部の温度を計算する。 一般に侵食凝固層ライン5は鉄−炭素系の共融I黒度(
約1150°C)の等幅線に一致すると考えられ°Cい
るので、侵食凝固1−ライン5とでの境界条件にはこの
温度1150°Cを与え曲の境界には炉底冷却条件をそ
れぞれ与える。第21ズはこれによって711られた計
の結果の一例を示し、各等温線を与えCいる。 次に炉底埋設置黒度旧6の位置での1i−1’算値と実
測1直とを1−ヒ較する。それらの差がある温度範囲、
例えばlOoCより大きいならば、侵食C疑固1−ライ
ン5を少し移動させ新しい計算領域2を再度分割してヒ
述の操作を繰り返す。 すべての炉底Y黒度計6の位置で削算値と実測値が、あ
る温度範囲内で一致するまでこれを繰り返し、浸炭凝固
層ライン5を決定する。 この方法によれば炉底温度計6のある時点の実測呟から
一つの浸食凝固層ライン5を8i定するのに(技術者1
人)×(半日)×(1週間)という多大の[程を要する
。4うまでもなくこの1痒には「昆子計算機が必要で、
また10回の入力データも非譜に多く、かなり大型の計
算機が不可欠である。 さらに侵食凝固+4ライン5を自動的に移動させ、内部
要素の分割も自動化して入力することは不可能でないに
してもそれを実行するアルゴリズムは棋帷となり、また
1σ回温度Ml−e位置以外の内部の不必要な温度1痺
も加オつり大きな計算コストを1決する。 このように従来の有限要素法などの領域法を用いて炉底
の侵食凝固層ライン5を推定するには多大の時間を要し
たのでありそのため、炉底温度上昇など異常時に際し、
すばやく炉底侵食状況を推定し、迅速かつ的確な炉底保
護対策を取ることは非所に困難な上、また、凝固層厚分
布を常時把握し、耐火物保護対液を時機を逸せず行ない
、出銑滓作業が安定するように層11分布を最適に制御
すると言ったことは不可能である。 まして、製鉄所には一般に複数の高炉が設置されている
ので、それらの高炉のすべてについてそれぞれの炉底状
況を常時把握し長1υJ的な保護対液を取り操業の安定
化を1図ると共に、異常時に即応するといった炉体管理
は事実上fFiJ能であったのである。 (発想の端緒) このような状況のもとて発明者は、最9斤盛んに研究さ
れ始めて来た境界要素法なる数値計n法によってt軸対
称問題が二次元間顆から一次元量1・1に変換されるこ
とに着目したつ すなわち、第31・閣に;F、 を如く子午線断面2の
境界線4(例えば、θ−0の子午線断面と用1対称領峨
の境界部との交M)を要素分別し、各要素(すなわち線
分)9ヒで熱伝導か糊代にλ1応する境界債分方哩戊を
、・14足させればよく、第414に境界安素法によっ
て得られた炉底の伝熱計算の一例と各等温線を示す。 第4図かられかるように境W′皮素法でけ境界線4のみ
(ただし、れんがの+iR頌が異なる! eにはそれら
の境′fY線を含めて)を要素分割して計4すれば、伝
、為間1゛砲を肩°くことができ、内部の温度も得られ
たl寛界りの変成1直、」なわちl、■度と熱流速の1
直をIIJいで二)りめることができる。 境界間外法ではこのように頭載内部、!41Jち炉底部
れんが8の要素分1クリは小用となり、炉rHれんが8
の浸食挺固層ライン5の推定の自動化が可能になる。 浸−I!1:凝固層ライン5のlfG定のプロセスは」
−述の有限要素法の局舎と同じであるが、億が要素法を
応用することにより、侵11+:Ilu固1f4ライン
5の停動ごとの内部の要素分別がf・外となり、また内
部温度の1痒も炉底叩設温度、′?′I6のfik置の
みで行なえばよく不要な旧痒は一切なくなる。 この計り:法を適用することによって1〜2分の、キ1
算時間で1ケースの解(真の浸食ライン:後jiBする
第6図の11の位置;真の・葵固1−ライン二後ボする
第714の14の位W )が得られるため、王政や計算
コストの削減は言うまでもなく、製鉄所内の全高炉につ
き統一的な炉体管理により安定した出銑滓作衷の和しお
よび炉底温度上昇など異、茗時に対するアクションのi
Ra化が可り目となり高炉lIy!業の安定化や高炉寿
命延長など多大の利益をヒげることができる。 (発明の目的) 以りのべたところを要約して、この発明の目的は tl)l寛が要素法の活用によって伝熱問題の次元をひ
とつドげて、軸対1へ間項を一次元問題に帰着させ、 ■ かくして高炉炉底の侵食凝固層ラインの推定にこれ
をゲリ用してjf易に自動化できることから、炉体のオ
ン・ライノ庁理による出銑滓作業等高炉M業の安定化や
炉寿命の延長をj司ることができる、m鉱炉の1榮窄方
法をIA立するところにある。 (発明のtllJ成〕 この発明はl′8′吠炉の炉IJギを1.監視しつつ枦
1f■業を行うに際し、以下の−V程を包含する溶鉱炉
のj染業Jj法である。 (a) 炉底1耐火物上および/または炉底耐火物の外
に面に配置没した複数の1jlll温センサーにより、
炉1戊1.I!度を検出する工程、 (b) (a)の最高と都度を1(出する工程、(c)
 (b)の温度から境界要素法を用いて炉底につき炉の
たて軸を対称11+とする一1Ql+対称体として伝熱
1管析を行い炉底耐火物の侵後形状を予測するL(呈、 (d) (b)の「程以降に炉底温度が低ドした時の温
度を検出する工程、 (e) (d)の温度と、(C)で予測した炉底耐火物
の+:i賞形状をもとに境界四素法を用いて炉底Qこつ
き炉のたて軸を対称軸とする軸対称体として伝熱解析を
行い浸食された炉底1耐火物上に生成した炉内溶融物の
凝固層形状を予11(σする工程および(f) (e)
の7疑固1−形状をもとに、その厚み及び分布を、炉底
冷却条件を含む炉操業条件σ月列択によって制御し、前
記(C)の炉底耐火物の侵食成長を151:1止する工
程。 さて以Fに、し龜界要素法の計σ原理とこれを応用1し
、高炉炉底部耐火物の優良状況および11]f火物1歩
庚而トに生長消滅する硬固1−の分布状況をオンライン
で推定し、連数高炉の炉体管理および操業の安定化を図
る手順について具体的に述べる。 ちなみに境界要素法については、r山に境界端分法、境
界積分方程式法、特異点解法、グリーン関数法、周辺積
分有限要素法など種々の名前がつけられているが、d士
算1東理、すなわち、場の支IJe拐文分方程式を境界
]二の積分か桿式に保合させ、これを有限・樹素法なる
n値解法と頌似の方法により離散化、房素分割しr l
Zjをめるということにおいてすべて同一のものであり
、ここでilう1ギε界′堤素法とGjそれらをすべて
含むものである。 (計算原理) tjχt’+’−’堤素法による軸対称ボ戸ンシャル間
1Ill!(定騎伝熱間1111:] )の定式化、離
散化および解法につぃ一’CiIgべる。 (り定式化 第5図G・二示ずよ・)な軸付称領域Ωを考え、その境
界面ヲr (=7’l + 7’2 +ra ) トt
 6 ト、ポテンシャル間IMの支配か程j(と境界・
ト件は次のように表わされる。 支配方程式:211(Σ) = (l 聞・曲・・・・
・(1)ここで、u(乏)はΩ内の壬(5)点4てのポ
テンシャル、u(n) トq(、、:)はI’ 、−F
−の(EH点りでのポテンシャルとr4iu東、uo+
 Qoは現定された値を示し、uaとhは周囲ポテンシ
ャルと(熱)伝達係数である。伝・部間:顆の楊合イポ
テンシャルUは@I!:、ffl東qハ熱a、東となる
。 η慮中の問題に対するl寛界上のc〃分か桿式は、次式
(3)で与えられる。 0(,1i)11(,4、)+ノーrpU(:) ・q
 ” (、:、0.、:)a r−JJrq(:)・u
’(、:□、尼)+1’ =13)ここで、Lよ、芯は
F上での任ぼ点を表わし、G(0・)^ψ1 は境界が滑らかな時はC(兄、) = 0.5であり、
滑ら□かでない時は等ポテンシャル条件よりその幀を間
接的にめることができる。また市み関数u* (、i、
、芝〕、あるいはuo(乏i、乏)は無限媒体中で式(
1)に対応する次の成分方程式(4)を満たし、店番i
1+’4と呼ばれる。 2u°(芝1.芝〕+δに−4、)=0 ・・・・・・
・・(4)ここで Xo、芝はΩ内の任、は点を表わし
、δ(乏−X−0)はDir acのデルタ関数である
。三次元可か物体に対する式(4)の1す〒およびq 
” (X、 、 X)は次のように表わされる。 u (〜i、J 1/4 yrR−(5)9m(Mi、
二)−θu*(b、乏)/θn=(−1/4πR2) 
(aR/、、、) −−(0)ここで、R−1〜−〜1
1であり、嘔位廃中負荷の働く点こ、と池の点4との距
離を表わす。 氏(5) 、 (6)4:i、r上の点Li、Lに対し
ても成立する。 l1II対称間1題ではポテンシャル、流束とも円周方
向には無関係に一定である。従って、第51叉に示すよ
うに式(3) 、 (5) 、 (6)を円柱座標系に
変換し、兼敗化して救値喧をめる。ここで、第5図に示
すように意見、 、:に対応するθ−θ′=oの点をそ
れぞれL工、4とし、点几での外向き単位法線を迂−(
n□、n2.n、)とする。 θ−〇だからN兵2−、−0となり、点几での外向き単
位法線nは五によって次のように表わされる。 A フ(ni 、n2+ na )−(五cosθ、n
□sj−mθへ) ニー(7)また、Ωは軸対称である
から尼iではなく元□(θ−0)について考察しても一
般性は失われない。従って、θ−0として式(5) 、
 (6)中のRとRの法線方向導間、数を円柱座標系で
表わすと次のようになる。 R=Iσ−σ、1 〜 ^司− −(r +r −zrr ’cosθ+(Z−Z’)”
:]% ・(8)θR/an=(r−r′CO8θ)n
1/R+(z−z’へ/R−=(9)ただし、兄−(r
+θ、2)、ムー(r /、0 、z ’)である。 いま2軸を含むθ−0の平面とFとの交線S上のu、q
の瞳をそれぞれi、互とすると、軸対称であるから次の
ようになる。 U(兄)−畝!、〕、 U(σ、)=u(ff、)へd
 〜1 ・(10) よって、式(3)の円柱座標系表現式は次式(1■)で
与えられる。 (j (、i4.)−u (、i、、 )→−”ffF
。u(、i)−丁(、j、、3)・l J l d7”
。 7/J7’oq(i)・箱i、H)・l J I d/
’。= (11)ここで、/’、u(σ、σ)、q(σ
、、σ)はそれぞれC〜1〜 〜1〜 1’ 、 u’(a、、σ) 、 q’(a、、σ)の
円柱座標系表現式で〜1〜 〜1〜 あり、IJ+は属僚変換に伴うヤコビアンである。 (2)1雑故化と1″1丁法 式(11)はZ・1111を含むθ−0のγ−面とI゛
との交線SLのポテンシャルiとlイC東1に関する債
分方糊代である。藺つCに次元問題と全く同様に、Sを
嘔索分割すればAft故化代数方1呈式が得られ、これ
をjすYけは問題は1仔決される。ただし、式(11)
中のu、q に関する漬汁は回1法体表面I゛、[―で
行なわれる必要があり、二屯債分となる。 いま、SをN個の境界要素ζこ分別し、(67点jでの
tffi点i、+tを石、互 と表わす。内そう関数φ
を用σ)3 て要素内のu+Qが次のように表わされると仮定J゛る
。 U(兄)−φ(昆)・見、q(兄ノーφ(兄〕・鬼 ・
・(12〕トルである。式(12)を式(11)に代入
すると、次の離散化代数方程式が得られる。 ただし、H1j=ff、。jφ咀)・丁咀□1,3) 
・l J I dr。(14)G、=Jfr。jφ(元
)・u@(E、促)・l J l d7’。(15)で
ある。 ここで、例えば、第5図に示される境界要素(線分)S
5.ヒのrと2の1ぬ係と2の変数変換によりrは次の
ように表わされる。 r−az +b=a@へz@t +azJ+l)−・・
・(16)ココテ、△zj=zj+□−2jであり、a
、bはθ=0千面上での要素S、の勾配と切片を表わす
。 式(16)を用い9累SJをベクトル衷示すると、r=
(a−ΔZ ・ L+azJ I b )COεθ ・
」二〜 j +(a *△Zj 11 t、 +azJ+l) )s
inθ°↓+(△ZJ−t + Zj)・坦 ・・・・
・・・・・・・ (17)となる。ここで、i、j、に
はX、X、、Xli伯方NN、、、 1 2 8 向の中位ベクトルである。 これを用いれば、式(9)の五や式(11)のIllは
次のように表わされる。 n = (△z、/1. )(i −ak) ・+・・
++・・(1,8)〜コ、1〜 IJI−1,−(a、−△z、−t+az、+b)・−
−−−−(tO)J ] 3 たたし、l は要素S の長さ、l −((rJ+ t
−r] ) +J J J (△ZJ)2声−Cある。 JSた(1/’1.、− I J l ” d rc−
I J l・(1θ・dtであり、式%式%) 債分を行なうことにより、H4jとGIJを評価するこ
とがてきる。z =一定の゛ト面ヒにあるrj’l 、
、、%す2.(ζに対しても全く同様に式(14)’、
 (15)を評価することが可能である。 すべての境界節点に関し式(18)を考え1、F0上で
はUの値が、F2とF8−ヒではqの値が規定されてい
ることに注意すれば、未知数はN個で全体系の代数か程
式は次式のようになる。 AX−F ・・・・・・・・・・・・・・ ・<20)
ここで、Aは係数マトリックス、XとFはそれぞれ未知
節点晴のみと既知縫のみとを含む列ベクトルである。 4 (20)をXについて解けばよい。 Ω内の任啄点X、でのポテンシャルは、’1ε界上の9
1 節点1什を用いて次式により計算することができる。 以上の計算原理は次のように要約することができる。 ■ 定常熱伝導問題の支配微分方程式(ラプラス方程式
)(1)を境界条件(2)と結合して虞みつき残差表現
式を作る。 (ゆ この・貧みつき残差表現式を境界ヒの債分方程式
(a)に蓋換4−る。 ◎ 軸対称性を考#lf、 L、て式(3)を円柱座標
系表現式(11)に変換4−る。 @ 式(11)の解を数値的に1管くために、領J或Ω
(第5図)の境界部F。を要素分割すると、式(18)
の;惟故化代紋方程式を得る、+Φ 式(13)の係数
Jj + (yij (弐〇+) 、 (15))を計
画するために分xすされた各境界f!判而面。。 をベクトルによって助変数表示(式(17))−Jる。 (D 戊(17)をIllいれば、+”:、 (14)
(15)を二ri積分に′勿換することかでさ、それら
の1直を数1直的にめることが1if ii@となる。 ■ 各・周索I“。コについて式(18)を4えると、
仁用故N個、氏のc!1.N閘の代数方程式(2(1)
ができ上がり、これを岬けげ、1寛界J二のすべてのr
a IG(と熱流束が決定される。 (]) 領(哉Ω内j<シの11−λ度は1碓γトJ二
の都度、5鵠、パ亜東を用い1.Q(2Nによって弓t
し′)−される。 さて境界閥素法による侵食ラインおよび凝固層ラインの
推定方法はそれぞれ同一であるので、温度計6の測温直
が一時上昇し耐火物の侵食が仏性した後、耐火物保護対
液や操業条件の変化により侵食が停止し、liL同1−
が生成、消滅を繰返している期間における凝固層ライン
の推定手順、および分布制御によって出銑滓・作業を円
滑にする手法について以下に述べる。 (]) 境界要素法に基く数値計算法により、軸対称項
城の伝熱間砥(変数、叩ち温度と熱流束は円周方向に無
関係となり、頃1或のひとつの子午線断面を対家として
解くので二次元間、肩となる)を軸対称頃域の子午線断
面の境界部での債分間−暇(境界は線分で表現できるの
で一次元問題となる)に変換する。 (2)高炉の炉底部(れんが債み部8)は軸対称体と考
えられるので、第6図に示す如くこの炉1戊のある子午
線断面(炉底間部温度計6の位置を含む而)の境界4を
微少な境界帰属(線分)9に分割する。 (3)凝固層ライン5の4′f1.IJ)) fjα囲
を前時点でIff定ざ1れた耐火物)ジ)+(ライン1
1よりも炉内側に設定し、ライフ50辺明f装置を与え
る。凝固層ライン5Fの境界′決素9上の節点1 il
の境界条件とし′C秩−炭素系の共融温度1151) 
”Cを与える。 (4) 他の外部俺界トの・悶素9上の節点1 (lに
対しては外部の冷却条件(抜熱用、あるいは冷却の、!
%伝達係教)を与える。 (5)各す界安素9上の節点1oにはl#、界条件とし
て温度、熱流束、あるいは熱伝I!係数の何れが。 ひとつが与えられるので 1ijl 、、fiがlA’
fされ1昨<ことができ、全1題界翅−斡9]二の所j
点1.11でのr晶1ρと熱流束が決jpされろう (6) このように決定された各障界安素g F、の節
点10における・AK度と格1加東とを使用し、境界要
素法で導かれた代によって炉底埋設温度計6の0’L 
IP’t’Cの@1朝を計qする。 (7) 7都度gl”3の位11qでのパ1゛l): 
ONと実測値とを比軸し、予め設定された条件をti總
足すれば(例えば、その冷がすべての温度「1[6の位
置で予め決められた温度範囲(例えば1 (1’C)内
にあれば、)始めに仮定した凝固層ライン5を温度計l
1i11時の真の浸食ライン14・とする。 (8) もし、条件を満足しなければ、凝固層ライン5
を自動的に移動させる。 (9) 新しい凝固層ライン5を尾に)、 if[E 
(3)〜(7) +7) 7’ロセスを友行する。 (10)予め与えられた条件を満足するまで(3)〜(
7)のプロセスを僅り収し、真の、・ソf固層ライン1
4を決定する。 (11)ある時な11の測定値から真の凝固層ライン1
1をIfli定するための所要計算時間は初回推定の1
局汁1〜2分であるが逐次推定しておれば10〜3()
秒であるので、時々劾々の#t 1tlll°直がらオ
ン・ラインで温度計6の埋設面の推定炉底71固層ライ
ン1.4をCRT表示し、操炉者に速報する。 (12)これにより高炉炉底各部の凝固層分布状況を常
時把握し、より安定した出続滓作業を実現するための、
費固層分布の制御をIB速にかつ的確に行うことが可能
となる。 (13)例えば、安定した出、跣滓作猶を行なうために
。 はパ必固j−ノヴが建設時1ili′I火物レベルより
(+、fin以にの高さにならないように、また、耐火
物保護のためにはできるだけ1句−てかつ1ゾ<116
1層が11ijJ火物1ジ改而りに′を同するように、
炉1戊1底而や炉底11111壁の各部を制御冷却し、
羽1」がら吹込まれる熱風の1tや・虱1宋、燃4:F
1ヒ、装入物の炉内分布の凋啓を「テなう。凝固層の最
適な厚みや分布および冷却や吹iΔみ、熱風や麦人物牙
の曝作変致計は、高炉の友きざ、・υヨj戊+41t 
r貴、付;W、(ン1i’ff埋々によって鴇なるのは
当然のことである。 (14)推定される・凝固層の11みとゆ布がl祷4と
締えられる範囲を免税しているならば、1献、高範囲に
それらが収るよう冷却在席をヒトし、熱風噴の増成、高
炉り部装入物分(5+A整による;熱風の炉内汁4fi
 lli幣、j然科比の増減を11なう7、以Fのよう
にして温度、116の1旨示値を基準とする間断こそ従
来とり1[[−ヒ同様であっても、戸1戊rti造、1
9暖す耐火物、冷)e11条件、熱;虱吹込み条注昏に
よってC凝固層o)l!lみや分布が頚なり、従にのH
法では凝固層分布の出・跣滓作梁に与える影響や耐火物
の保護に対する寄与を迅速かつ的確に判断することはl
[IIであって、はじめて述べたように凝固層の分布状
況の逐次推定に多大の工数を要し、はとんど実幼をあげ
ることができながったのに対し、この発明によれば浸食
ライン11の推定はもとより凝固!−ライン14の推定
を非常に容易に短時間で行なうことができ、オンライン
化が可qlとなって、時々刻々の凝固層厚や層厚分布の
把)屋と制御が可能なので高炉検案の安定化、ひいては
高炉寿命の延長が有利に達成されるのである。 8産銑鉄5000)ン級の大型高炉において炉底埋設温
度計6の、ある寿測値に対する炉底凝固層ライン14の
推定例を模式的に第6図に示す。 炉底埋設温度計6の位置を含む子午線断面を考え、その
境界4を安素9に分割する。凝固層ライン5の移動範囲
を前時点で11トポされた耐火物侵食ライン11よりも
炉内側に設定し、凝固1燐ライン5のw期位INを与え
る。次に凝固層ライン5上の境界節点IOに噴界条件と
して1150 ’C′5−b f、−Jj炉底れんが8
の外面−(二の1昇節点10には各冷却条件を与える。 噴界彎4ζ法を適用して全境界節点10での温度と熱流
東、およびl^A度計6の位置での密度を計轡。 する。 l、!!度aF 6 (7)実1ulJ iiA トR
[<Ql rut トカpメ与エラレt、=条件を満足
するまで凝固!−ライン5の移+ffJJをイAす1区
し、その結!石、第6図に示すような真の凝固層ライン
14・が決定される。 (V固層ライン5のC力量位置と決定された凝固層ライ
ン14の位1?tが、セければ、IW定に欲する計算時
間は2分吐くなるが、爪′時BB定して:I5れば僅か
の僅返しでへの・堤固層ライン14はrへ速に央1辷さ
れ、計算時間はlO〜30秒程度となる。 平均出銑F; 51) (l U t/da、y (7
)上記高炉ニ16イーr火入れ後、約7カ月の時点で炉
底埋設温度Ht6全体の71情度指示値が、急上昇し、
最高温1ヶ到達時点の准ノjl耐火物)う食ラインは第
7図の11に示すものとなった。これに対し、実測値が
急上昇し始めた時点から時々な11々准定された暖間ラ
インに基づき浸食が特に進行していると予想される炉底
コーナ部および炉底底面の冷却を強化し、羽目送風it
を若干減少させるという短期的な保護対策を取るととも
に、装入Ti−o2にの増加や周期的な休風の実施とい
う長期的対策を同時に実姉した。 この対策実施後約1週間で耐火物の浸食傾向が停止し、
炉底温度計6の指示はほぼ一定となった。 対j伐実施後約11日で耐火物侵朗面りに銑鉄コークス
耐火物破片等の凝固層が形成され始めるi傾向を示し、
炉底温度計6の指示値は徐々に低ドし始めた。 従って、対′if処癩後18日目から送虱潰を徐々に増
加づ−るとともに炉底冷却強度を徐々に緩和した。Tl
O2の装入l@も減少して行き約1カ月後に推定凝固I
#厚が炉底全面にわたって(1,5、mを越えたのでこ
れらの対液を打ち切り、通常IIf/!業とした。 そのr麦、凝固層厚みは最適1−厚の範囲内に落ち着き
、出銑滓作業等高炉作業は1;n1周に行なわれた。 次に火入れ後、約11カ月の時点で高炉の減産操業には
いり、出銑比を1゜8から1.5に低下したとごろ、炉
底恭度計6の指示は、出銑嘴の減少とともに低ドし始め
、約5日(麦にはかなり低トした。 このII;’j点での推定凝固層ラインは第7図の14
に示すものとなり、炉底中心部に大きく凝固I彌が成長
し炉底部の溶銑、溶滓の通過抵抗が大きくなっているこ
とが予1すされた。ここに炉底温度低下開始11後から
1iL!l当りの出銑滓作業による出銑滓、lは低ドし
始め、出銑滓頻度は増+JII t、た。 鴻1舊、出、銑滓作業は1回当り2・考量余りで1日に
約10回行なわれていたが、炉底、′雁度が低下し始め
ると1回の出銑滓作業の開始後2時間未満のうちに出て
跣1」から炉内カスの・^出が始まるようになり、引き
続いて出銑滓iiJ H屯時間が余々に短くなってrj
つだ。 こうして2週間j麦には出銑・j
Furnaces such as blast furnaces, electric furnaces, and glass melting furnaces that contain high-temperature molten material and promote reactions are collectively referred to as blast furnaces.1. . In this specification, we will discuss the development results for the improvement of refractories and the extension of furnace life, using blast furnaces as a representative example. A new blast furnace that enables stabilization of blast furnace operations such as tapping slag by controlling the thickness distribution of the solidified layer by accurately and quickly estimating the distribution situation and the speed of its growth and decline. This paper proposes a method for operating the system. (Back forging technology) In recent years, the increasing size of blast furnaces in pursuit of high productivity and the harsher 41ψ working conditions have accelerated the wear and tear of the 1 Tr 1 refractory at the bottom of the furnace, shortening the life of the blast furnace front. Therefore, in blast furnace operation in a situation of low economic growth, it is important to maintain stable operation, extend the life of the blast furnace, and reduce the unit price of pig iron. (Time, 1lLI point) In order to maintain stable operation of the blast furnace and extend its lifespan, first of all, during the operation of the blast furnace, the 1φ corrosion condition of the bottom refractory should be checked at all times, and the 1hole 1□11χ4 measure should be taken at the 6 places where the corrosion occurs. It is essential to take measures quickly and accurately. In addition, at the same time, I is derived from the liquid and repeatedly forms and disappears on the refractory eroded surface.
It is essential to constantly monitor the distribution of the coagulated layer mixed with other charges, and to aim for a constant density of the liquid for protecting refractories, as well as to control the coagulated layer thickness and layer thickness distribution. This is a rh fort assignment. In other words, in terms of protection of the refractory, it is desirable that the coagulated layer shown in [2] should grow over the entire Fψ corrosion surface of the bottom refractory, but it is too thick and cannot reach the level of iron tapping. - If a solidified layer grows at the hearth bottom, the furnace bottom tends to cool down and become a slag, which hinders the tapping work. In such a case, the flow path of hot metal slag becomes small and becomes 1llrffl.
The resistance increases and the amount of hot metal slag that can be discharged during slag washing decreases, and the molten metal tends to remain in the hearth, resulting in poor ventilation throughout the furnace and In order to achieve both stable tapping slag work and effective protection of the furnace bottom 1 refractory, it is necessary to establish a technology that can control the waxing and waning of furnace bottom solidification, and to achieve optimal solidification. It is necessary to operate the blast furnace with optimum concentration by keeping the layer thickness and distribution constant.Therefore, it goes without saying that the corrosion status of the refractory at the bottom of the furnace 1, as well as formation and disappearance on the corroded surface, is important. Repeated online monitoring of the solidified layer results in 11iJ.Here, the bottom 1 refractory gradually wears out after blast furnace firing, so the temperature values measured by the sensors at each part of the bottom gradually decrease by 1%. However, in the short term, depending on changes in the blast furnace operating conditions and how the liquid is used to protect the refractories, solidification will grow on large objects and the temperature measurement on the first shift will drop. The sensor at r to z shows a value of 1'& high light, and 71J!l at the time of r.
・Using a wild goose and a straight line, ・Determine the condition of one refractory in one building,
and sensor 1ilI1. 1) It is necessary to successively estimate the degree of solidification behavior that is better than the refractory erosion surface estimated at the time using the measured temperature value at the time when the temperature decreases. The thickness distribution of the coal solid layer that ebbs and flows on the 4 lines of the furnace 1ζ refractory and the corrosion surface of the 1 refractory, the Aiga 1 line (
Hereinafter, in order to estimate the "surrounding layer line of the dike", 13 thermocouples were placed at the bottom of the blast furnace.
・(This means that we have to carry out the yunen measurement of the part. (Conventional technology) Is there a need to determine the throat of the 1 meal 1 cost layer line at the bottom of the hearth?
Using the actually measured temperature detected during thermal cauterization of the r section, one method was used to calculate simple one-dimensional heat transfer, paralysis, and sometimes two-dimensional heat transfer. The estimation of the solid phase line at the t) corner of the bottom corner is based on the aF calculation to 1 shaku in the - dimension. The axis is j! i
Even if it is simplified as a 11-symmetric body (simply referred to as an ``axis-symmetric body''), two-dimensional heat transfer calculations are essential. The finite element method has generally been used for this two-dimensional heat transfer calculation, but this is a very time-consuming and tedious task. In general domain methods such as the finite element method and the finite difference method, in the case of an axis-symmetric term, as shown in No. 114, the axis of symmetry is set as 1, and the meridian cross section 2 at θ = 0 shown by diagonal lines is divided into elements, and each element is variable (temperature) to satisfy the heat conduction equation with
Determine. Therefore, to estimate the erosion line, first, as shown in Fig. 2,
11 Considering the meridian cross section 2 of the hearth bottom at the actual measurement position, 4
Assuming an eroded solidified layer line 5, the area of the meridian cross section 2 in FIG. 2 is divided into elements and the temperature of each part is calculated. Generally, the erosion solidification layer line 5 is iron-carbon based eutectic I blackness (
Since it is considered to coincide with a constant width line of approximately 1150°C, this temperature of 1150°C is applied to the boundary condition between erosion solidification line 1 and line 5, and the bottom cooling condition is applied to the curved boundary. give. The 21st section shows an example of the results obtained by this method, and gives each isotherm. Next, the 1i-1' calculated value at the position of blackness 6 placed buried in the furnace bottom and the actual measurement 1st shift are compared. The temperature range where there is a difference between them,
For example, if it is larger than lOoC, move the erosion C doubt solid 1-line 5 a little, divide the new calculation area 2 again, and repeat the operation described above. This process is repeated until the cut value and the measured value match within a certain temperature range at all the positions of the bottom Y blackness meter 6, and the carburized solidified layer line 5 is determined. According to this method, one eroded solidification layer line 5 can be determined by 8i from the actual measurement at a certain point in time of the hearth thermometer 6 (Engineer 1
It takes a huge amount of time (people) x (half a day) x (1 week). 4 Needless to say, for this one itch, I needed a konko calculator.
In addition, the data required to be input 10 times is unusually large, so a fairly large computer is essential. Furthermore, although it is not impossible to automatically move the erosion solidification +4 line 5 and input the division of internal elements, the algorithm to execute it will be a chess card, and 1σ times the temperature Ml-e position Unnecessary temperature paralysis inside the device also increases calculation costs. As described above, it takes a lot of time to estimate the eroded and solidified layer line 5 at the hearth bottom using conventional domain methods such as the finite element method.
Not only is it extremely difficult to quickly estimate the furnace bottom erosion situation and take prompt and accurate measures to protect the furnace bottom, but it is also difficult to constantly grasp the solidified layer thickness distribution and take timely measures to protect the refractory. However, it is impossible to optimally control the layer 11 distribution so that the tap slag operation is stable. Furthermore, since multiple blast furnaces are generally installed in a steelworks, it is necessary to constantly monitor the bottom conditions of each blast furnace and take measures to protect the furnace in a long-term 1υJ manner to stabilize operations. Furnace body management, such as immediate response in case of an abnormality, was effectively fFiJ capability. (Start of the idea) Under these circumstances, the inventor used the boundary element method, a numerical method that has begun to be actively researched, to solve a t-axis symmetric problem from a two-dimensional intercondylar to a one-dimensional quantity 1.・Focusing on the fact that it is converted to 1, that is, in the 31st section; It is sufficient to separate the intersection M) into elements, and add the boundary bond division curve that corresponds to heat conduction or glue thickness by λ1 for each element (i.e., line segment) by 14, and the 414th boundary bond method An example of the heat transfer calculation at the bottom of the hearth and each isotherm obtained by this method are shown below. As shown in Figure 4, only the boundary line 4 is divided into elements using the boundary W' skin method (however, the +iR lines of the bricks are different! e includes those boundaries 'fY lines), and a total of 4 Then, Tamema was able to carry the cannon on his shoulders and the internal temperature was also obtained.
2) can be reduced by IIJ. In the method outside the boundary, this is the inside of the head,! 41J Chi Furnace bottom brick 8 element 1 chest is used as a small piece, Furnace rH brick 8
It becomes possible to automate the estimation of the eroded solid layer line 5. Soak-I! 1: What is the process of lfG constant in coagulation layer line 5?
- It is the same as the finite element method described above, but by applying the element method, the internal element separation for each stop of the 11+:Ilu solid 1f4 line 5 becomes f・outside, and the internal The temperature is also the temperature of the bottom of the hearth,'? 'If you do it only with fik position of I6, unnecessary old itch will disappear altogether. This measure: 1 to 2 minutes by applying the law, ki 1
The solution for one case (the true erosion line: the 11th position in Figure 6 where the line goes after jiB; the 14th place W of the 714th place where the true line 1-line 2 goes back) can be obtained in calculation time, so the monarchy Needless to say, uniform furnace body management for all blast furnaces in a steelworks will improve the stability of the tap iron slag production and the ability to take action against irregularities such as a rise in furnace bottom temperature.
The blast furnace has reached Ra level! This can bring great benefits such as stabilizing the industry and extending the life of the blast furnace. (Purpose of the Invention) To summarize what has been said above, the purpose of this invention is to reduce the dimension of the heat transfer problem by one dimension by utilizing the element method, and to convert the interval term to axis pair 1 into one dimension. This brings us to the problem: ■ Since this can be easily automated by using this method to estimate the line of the eroded solidified layer at the bottom of the blast furnace, it is possible to stabilize blast furnace M operations such as tapping slag work by on-line management of the furnace body. The aim is to develop a method for improving the performance of mining furnaces, which can lead to increased production and extension of furnace life. (TllJ construction of the invention) This invention is a dyeing method for a blast furnace that includes the following -V steps when carrying out the 1f work while monitoring the furnace IJgi of the l'8' furnace. (a) By means of a plurality of temperature sensors disposed on the bottom refractory and/or on the outside of the bottom refractory,
Furnace 1 1. I! (b) Step of detecting the maximum and each time of (a), (c)
From the temperature in (b), a heat transfer 1 tube analysis is performed using the boundary element method as a 11Ql+ symmetric body with the longitudinal axis of the furnace being 11+ symmetrical, and predicts the erosion shape of the bottom refractory L( (d) Step of detecting the temperature when the hearth bottom temperature becomes low after the step (b); (e) The temperature of (d) and the + of the hearth bottom refractory predicted in (C). :Based on the i-prize shape, heat transfer analysis was performed using the boundary four-element method as an axisymmetric body with the vertical axis of the furnace as the axis of symmetry. The solidified layer shape of the molten material in the furnace is
7. Based on the shape, the thickness and distribution are controlled by selecting the furnace operating conditions including the bottom cooling conditions, and the erosion growth of the bottom refractory of (C) is controlled by: 1 stop process. Now, in F, we will apply the calculation σ principle of the field element method and its application 1 to find out the excellent condition of the refractories at the bottom of the blast furnace and 11] the distribution of hard solids 1- that grow and disappear in one step of the refractory. We will specifically describe the procedure for estimating the situation online and stabilizing the furnace body management and operation of multiple blast furnaces. By the way, the boundary element method has various names such as the boundary end division method, boundary integral equation method, singular point solution method, Green's function method, and marginal integral finite element method, but the In other words, we conserve the field support IJe kibun integral equation into an integral or rod equation on the boundary], and then discretize it and divide it into cluster elements using the n-value solution method called the finite tree method and the method of approximation. l
They are all the same in that they contain Zj, and here they include all of the il, ε field', and Gj. (Calculation principle) 1Ill between axially symmetrical bonds by tjχt'+'-' element method! For the formulation, discretization, and solution of (Teikiden Netsuma 1111:] Consider the axial designation area Ω (formulated in Figure 5 G, not shown in 2), and its boundary surface Wr (=7'l + 7'2 +ra) t
6 G, the domination of the IM between the potentials or the distance j (and the boundary
The case is expressed as follows. Governing equation: 211 (Σ) = (l Listen/song...
・(1) Here, u (poor) is the potential at point 4 in Ω, u(n) and q(,,:) are I', -F
−'s (potential at EH point and r4iu east, uo+
Qo indicates the established value, and ua and h are the ambient potential and (heat) transfer coefficient. Den/Buma: Yanghe potential U of the condyle is @I! :, ffl east q ha heat a, becomes east. ηThe c〃 or rod equation on the l-circumference for the problem under consideration is given by the following equation (3). 0(,1i)11(,4,)+norpU(:) ・q
” (,:,0.,:)a r-JJrq(:)・u
'(, :□, ni) + 1' = 13) Here, L, the core represents the arbitrary point on F, and G(0・)^ψ1 is C (brother, ) when the boundary is smooth. = 0.5,
When the curve is not smooth, the threshold can be determined indirectly using the equipotential condition. Also, market function u* (,i,
, shiba], or uo (poor i, paucity) is expressed by the expression (
The following component equation (4) corresponding to 1) is satisfied, and store number i
It is called 1+'4. 2u° (grass 1. grass] + δ -4,) = 0...
...(4) Here, Xo and shiba represent the points in Ω, and δ (sho-X-0) is the delta function of Dir ac. 1 and q of equation (4) for a three-dimensional object
” (X, ,
2) -θu*(b, poor)/θn=(-1/4πR2)
(aR/,,,) --(0) Here, R-1~-~1
1, which represents the distance between the point where the load is applied and point 4 on the pond. (5), (6)4: Also holds true for points Li and L on i and r. In the l1II symmetry problem, both the potential and flux are constant regardless of the circumferential direction. Therefore, as shown in the 51st fork, equations (3), (5), and (6) are converted to a cylindrical coordinate system, and the equations are converted into a combination and a rescue value is determined. Here, as shown in Fig. 5, the points of θ-θ'=o corresponding to opinions, , : are respectively set as L and 4, and the outward unit normal at the point is set as -(
n□, n2. n, ). Since θ-〇, it becomes N soldiers 2-, -0, and the outward unit normal n at the point is expressed by 5 as follows. A f(ni, n2+ na) - (5 cos θ, n
(to □sj-mθ) Ni (7) Furthermore, since Ω is axially symmetric, generality is not lost even if we consider the element □(θ-0) instead of i. Therefore, as θ−0, equation (5),
When the normal conduction between R and R in (6) is expressed in a cylindrical coordinate system, it is as follows. R = Iσ - σ, 1 ~ ^^ - (r + r -zrr 'cos θ + (Z - Z')"
:]% ・(8) θR/an=(rr'CO8θ)n
1/R+(to z-z'/R-=(9) However, older brother-(r
+θ, 2), Mu (r/, 0, z'). Now u, q on the intersection line S of the plane of θ-0 including two axes and F
Let the pupils of each be i, and since they are axially symmetric, we get the following. U (brother) - Une! , ], U(σ,) = u(ff,) to d
~1 ・(10) Therefore, the cylindrical coordinate system expression of equation (3) is given by the following equation (1). (j (,i4.)−u (,i,, )→−”ffF
. u(,i)-Ding(,j,,3)・l J l d7”
. 7/J7'oq(i)・Box i, H)・l J I d/
'. = (11) Here, /', u(σ, σ), q(σ
,,σ) are the cylindrical coordinate system expressions of C~1~ ~1~ 1', u'(a,,σ), and q'(a,,σ), respectively, and IJ+ is ~1~ ~1~. This is the Jacobian associated with employee transformation. (2) 1 miscellaneous damage and 1″ 1-cho method Equation (11) is the bond division method regarding the potential i of the intersection line SL of the γ-plane of θ-0 including Z・1111 and I゛, and l-C east 1 Just like the dimensional problem, if you divide S into C, you will get a formula for Aft, and if you subdivide this, the problem will be resolved once and for all. However, formula (11)
The pickling for u and q in the middle needs to be done on the surface I゛, [- of the first method, and it will be worth two tons. Now, we divide S into N boundary elements ζ, (tffi point i at 67 point j, +t is expressed as stone, and mutually.
Assume that u+Q in the element is expressed as follows using σ)3. U (older brother) - φ (kun), see, q (older brother no φ (older brother), demon)
・(12) Tor. Substituting equation (12) into equation (11), the following discretized algebraic equation is obtained. However, H1j=ff, .
・l J I dr. (14) G, = Jfr. jφ (original)・u@(E, prompt)・l J l d7'. (15). Here, for example, the boundary element (line segment) S shown in FIG.
5. r is expressed as follows by the coefficient of 1 of 2 and the variable conversion of 2. r-az +b=a@toz@t +azJ+l)-・・
・(16) Kokote, △zj=zj+□−2j, and a
, b represent the slope and intercept of the element S on the θ=0,000 plane. Using equation (16) to express the 9-fold SJ as a vector, r=
(a−ΔZ ・L+azJ I b )COεθ ・
'2 ~ j + (a *△Zj 11 t, +azJ+l) )s
inθ°↓+(△ZJ−t + Zj)・Tan ・・・・
......(17). Here, i and j are intermediate vectors in the directions of X, X, , Xli Hakata NN, , 1 2 8 . Using this, 5 in equation (9) and Ill in equation (11) can be expressed as follows. n = (△z, /1.) (i −ak) ・+・・
++...(1,8) ~ko, 1~ IJI-1, -(a, -△z, -t+az, +b)・-
-----(tO)J ] 3 tak, l is the length of element S, l - ((rJ+ t
-r] ) +J J J (△ZJ) There are two voices -C. JS (1/'1., - I J l "d rc-
I J l・(1θ・dt, formula % formula %) By performing the bond calculation, H4j and GIJ can be evaluated. z = rj'l in a constant plane,
,,%2. (Exactly the same equation (14)' for ζ,
(15) can be evaluated. Considering Equation (18) for all boundary nodes1, and noting that the value of U is defined on F0 and the value of q on F2 and F8-H, there are N unknowns and the algebra of the entire system is The equation becomes as follows. AX-F ・・<20)
Here, A is a coefficient matrix, and X and F are column vectors containing only unknown node clears and only known stitches, respectively. 4 Just solve (20) for X. The potential at a given point X in Ω is 9 on the '1ε field
1 It can be calculated using the following equation using 1 node. The above calculation principle can be summarized as follows. ■ Create a sticky residual expression by combining the governing differential equation (Laplace equation) (1) of the steady heat conduction problem with the boundary condition (2). (Replace Yuko's residual expression with the boundary equation (a). ◎ Considering axial symmetry, #lf, L, and equation (3) can be transformed into the cylindrical coordinate system expression ( 11) is converted to 4-.@ In order to calculate the solution of equation (11) numerically, the area J or Ω
Boundary part F of (Fig. 5). When we divide into elements, we get Equation (18)
Each boundary f! divided x is used to plan the coefficient Jj + (yij (2〇+), (15)) of +Φ formula (13), which obtains the equation of; Appearance. . is expressed as a parameter by a vector (Equation (17)). (D If you have Ill (17), +”:, (14)
By converting (15) into a 2ri integral, we can obtain 1if ii@ by converting their 1-direction directly to the equation 1. ■ For each circumferential cable I".If we add 4 to Equation (18), we get
Mr. N's c! 1. Algebraic equation of N locks (2(1)
is completed, put it on the cape, and all r of 1 Kankai J2
a IG (and the heat flux is determined. bow t
し′) - to be done. Now, since the method of estimating the erosion line and the solidified layer line by the boundary element method is the same, after the temperature measured by the thermometer 6 temporarily rises and the corrosion of the refractory stops, the refractory protection liquid and operating conditions Erosion stops due to the change in liL 1-
The following describes the procedure for estimating the solidified layer line during the period in which the solidified layer is repeatedly formed and disappears, and the method for smoothing the tapping slag and operations by controlling the distribution. (]) Using a numerical calculation method based on the boundary element method, the heat transfer grinding (variables, beating temperature and heat flux) of an axisymmetric section are independent of the circumferential direction, and one meridional cross section is The equation is solved as , so it becomes a shoulder in two dimensions) is converted into the distance between bonds and time at the boundary of the meridian cross section of the axisymmetric area (the boundary can be expressed as a line segment, so it becomes a one-dimensional problem). (2) Since the bottom of the blast furnace (brick bond part 8) is considered to be an axially symmetrical body, as shown in Fig. ) is divided into minute boundary attributes (line segments) 9. (3) 4'f1. of coagulated layer line 5. IJ)) fj
1, and give a life of 50 side bright f device. Node 1 il on boundary element 9 of solidified layer line 5F
The boundary condition is 'Cchichi - the eutectic temperature of the carbon system 1151)
``Give C. (4) Node 1 (l) on node 9 of the other external world (for l, external cooling conditions (for heat removal or cooling,!
% transmission teacher). (5) At the node 1o on each field element 9, l#, temperature, heat flux, or heat conduction I! as a boundary condition. Which of the coefficients. Since one is given, 1ijl,, fi is lA'
f and 1 yesterday < can be done, all 1 subject world wing - 斡9] 2nd place j
The r crystal 1ρ and heat flux at point 1.11 will be determined (6) Using the AK degree and case 1 Kato at node 10 of each barrier g F, determined in this way, The value of 0'L of the thermometer 6 buried in the bottom of the furnace is determined by the temperature derived by the boundary element method.
Calculate @1 morning of IP't'C. (7) Pa 1゛l in 7 gl”3 place 11q):
If you take the ratio of ON and the actual value and add the preset conditions (for example, if the cold is all the temperature 1 ), then measure the initially assumed solidified layer line 5 with a thermometer l.
The true erosion line at 1i11 is assumed to be 14. (8) If the conditions are not satisfied, the solidified layer line 5
move automatically. (9) If [E
(3) ~ (7) +7) 7' Friend the process. (10) Until the pre-given conditions are satisfied (3) ~ (
7) process, the true Sof solid line 1
Determine 4. (11) True solidified layer line 1 from the measured value of 11 at a certain time
The calculation time required to determine Ifli of 1 is the initial estimate of 1.
It takes 1 to 2 minutes, but if you estimate it sequentially, it will be 10 to 3 ()
Since it is only a few seconds, the estimated solid line 1.4 of the furnace bottom 71 on the buried surface of the thermometer 6 is displayed online on the CRT and the operator is immediately informed. (12) This allows us to constantly grasp the distribution of the solidified layer in each part of the blast furnace bottom and realize more stable slag work.
It becomes possible to control the cost solid layer distribution at IB speed and accurately. (13) For example, for stable production and slag cultivation. It is imperative to ensure that the height of the roof is not higher than (+, fin) than the refractory level at the time of construction, and to protect the refractory as much as possible.
So that the 1st layer is the same as the 11ijJ fireworks 1ji change,
Controlled cooling of each part of the furnace 1, the bottom of the furnace, and the walls of the furnace bottom 11,111,
1 ton of hot air is blown in from the feather 1.
1. The decline in the distribution of the charge in the furnace is now being investigated. Kiza,・υyoj戊+41t
(14) It is estimated that the range in which the 11 depths of the coagulated layer are tightened to 4 degrees. If the tax is exempted, the cooling system should be adjusted so that they fit within the high range, and the hot air jet should be increased, and the charge in the blast furnace section (according to 5 + A adjustment; hot air furnace juice 4 fi
If the increase or decrease in the natural ratio is calculated as 11 - 7, then the temperature, then the interval based on the 1 value of 116 is the conventional method. rti-zo, 1
9 Warming refractory, cold) e11 conditions, heat; C solidified layer o) l! The depth and distribution are at the neck, and the H
With this method, it is difficult to quickly and accurately judge the impact of the coagulation layer distribution on the appearance and slag construction of beams, and the contribution to the protection of refractories.
[II] As mentioned for the first time, it took a lot of man-hours to successively estimate the distribution of the solidified layer, and it was almost impossible to estimate the actual condition. Not only is it possible to estimate erosion line 11, but it is also solidified! - Estimation of line 14 can be performed very easily and in a short time, and it can be done online, making it possible to monitor and control the solidified layer thickness and layer thickness distribution from time to time, resulting in stable blast furnace inspections. This advantageously results in a longer blast furnace life. FIG. 6 schematically shows an example of estimating the solidified layer line 14 at the bottom of a large blast furnace of 5,000 tons of pig iron of 8 grade, based on a certain lifetime value of the thermometer 6 buried in the bottom. A meridian cross section including the position of the thermometer 6 buried in the hearth bottom is considered, and its boundary 4 is divided into annium 9. The movement range of the solidified layer line 5 is set to the inner side of the furnace than the refractory erosion line 11 which was placed 11 at the previous point in time, and the w period IN of the solidified 1 phosphorus line 5 is given. Next, at the boundary node IO on the solidified layer line 5, 1150 'C'5-b f, -Jj furnace bottom brick 8 is set as the jet field condition.
The outer surface of (2-1) Give each cooling condition to the ascending node 10. Applying the eruption field curve 4ζ method, calculate the temperature and heat flow east at all boundary nodes 10, and the density at the position of l^A degree meter 6. Calculate. Do. l,!! degree aF 6 (7) Real 1ulJ iiA ToR
[<Ql rut Tokapme give error t, = solidify until the conditions are satisfied! - Move line 5 + ffJJ to A, and the result! The true solidified layer line 14, as shown in FIG. 6, is determined. (If the C force position of the V solid layer line 5 and the determined 1?t of the solidified layer line 14 are set, the calculation time required for IW constant will be 2 minutes, but when the nail' time BB is determined: If I5, the embankment solidification line 14 will be moved quickly to r with only a slight return, and the calculation time will be about 10 to 30 seconds. Average tapped iron F; 51) (l U t/da ,y (7
) Approximately 7 months after the above-mentioned blast furnace was fired, the 71 temperature indication value of the entire furnace bottom buried temperature Ht6 suddenly increased.
The corrosion line of the semi-no.Jl refractory at the time the maximum temperature reached 1 month was as shown in 11 in Figure 7. In response, cooling was strengthened at the bottom corners and the bottom surface of the furnace bottom, where erosion was expected to be particularly advanced, based on the warm line determined from time to time when the actual measurement values began to rise rapidly. Wind blower IT
In addition to taking short-term protective measures such as slightly reducing the amount of air, we simultaneously implemented long-term measures such as increasing the charging Ti-O2 and implementing periodic air breaks. Approximately one week after implementing this measure, the tendency of erosion of the refractories stopped.
The reading on the hearth bottom thermometer 6 became almost constant. A solidified layer of pig iron coke refractory fragments etc. begins to form on the refractory surface approximately 11 days after the logging is carried out.
The reading on the hearth bottom thermometer 6 began to gradually decrease. Therefore, from the 18th day after the treatment of leprosy, the amount of crushed waste was gradually increased, and the intensity of bottom cooling was gradually relaxed. Tl
The O2 charge l@ also decreased and the estimated coagulation I reached approximately 1 month later.
# Since the thickness exceeded 1.5 m over the entire bottom of the hearth, these liquid countermeasures were discontinued and the normal IIf/! work was performed. Blast furnace work such as tapping slag work was carried out every 1;n1 round.Next, approximately 11 months after firing, the blast furnace went into reduced production operation and the tap iron ratio was reduced from 1°8 to 1.5. About 5 days ago, the reading on the furnace bottom stability meter 6 began to drop as the taphole decreased, and it was considerably low for wheat.The estimated solidified layer line at point II; Figure 14
It was predicted that a large solidification layer would grow in the center of the furnace bottom, increasing the resistance to passage of hot metal and slag at the furnace bottom. Here, 1 iL from 11 hours after the hearth temperature started to decrease! The number of tap slags produced by tapping slag operations per liter began to decline, and the frequency of tapping slags increased. Tapping, tapping, and slag operations were carried out approximately 10 times a day, each with an allowance of 2.5 mm per round, but once the iron content at the bottom of the hearth began to drop, the slag operation began. In less than 2 hours, the slag in the furnace started to come out from 1", and subsequently, the time for tapping slag became too short and rj
One. In this way, for two weeks the wheat was tapped.

【をraI4するため
のtB 桃滓回故は11−Iに1.5〜] 6 iHI
に1曽Dnするようになった。 一1投に・η−11戊中心の凝固層」−に1−デッド・
マン−1と呼1はれる装入コークスの大きな集合体が存
在ず71− iF、は)Iψ法中−1−t]は浦尋陣(
ハ白いコー々スー鈷1眞層となりL部から、商工して東
た溶@1′H滓の1HT1過流路となっていると考えら
れている。ところが、炉底部全体の温度が低下した用台
、溶銑滓の凝固等によりこのコークス充填1脅の通液性
が悪くなり溶銑滓の炉底中心への滴下量が減少し、炉底
中心は−j惜低T′品化する1頃向になる。この時同時
に、羽口吹込み熱風の炉中心方向への流れが阻害され、
炉壁方向に熱畷が通過する傾向が助長されるようになる
。この場合、羽目よりHのレベルの炉壁面ではガス流床
が過大となり、9戸壁への捌吊りゃスリップ(急激な装
入物の落下〕現朱を引き起こすようになる。通常1.O
m以上のスリップはほとんど済QIEであるが、上述の
ような状況では1日2〜3回生じ、また、5mを越える
ような異常スリップ、それによる羽I]の(員傷、湯溜
り+’fμへの袈べ物の落ドによる急激な溶銑慌度低ド
をIl’J <ことがある。 今回も以前の経1倹と全く同じように、炉1戊稿度が低
下し始め出銑滓!頃1すが多くなるにつれてスリップ現
象も観察されるようになった。 炉底温度が低ドする傾向を示し始めた時占から凝固ノ1
イライン1m定の・明度をトげるとともに、推定アされ
る1挺固層分布に応じて炉底底面および側壁の冷ノ41
の制御を開始した。 すなわち、+1.&ポされる凝1i’i]+鰻は第7図
に示す〃11く炉底中心から炉底陽画り部の中間付近に
かけて大きく生長する傾向を示した。従って、この部分
の直ドの炉底冷却7に附を減少才せ冷却11μを10〜
30%に友咄に減少した。これと同時に1−クス叱を噌
す11させ、羽11吹きlΔみ熱風をできるだけ炉中心
に送るような装入゛吻分布を敗るなどI・■業条件を変
化させた。 これらの討哨により炉+1(温度低F t&約約1口度
低ド以前の安7ドした←■業に回復した。この時点で推
定された凝固層ラインは第8図の14に示すものとなり
、炉底中心の凝固層厚はかなり薄くなり溶銑滓の)重液
抵抗もかなり小さくなったことがす,1すされたつその
後は、局留り中間イ\J近の併置層厚が若干薄いのでそ
の直ドの部分の冷却能を炉底τ1情度低下μ前の状態に
戻し、炉底中心部分については30係城として操業をf
諸続した。′12定操清が約1カ月続いたので炉底冷却
を除いてすべての操猶条件を元に戻し、凝固層分布や状
況を確.lしつつ減4下での安定操業を続けた。 従来の方法ではこのような短時間に四の凝固16ライン
14・の変化方向を確認することは不uf nlEであ
り、従って侵食状暢や凝固1−分布状1声のオン・ライ
ン表示や異常1時の迅速な対重はもちろんのこと、重数
高炉の長間的な炉体管理には適合しないのは明らかであ
る。 (発明の幼果) 高炉炉底の侵〜状、便や凝固層分布状態を1信時把j屋
し、これによって、長期的、短間的な炉底保護71市や
.堤固j楊分布状,態の最適制御を1へ速、かつ的確に
行ない、操業の安定化を図るとともに炉底耐火物、ひい
ては高炉寿命を延i+ することか容易に町tiヒとな
る。 4図面のFm学な説+ilJ 第[図は、有限安軍法等領域法による計a領賊(斜線部
)を示す説明図、 2イ)2図は、(f限要(4法による炉+1E伝τ〜バ
ト埠の一1例を示4−炉底温度汁布14であり、 第3図ij, 、1意界要侃法によるiil算領峨(断
面境界線)を示1−説明図、 第4図は、1琵!/′L安素法による炉底r尺熱計(γ
の一例?示・I− f Its +!1iXjlJ:分
布図、第5図は、f(由χ1弥1、頁1成Ωと1は]痒
面I゛、およびl”とX2 − 0 (θ−0)平面と
の交線Sを示す説明[て、第6図は、高炉炉1戊部の凝
固層う・fンの推定過程を嘆式的に示す説明図、 第7図は、炉底l見聞が低ドした時点で准定した凝固層
ライン・1幅を示1−説明図、 第8図は、炉底l見聞低[以前の安定したj1■猶を回
1νした時点で1m定した,;7(固層分布゛(k・原
を示す説明図である。 第1図 第2図 o 6 第31x1 第4図 第5図 第6図 第7図 第8図 手続袖正書 昭和59年 7 月2511 1、事件の表示 昭和59年T!? 、41 願第87477号2・発明
の名称 溶着、炉のt@箔方法 :3. %li if:をするに ’l l’l−1ノ門IM Q¥許出νn人(125)
川崎製鉄株式会社 明細書の「発明の詳細な説明」の0.Y(7、捕iEの
内容(>JI#(]1ilf ’))・(り明#Il書
第7負第1行の「各等温線Jを「各等温1線7jに3)
正する。 (2)同第9頁第9行の「等混線」を「等混線?」に訂
正し、 同貢第14行の「熱流速」を「熱流束」に訂正する。 (3)同第15頁第8行〜4行の(5)式を下記のとお
りに訂正する。 [u@(!i、乏)=l/4πR・・・・・・・・・・
・・(5)q@(ね1色)=θu@(色i、乏)/θn
 」′□〔4)同第】5負第15行の「点乏」を1点工
」に訂正する。 (5)同第16頁第1行の(7)式を下記のとおりに訂
正する。 rn=(n、、n2.n8)=(五、cosθ、n、S
inθ、五、 )−=(7)J(6)同第16i第3行
および第4行の「θ;0」を「θ′=0」にそれぞれ訂
正する。 (7)同第18負第15行の[要素Sj Jを「要素F
。j」しこ訂正する。 ・(8)同第19頁第8行の(18)式を下記のとおり
に訂・正する。 「冗=(△zj/g)に−叱) ・・・・・・・・・(
1B)J(9)同第24頁第8行の「侵食ライン」を「
凝固層ライン」に訂正する。 (10)同第26頁第8行の「はじめて述べた」を1は
じめ述べた」に訂正し1 同頁第8行の「行なう」を「行う」Gこ訂正する。 (11)同第27頁第8行の[第6図ゴを「第7図」に
訂正する。 代理人弁理士 杉 村 暁 秀 i゛・賽外1名 □゛
;−;旨、・ 1□11
[tB for raI4 1.5 to 11-I] 6 iHI
I started to do 1 so Dn. 11 throws, η-11 solidified layer at the center'-1-dead,
There is no large aggregate of charged coke called Man-1, and 71-iF, is) Iψ method-1-t] is Urahinjin (
It is thought that the 1HT1 overflow channel of the 1'H slag formed from the L part to the 1st layer of white kotsusu. However, due to the lower temperature of the entire furnace bottom, the solidification of hot metal slag, etc., the liquid permeability of the coke filling becomes worse, and the amount of hot metal slag dripping into the center of the furnace bottom decreases, causing the center of the furnace bottom to - It will be around 1, when low T' products will become available. At the same time, the flow of hot air blown into the tuyere toward the furnace center is obstructed.
The tendency of the heat ridges to pass toward the furnace wall is promoted. In this case, the gas flow bed becomes too large on the furnace wall surface which is at a level H from the wall, and lifting onto the wall causes slip (rapid fall of the charge) and redness.Usually 1.O
Most slips of more than 5 m are considered to be QIEs, but under the above-mentioned conditions, they occur 2 to 3 times a day, and abnormal slips of more than 5 m, resulting in damage to members, water puddles, etc. There may be a sudden drop in the hot metal rush level due to the fall of the cap onto fμ. As the amount of slag increased, slipping phenomena began to be observed.The bottom temperature of the furnace began to show a tendency to decrease, and solidification began to occur.
In addition to increasing the brightness of the 1 m line, the cold nozzle 41 on the bottom and side walls of the reactor was adjusted according to the estimated 1 m solid layer distribution.
control has started. That is, +1. The eels shown in Fig. 7 showed a tendency to grow significantly from the center of the hearth bottom to near the middle of the hearth bottom positive area. Therefore, the direct cooling of this part should be reduced from 11μ to 10~
It suddenly decreased to 30%. At the same time, the operating conditions were changed, such as by increasing the 1-gas flow rate and changing the charging profile to send as much hot air as possible to the center of the furnace. As a result of these patrols, the furnace was restored to +1 (temperature low Ft & approx. Therefore, the solidified layer thickness at the center of the furnace bottom became considerably thinner, and the heavy liquid resistance (of the hot metal slag) also became considerably smaller. Since it is thin, the cooling capacity of the direct portion of the hearth is returned to the state before the cooling of the hearth τ1, and the operation is continued with 30 latches for the center of the hearth.
It continued. '12 Since the constant operation continued for about one month, all operation conditions except bottom cooling were returned to their original state, and the distribution and conditions of the solidified layer were confirmed. The company continued to operate stably under reduced pressure of 4. With conventional methods, it is impossible to confirm the direction of change of the four coagulation lines 14 in such a short period of time, so it is impossible to confirm the direction of change of the four coagulation lines 14 in such a short period of time. It is clear that this method is not suitable for long-term furnace body management in a multiple blast furnace, let alone for quick loading at one time. (Early fruit of the invention) The state of erosion, fecal matter and the distribution of the solidified layer at the bottom of a blast furnace can be ascertained at a glance, thereby providing long-term and short-term protection of the bottom of the blast furnace. Optimum control of the distribution and condition of the embankment is carried out quickly and accurately, stabilizing the operation, and prolonging the life of the bottom refractory and, ultimately, the blast furnace. Fm logic theory of 4th drawing Figure 3 shows 11 examples of the transmission τ~batobori 4-The hearth temperature soup 14, and Figure 3 shows the calculation boundary line (cross-sectional boundary line) according to the 1-point boundary method.1-Explanatory diagram , Figure 4 shows the hearth r scale calorimeter (γ
An example? Show・I-f Its +! 1 i Explanation: Figure 6 is an explanatory diagram showing the process of estimating the solidified layer at the bottom of blast furnace 1. Figure 8 shows the width of the solidified layer line.・This is an explanatory diagram showing the original. Figure 1 Figure 2 o 6 Figure 31x1 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Procedure Sleeve Book July 2511 1, 1982 1. Display of the incident Showa 59 year T!?, 41 Application No. 87477 2. Name of the invention Welding, furnace t @ foil method: 3. %li if: to do 'l l'l-1 nomon IM Q\permission νn person (125)
0 in the "Detailed Description of the Invention" in the Kawasaki Steel Co., Ltd. specification. Y(7, Contents of capture iE (>JI#(]1ilf')) (Rime #Il book 7 negative 1st line "each isotherm J" to each isothermal 1 line 7j 3)
Correct. (2) Correct "equal crosstalk" in line 9 of page 9 to "equal crosstalk?" and correct "heat flux" in line 14 of the same contribution to "heat flux." (3) Formula (5) on page 15, lines 8 to 4 is corrected as follows. [u@(!i, scarcity)=l/4πR・・・・・・・・・
...(5) q@(one color) = θu@(color i, poor)/θn
''□ [4) Same item] 5-negative line 15, correct "lack of points" to "1 point of work". (5) Correct equation (7) in the first line of page 16 as follows. rn=(n,,n2.n8)=(5,cosθ,n,S
in θ, 5, )−=(7) J (6) Correct “θ; 0” in the third and fourth lines of No. 16i to “θ′=0”. (7) [Element Sj J in the 18th negative 15th line]
. j” Correct.・(8) Formula (18) on page 19, line 8 of the same document is revised as follows. ``Jau = (△zj/g) ni - scold) ・・・・・・・・・(
1B) J(9) "Erosion line" on page 24, line 8 of the same page is changed to "
Corrected to "solidified layer line". (10) In the 8th line of page 26, ``I said it for the first time'' is corrected to ``1 I said it for the first time.'' 1 In the 8th line of the same page, ``do'' is corrected to ``do''. (11) On page 27, line 8, [Figure 6 is corrected to ``Figure 7''. Representative patent attorney Akihide Sugimura i゛・1 person Saigai □゛;-; to the effect,・ 1□11

Claims (1)

【特許請求の範囲】 1、 溶鉱炉の炉底を監視しつつ炉操業を行うに際し、
以下の工程を包含する溶鉱炉の操業方−。 法。 (a) 炉底耐人物内および/または炉底耐火物の外表
面に配設した複数の測温センサーにより、炉底温度を検
出する工程、 (b) (a)の最高温度を検出する二[程、(C) 
(b)の温度から境界・易素法を用いて炉底につき、炉
のたて’Il+を対称軸とする軸対称体として伝熱1i
1イ析を行い炉底耐火物の1安良形状を予測する工程、 (a) (b)の工程以降に炉底温度が低下した時のI
IFiA度を検出する工程、 (e) (d)の温度と、(C)で予測した炉底l耐火
物の浸食形状をもとに境界要素法をI+−1いて炉底に
つき、炉のたて軸を対称用とする軸対称体として伝熱解
析を行い浸食された炉底耐火物上に生成した炉内溶融物
の凝固層形状1を予測する工程および (f) (e)の凝固層形状をもとに、そのlI4及び
分布な、炉底冷却条件を含む炉操業条件の4択によって
制御し、前記(C)の炉底耐火物の侵食成長を阻止する
工程。
[Claims] 1. When operating a blast furnace while monitoring the bottom of the furnace,
A method of operating a blast furnace including the following steps. Law. (a) A step of detecting the hearth bottom temperature using a plurality of temperature sensors arranged inside the hearth refractory and/or on the outer surface of the hearth refractory; (b) A step of detecting the maximum temperature in (a). [Cheng, (C)
From the temperature in (b), use the boundary/element method to reach the bottom of the furnace, and heat transfer 1i as an axially symmetrical body with the axis of symmetry at the heart of the furnace 'Il+.
(a) The process of predicting the stable shape of the hearth bottom refractory by carrying out one-dimensional analysis.
Step of detecting the IFiA degree, (e) Based on the temperature in (d) and the erosion shape of the bottom l refractory predicted in (C), the boundary element method is applied I+-1 to the bottom of the furnace, and the The process of predicting the solidified layer shape 1 of the in-furnace melt generated on the eroded hearth bottom refractory by conducting heat transfer analysis as an axisymmetric body with axis symmetry, and (f) the solidified layer of (e) Controlling the furnace operation conditions based on the shape, its lI4 and distribution, and the furnace operating conditions, including the bottom cooling conditions, to prevent the erosion and growth of the bottom refractory of (C) above.
JP59037477A 1984-02-29 1984-02-29 Operating method of blast furnace Granted JPS60184607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59037477A JPS60184607A (en) 1984-02-29 1984-02-29 Operating method of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59037477A JPS60184607A (en) 1984-02-29 1984-02-29 Operating method of blast furnace

Publications (2)

Publication Number Publication Date
JPS60184607A true JPS60184607A (en) 1985-09-20
JPS6137327B2 JPS6137327B2 (en) 1986-08-23

Family

ID=12498597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59037477A Granted JPS60184607A (en) 1984-02-29 1984-02-29 Operating method of blast furnace

Country Status (1)

Country Link
JP (1) JPS60184607A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145122A (en) * 2004-11-19 2006-06-08 Mitsubishi Heavy Ind Ltd Operating method of ash melting furnace and method of estimating residual volume of refractory
JP2007003095A (en) * 2005-06-23 2007-01-11 Babcock Hitachi Kk Swirl flow type melting furnace and its operation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163207A (en) * 1980-05-21 1981-12-15 Nippon Steel Corp Operating method for blast furnace
JPS5732308A (en) * 1980-08-04 1982-02-22 Kawasaki Steel Corp Method for operating blast furnace
JPS58153714A (en) * 1982-03-08 1983-09-12 Nippon Steel Corp Operation of blast furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163207A (en) * 1980-05-21 1981-12-15 Nippon Steel Corp Operating method for blast furnace
JPS5732308A (en) * 1980-08-04 1982-02-22 Kawasaki Steel Corp Method for operating blast furnace
JPS58153714A (en) * 1982-03-08 1983-09-12 Nippon Steel Corp Operation of blast furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145122A (en) * 2004-11-19 2006-06-08 Mitsubishi Heavy Ind Ltd Operating method of ash melting furnace and method of estimating residual volume of refractory
JP4548777B2 (en) * 2004-11-19 2010-09-22 三菱重工環境・化学エンジニアリング株式会社 Method for predicting remaining amount of refractory and method for operating ash melting furnace using the same
JP2007003095A (en) * 2005-06-23 2007-01-11 Babcock Hitachi Kk Swirl flow type melting furnace and its operation method

Also Published As

Publication number Publication date
JPS6137327B2 (en) 1986-08-23

Similar Documents

Publication Publication Date Title
US5944421A (en) Method for determining the conditions of heat transfer in a blast furnace
CN105005632B (en) The blast furnace crucible corrosion Forecasting Methodology of multiple layer refractory tile stove wall construction
WO2022009621A1 (en) Operation guidance method, method for operating blast furnace, method for manufacturing molten iron, operation guidance device
JPS60184607A (en) Operating method of blast furnace
JP2727563B2 (en) Blast furnace operation method
EP3989013A1 (en) Method for controlling process, operation guidance method, method for operating blast furnace, method for manufacturing molten iron, and device for controlling process
KR20120087559A (en) Method for estimating position bordered to furnace wall of softening zone
Zaimi et al. Blast Furnace models development and application in ArcelorMittal Group
JPS6137328B2 (en)
JPS58117804A (en) Estimating method for position of melt-stuck zone in blast furnace
EWAIS et al. Mathematical Modelling for Monitoring the Deterioration in the Bottom Lining of the Top-Closed Submerged Electric Furnace.(Case Study).
Sibagatullin et al. TECHNOLOGICAL PARAMETERS OF BLAST FERNACE WITH LOCAL FLUSHING HORN OF SILICA-MANGANESE MATERIAL
JPH06299215A (en) Operation of blast furnace
Liu et al. Scaffolding
JPS6293304A (en) Method for operating blast furnace
JPS6041124B2 (en) How to operate a blast furnace
Zhang et al. Annual Analysis of Erosion Situation of Hearth in 1000m3 Blast Furnace
JPS61201711A (en) Operating method for blast furnace
JPS6314274B2 (en)
JPS5834107A (en) Operating method for blowing-in of blast furnace
Salikhov et al. Automated identification and elimination of cleavages of the lining plaster of a rotating furnace without stopping
Hu et al. Monitoring Erosion Profile and Analyzing Reliability for Submerged Arc Furnace
JPS62238308A (en) Temperature measuring method for bottom part of blast furnace
SHEPARD The ABCs of Steelmaking
Marsuverskii Calculating the blast-furnace profile

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees