JP2006145122A - Operating method of ash melting furnace and method of estimating residual volume of refractory - Google Patents

Operating method of ash melting furnace and method of estimating residual volume of refractory Download PDF

Info

Publication number
JP2006145122A
JP2006145122A JP2004336600A JP2004336600A JP2006145122A JP 2006145122 A JP2006145122 A JP 2006145122A JP 2004336600 A JP2004336600 A JP 2004336600A JP 2004336600 A JP2004336600 A JP 2004336600A JP 2006145122 A JP2006145122 A JP 2006145122A
Authority
JP
Japan
Prior art keywords
refractory
ash
melting furnace
temperature
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004336600A
Other languages
Japanese (ja)
Other versions
JP4548777B2 (en
Inventor
Masataka Abe
正孝 安部
Akira Noma
野間  彰
Takehiko Hirata
武彦 平田
Keita Inoue
敬太 井上
Tadahachi Goshima
忠八 五島
Masahiro Yoshida
雅弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004336600A priority Critical patent/JP4548777B2/en
Publication of JP2006145122A publication Critical patent/JP2006145122A/en
Application granted granted Critical
Publication of JP4548777B2 publication Critical patent/JP4548777B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Incineration Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operating method of an ash melting furnace and a method of estimating a residual volume of refractory, capable of calculating a correct residual volume of the refractory, improving reliability and reducing running costs. <P>SOLUTION: This operating method of the ash melting furnace for melting ash such as incinerated ash and fly ash in the ash melting furnace having a refractory-lined furnace inner wall, comprises an operation data collecting step (S1) for collecting the operation data of the ash melting furnace, a residual volume estimating step (S2) for estimating the residual volume of the refractory on the basis of the operation data, an operating condition step (S3) for guiding the residual volume of the refractory and operating conditions, and a step (S4) for operating the ash melting furnace on the basis of the operating conditions. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ごみ焼却灰及び飛灰等の灰を溶融処理する灰溶融炉において、灰溶融炉の適正な運転条件を見出し、低コストで且つ信頼性の高い運転を行なうことを可能とした灰溶融炉の運転方法に関し、さらに灰溶融炉の炉内壁に内張りされた耐火物の残存量を予測する耐火物の残存量予測方法に関する。   The present invention provides an ash melting furnace for melting and treating ash such as waste incineration ash and fly ash, and has found an appropriate operating condition of the ash melting furnace, and has made it possible to perform a low-cost and highly reliable operation. The present invention relates to a method for operating a melting furnace, and further relates to a method for predicting a remaining amount of refractory for predicting a remaining amount of refractory lined on the inner wall of an ash melting furnace.

廃棄物処理の分野において、灰溶融炉を利用した溶融処理は被処理物の無害化、減容化及び資源化を目的としてその必要性が高まりつつある。灰溶融炉では被処理物を溶融し、スラグを生成する。このスラグは、灰中に含まれる有害物質を封入するとともに有用な資源として回収され、地盤改良剤、路盤材、アスファルト用骨材等として再利用することができる。
灰溶融炉の運転においては、被処理物投入量、投入電力、スラグ温度、炉内温度等の複数の運転条件を適正値に保ち、安全で且つ信頼性の高い運転を行なう必要がある。しかし、従来の灰溶融炉の運転では、運転員が灰溶融炉に備え付けられた各種計測機器の計測値に基づき経験的に制御を行なっているのが実状であった。そのため、運転員の運転経験や技術に左右され、常時安定した運転を行なうことは困難であった。
In the field of waste treatment, the need for melting treatment using an ash melting furnace is increasing for the purpose of detoxifying, reducing the volume, and recycling resources. In the ash melting furnace, the workpiece is melted to produce slag. This slag encloses harmful substances contained in ash and is recovered as a useful resource and can be reused as a ground improver, roadbed material, aggregate for asphalt, and the like.
In the operation of the ash melting furnace, it is necessary to maintain a plurality of operating conditions such as the amount of work to be processed, input power, slag temperature, furnace temperature, etc. at appropriate values and perform safe and reliable operation. However, in the conventional operation of the ash melting furnace, the actual situation is that the operator performs empirical control based on the measurement values of various measuring devices provided in the ash melting furnace. For this reason, it is difficult to perform stable driving at all times, depending on the driving experience and skill of the operator.

そこで、特許文献1(特開2004−251520号公報)では、都市ごみやごみ焼却残渣を高効率で且つ安価なランニングコストで以って溶融処理するための灰溶融炉の最適な操業制御方法を提案している。これは、まず灰溶融炉への投入電力又は被溶融物供給量を設定するとともに、前記設定値に基づいて灰溶融炉への被溶融物供給量又は投入電力を演算し、灰溶融炉への投入電力及び被溶融物供給量が前記設定値及び演算値に、若しくは灰溶融炉への被溶融物供給量及び投入電力が前記設定値及び演算値となるように制御するようになっている。
一般に電気灰溶融炉においては、被溶融物の処理量と投入電力の制御が基本的な制御対象とされ、これらのうち何れか一方が決定されれば他方はこれと連繋的に演算され、その結果、運転員の技術に左右されない最適な灰溶融炉の操業制御が実現される。
Therefore, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-251520), an optimal operation control method of an ash melting furnace for melting municipal waste and waste incineration residue with high efficiency and low running cost is proposed. is suggesting. First, the power to be supplied to the ash melting furnace or the supply amount of the melt is set, and the amount of melt to be supplied to the ash melting furnace or the power to be supplied to the ash melting furnace is calculated based on the set value. The input power and the melt supply amount are controlled to the set value and the calculated value, or the melt supply amount and input power to the ash melting furnace are controlled to the set value and the calculated value.
In general, in an electric ash melting furnace, the amount of molten material to be processed and the control of the input power are basically controlled objects, and if one of these is determined, the other is calculated in conjunction with this, As a result, optimal operation control of the ash melting furnace that is not affected by the skill of the operator is realized.

一方、ごみ焼却灰及び飛灰等の灰を処理対象とした灰溶融炉の場合、灰の融点以上での運転が必要とされるため、炉内出滓口近傍ではスラグ温度は1500〜1600℃の高温に維持されている。このような灰溶融炉では、炉内の高温雰囲気と灰中に含有される塩化物等の腐食成分などの影響により、炉内壁に配設された耐火物の侵食が著しく耐火物は短時間で侵食してしまうため、安全で且つ信頼性の高い炉の運転を行なうには、定期的に耐火物を交換する必要があった。
しかし、耐火物の侵食量は投入灰の性状、炉の運転状態等により変化するため、適正な交換時期を判断することは困難であった。
On the other hand, in the case of an ash melting furnace for treating ash such as waste incineration ash and fly ash, operation at the melting point of ash or higher is required, so the slag temperature is 1500-1600 ° C. near the outlet in the furnace. Is maintained at a high temperature. In such an ash melting furnace, the refractory placed on the inner wall of the furnace is significantly eroded due to the high temperature atmosphere in the furnace and the influence of corrosive components such as chlorides contained in the ash, and the refractory is in a short time. Since it would erode, it was necessary to replace the refractory periodically in order to operate a safe and reliable furnace.
However, since the erosion amount of the refractory varies depending on the properties of the input ash, the operating condition of the furnace, etc., it has been difficult to determine an appropriate replacement time.

そこで、特許文献2(特開2003−294372号公報)では、灰溶融炉の耐火物の損傷量を把握する耐火材診断装置を提案している。これは、耐火材を冷却する冷却水の入口側温度と出口側温度温度の差を計測するとともに、冷却水の流量と炉内温度を計測し、これらの計測値から現在の冷却水の抜熱量を求め、過去の冷却水による抜熱量と耐火材の損耗量データから現在の冷却水の抜熱量を補正して、演算により耐火物の損傷量を求める構成となっている。これにより、正確に耐火物の消耗状況を把握することが可能となる。   Therefore, Patent Document 2 (Japanese Patent Application Laid-Open No. 2003-294372) proposes a refractory material diagnostic apparatus that grasps the amount of damage to the refractory in the ash melting furnace. This measures the difference between the inlet side temperature and the outlet side temperature temperature of the cooling water that cools the refractory material, measures the flow rate of the cooling water and the temperature in the furnace, and uses these measured values to extract the current heat removal from the cooling water. The current heat removal amount of the cooling water is corrected from the heat removal amount of the past cooling water and the wear amount data of the refractory material, and the damage amount of the refractory is obtained by calculation. Thereby, it becomes possible to grasp | ascertain the consumption condition of a refractory correctly.

特開2004−251520号公報JP 2004-251520 A 特開2003−294372号公報JP 2003-294372 A

上記したように、一般の灰溶融炉において適正な運転を行なうためには、特許文献1に記載のように被溶融物の処理量と投入電力の制御が基本的な制御対象とされており、これらの制御対象を連繋させて適性値に保つことにより、最適な運転制御、即ち被処理物の溶融状態を適切な状態な保ち、効率の良い運転を行なうようにしている。
しかしながら、焼却灰や飛灰等の灰を処理対象とする場合には、炉の運転に関わる最も重要な因子の一つとして、前記制御対象の他に炉の耐火物侵食量が挙げられる。これは、灰溶融炉の場合、炉内の高温雰囲気、腐食成分等の影響により耐火物の侵食が著しく、耐火物の交換に伴う維持管理費が高額になるためである。従って、灰溶融炉において、安全に且つ信頼性の高い運転を行なうためには、耐火物侵食量を正確に把握する必要がある。特許文献1に係る運転方法は、耐火物侵食量を考慮したものではないため、灰溶融炉に適用することは困難であった。
As described above, in order to perform an appropriate operation in a general ash melting furnace, as described in Patent Document 1, the amount of melted material and the control of input power are basically controlled, By connecting these objects to be controlled and maintaining an appropriate value, optimum operation control, that is, the molten state of the object to be processed is maintained in an appropriate state, and an efficient operation is performed.
However, when ash such as incineration ash or fly ash is a processing target, one of the most important factors related to the operation of the furnace is the refractory erosion amount of the furnace in addition to the control target. This is because in the case of an ash melting furnace, the refractory is significantly eroded due to the high temperature atmosphere in the furnace, the influence of corrosive components, etc., and the maintenance cost associated with the replacement of the refractory becomes high. Therefore, in order to perform safe and reliable operation in the ash melting furnace, it is necessary to accurately grasp the refractory erosion amount. Since the operation method according to Patent Document 1 does not take into account the amount of refractory erosion, it has been difficult to apply it to an ash melting furnace.

また、特許文献2に記載の装置では、耐火物侵食量を把握するのみであり、灰溶融炉の運転に関してはやはり運転員の技術に頼らざるを得なかった。
従って、本発明は上記従来技術の問題点に鑑み、信頼性が高く、且つランニングコストを安価とした灰溶融炉の運転方法を提供することを目的とする。
さらにまた、耐火物の残存量を正確に算出することができる耐火物の残存量診断方法を提供することを目的とする。
Moreover, in the apparatus described in Patent Document 2, only the refractory erosion amount is grasped, and the operation of the ash melting furnace has to be relied upon by the operator's technique.
Therefore, in view of the above-described problems of the prior art, an object of the present invention is to provide a method for operating an ash melting furnace that has high reliability and low running cost.
It is another object of the present invention to provide a method for diagnosing the remaining amount of refractory that can accurately calculate the remaining amount of refractory.

そこで、本発明はかかる課題を解決するために、
炉内壁に耐火物が内張りされた灰溶融炉にて焼却灰及び飛灰等の灰を溶融処理する灰溶融炉の運転方法において、
前記灰溶融炉の運転データを収集する運転データ収集ステップと、
前記運転データに基づき前記耐火物の残存量を予測する残存量予測ステップと、
前記耐火物の残存量と前記運転データから運転条件を導く運転条件ステップと、
前記運転条件に基づいて前記灰溶融炉を運転するステップと、を備えたことを特徴とする。
Therefore, in order to solve this problem, the present invention provides:
In an ash melting furnace operating method in which ash such as incinerated ash and fly ash is melted in an ash melting furnace with a refractory lined on the inner wall of the furnace,
An operation data collection step for collecting operation data of the ash melting furnace;
A remaining amount prediction step of predicting the remaining amount of the refractory based on the operation data;
An operation condition step for deriving an operation condition from the remaining amount of the refractory and the operation data;
And operating the ash melting furnace based on the operating conditions.

本発明によれば、前記予測した現在の耐火物残存量、現在の運転データから耐火物残存量の安全基準を満たす耐火物残存基準値、及び運転日数目標等の運転計画を満たす適正な運転条件を算出し、この運転条件に基づき灰溶融炉の運転を行なうようにしたため、耐火物寿命の延命化が可能となり、さらに維持管理費の低減が図れる。
前記耐火物の残存量予測ステップでは、灰溶融炉の灰投入量、投入電力、主灰/飛灰混合率、スラグ温度、冷却水量及び冷却水温度、耐火物温度、炉内温度、電流、電圧から選択された運転データに基づき耐火物の残存量を予測することが好適である。
According to the present invention, the predicted current refractory remaining amount, the refractory remaining reference value that satisfies the safety standard of the refractory remaining amount from the current operation data, and the appropriate operating conditions that satisfy the operation plan such as the operation day target Since the ash melting furnace is operated based on the operating conditions, it is possible to extend the life of the refractory and further reduce the maintenance cost.
In the refractory remaining amount prediction step, the ash charging amount of the ash melting furnace, input power, main ash / fly ash mixing ratio, slag temperature, cooling water amount and cooling water temperature, refractory temperature, furnace temperature, current, voltage It is preferable to predict the remaining amount of refractory based on the operation data selected from the above.

また、前記残存量予測ステップでは、前記運転データから耐火物表面温度を求め、該耐火物表面温度の温度特性を用い、これに塩基度と処理負荷率を補正係数として加えたアレニウスの式に基づく近似式から前記耐火物の侵食速度を算出し、
耐火物初期値と前記侵食速度に基づき耐火物の残存量を予測することを特徴とする。
Further, in the remaining amount prediction step, a refractory surface temperature is obtained from the operation data, based on the temperature characteristics of the refractory surface temperature, and based on the Arrhenius equation in which basicity and processing load factor are added as correction factors. Calculate the erosion rate of the refractory from the approximate expression,
The remaining amount of the refractory is predicted based on the initial value of the refractory and the erosion rate.

このとき、前記耐火物表面温度を直接計測して求めても良いが、運転中などにはこの計測は困難であるため、以下の方法により求めることもできる。
(1)スラグ温度からの予測:計測したスラグ温度より1次元熱通過モデル(式(6);実施例3に記載)を用い、耐火物表面温度を推定する。
(2)灰投入量、投入電力、冷却水量、冷却水温度からの予測:冷却水量及び冷却水温度より炉体放熱量を算出し、算出した炉体放熱量と時間当りの灰投入量、投入電力より、灰の熱物性式(式(8);実施例3に記載)を用いてスラグ温度を推定し、推定したスラグ温度より1次元熱通過モデル(式(6);実施例3に記載)を用い、耐火物表面温度を推定する。
(3)電流、電圧からの予測:電流、電圧よりスラグの抵抗を求め、スラグの抵抗の温度特性よりスラグ温度を推定し、推定したスラグ温度より1次元熱通過モデル(式(6);実施例3に記載)を用い、耐火物表面温度を推定する。
(4)炉内温度からの予測:炉内温度と耐火物温度の相関関係に基づき、炉内温度より耐火物表面温度を推定する。
At this time, the surface temperature of the refractory may be directly measured, but this measurement is difficult during operation or the like, and therefore it can also be obtained by the following method.
(1) Prediction from slag temperature: The refractory surface temperature is estimated from the measured slag temperature using a one-dimensional heat passage model (formula (6); described in Example 3).
(2) Prediction from the amount of ash input, input power, amount of cooling water, and cooling water temperature: Calculate the amount of heat released from the furnace from the amount of cooling water and the temperature of the cooling water, calculate the amount of heat released from the furnace, and the amount of ash input per hour, input From the electric power, the slag temperature is estimated using the thermophysical property formula of ash (Equation (8); described in Example 3), and the one-dimensional heat passage model (Equation (6); described in Example 3) from the estimated slag temperature. ) To estimate the refractory surface temperature.
(3) Prediction from current and voltage: The slag resistance is obtained from the current and voltage, the slag temperature is estimated from the temperature characteristics of the slag resistance, and the one-dimensional heat passage model (formula (6); implementation) The refractory surface temperature is estimated using (described in Example 3).
(4) Prediction from furnace temperature: Based on the correlation between the furnace temperature and the refractory temperature, the refractory surface temperature is estimated from the furnace temperature.

また、前記運転条件ステップでは、前記予測した耐火物残存量と、予め設定された耐火物残存基準値より運転条件を導くようにしたことを特徴とする。
尚、前記耐火物残存基準値とは、灰溶融炉の正常運転が可能である最低限の耐火物肉厚をいう。本発明は、前記予測した現在の耐火物残存量を基に、運転後の耐火物残存量が前記耐火物残存基準値を満たすように、運転条件を導くようにする。
In the operation condition step, the operation condition is derived from the predicted refractory residual amount and a preset refractory residual reference value.
In addition, the said refractory residual reference value means the minimum refractory thickness which can operate an ash melting furnace normally. According to the present invention, based on the predicted current remaining amount of refractory, operating conditions are derived so that the refractory remaining amount after operation satisfies the refractory remaining reference value.

また、前記灰溶融炉に設けられた監視端末と、該監視端末と通信ネットワークを介して接続された監視サーバとを備えた請求項1記載の灰溶融炉の運転方法であって、
前記監視端末にて前記運転データ収集ステップを行い、該収集した運転データを前記監視サーバに送信し、前記監視サーバにて受信した前記運転データに基づき前記残存量予測ステップ及び前記運転条件ステップを行った後に前記導いた運転条件を前記監視端末に送信し、該監視端末にて前記運転条件に基づき前記灰溶融炉の運転を行なうことを特徴とする。
このように、灰溶融炉の運転を、通信ネットワークを介して構築される遠隔監視システムを用いて行なうことにより、より一層のコスト低減が期待できる。また、本発明は複数の灰溶融炉を統括して管理することもでき効率化が図れる。
The operation method of the ash melting furnace according to claim 1, further comprising: a monitoring terminal provided in the ash melting furnace; and a monitoring server connected to the monitoring terminal via a communication network,
The monitoring terminal performs the operation data collection step, transmits the collected operation data to the monitoring server, and performs the remaining amount prediction step and the operation condition step based on the operation data received by the monitoring server. Then, the derived operating conditions are transmitted to the monitoring terminal, and the ash melting furnace is operated based on the operating conditions at the monitoring terminal.
Thus, further cost reduction can be expected by operating the ash melting furnace using a remote monitoring system constructed via a communication network. In addition, the present invention can manage a plurality of ash melting furnaces in an integrated manner, thereby improving efficiency.

また、主灰及び飛灰等の灰を溶融処理する灰溶融炉の炉内壁に内張りされた耐火物の残存量を予測する耐火物の残存量予測方法において、
前記耐火物表面の温度特性を用い、これに塩基度と処理負荷率を補正係数として加えたアレニウスの式に基づく近似式から前記耐火物の侵食速度を算出し、
耐火物初期値と耐火物残存基準値から前記侵食速度に基づき耐火物の残存量を予測することを特徴とする。
このように、現状の運転データを用いて侵食速度を算出することにより、簡単にかつ正確な侵食速度を求めることができ、精度の高い耐火物の残存量予測が達成できる。
Further, in the method for predicting the remaining amount of refractory, which predicts the remaining amount of refractory lined on the furnace inner wall of an ash melting furnace for melting ash such as main ash and fly ash,
Using the temperature characteristics of the surface of the refractory, calculating the erosion rate of the refractory from an approximate expression based on the Arrhenius equation to which the basicity and the processing load factor are added as a correction coefficient,
The remaining amount of the refractory is predicted based on the erosion rate from the refractory initial value and the refractory residual reference value.
Thus, by calculating the erosion rate using the current operation data, the erosion rate can be obtained easily and accurately, and the remaining amount of the refractory can be predicted with high accuracy.

さらにまた、前記耐火物表面温度は、スラグ温度より一次元熱通過モデルに基づき算出することを特徴とする。このとき、前記スラグ温度は、スラグ液面から放射される2波長域の遠赤外光を検知し、これに基づきスラグ液面温度を算出する2波長温度計により計測することが好ましく、これにより煤塵や炉内ガス等の影響を最小限に抑えて正確なスラグ温度を計測できるようになる。
このように、計測が困難である耐火物表面温度をスラグ温度で代替可能とすることにより、簡単に且つ正確に耐火物の残存量予測を行なうことができるようになる。
Furthermore, the refractory surface temperature is calculated from the slag temperature based on a one-dimensional heat passage model. At this time, the slag temperature is preferably measured by a two-wavelength thermometer that detects far-infrared light in a two-wavelength region emitted from the slag liquid surface and calculates the slag liquid surface temperature based on this. Accurate slag temperature can be measured while minimizing the influence of dust and furnace gas.
In this way, by making it possible to replace the refractory surface temperature, which is difficult to measure, with the slag temperature, the remaining amount of the refractory can be predicted easily and accurately.

以上記載のごとく本発明によれば、耐火物の残存量、現状の運転データから耐火物残存量の安全基準を満たす耐火物残存基準値、及び運転日数目標等の運転計画を満たす適正な運転条件を算出し、この運転条件に基づき灰溶融炉の運転を行なうようにしたため、耐火物寿命の延命化が可能となり、さらに維持管理費の低減が図れる。
また、灰溶融炉の運転を通信ネットワークを介して構築される遠隔監視システムを用いて行なうことにより、より一層のコスト低減が期待できる。また、本発明は複数の灰溶融炉を統括して管理することもでき効率化が図れる。
さらに、前記耐火物表面の温度特性に塩基度と処理負荷率を補正係数として加えたアレニウスの式に基づく近似式を用いて耐火物の残存量を予測することにより、簡単にかつ正確な侵食速度を求めることができ、精度の高い耐火物の残存量予測が達成できる。
As described above, according to the present invention, the remaining amount of refractory, the refractory remaining reference value that satisfies the safety standard of the refractory remaining amount from the current operation data, and the appropriate operating condition that satisfies the operation plan such as the operation day target Since the ash melting furnace is operated based on the operating conditions, it is possible to extend the life of the refractory and further reduce the maintenance cost.
Moreover, further cost reduction can be expected by operating the ash melting furnace using a remote monitoring system constructed via a communication network. In addition, the present invention can manage a plurality of ash melting furnaces in an integrated manner, thereby improving efficiency.
Furthermore, by predicting the remaining amount of refractory using an approximate expression based on the Arrhenius equation, which adds the basicity and processing load factor as correction factors to the temperature characteristics of the refractory surface, the erosion rate can be easily and accurately estimated. The remaining amount of refractory can be predicted with high accuracy.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
本実施例では対象とする灰溶融炉としてプラズマ灰溶融炉を例に挙げて説明するが、特にこれに限定されず、旋回式灰溶融炉、燃料式灰溶融炉等のように、焼却灰又は飛灰等の灰を溶融処理可能な灰溶融炉であれば何れでも良い。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
In the present embodiment, a plasma ash melting furnace will be described as an example of the target ash melting furnace. However, the present invention is not limited to this, and incineration ash or fuel ash melting furnace, Any ash melting furnace capable of melting ash such as fly ash may be used.

図1は本発明が適用される灰溶融炉の一実施例であるプラズマ灰溶融炉の側断面図、図2は本発明の実施例1に係る灰溶融炉の運転方法を示すフロー図、図3は図2の運転方法において運転条件を判定する方法を示すフロー図、図4は本実施例1における耐火レンガ残存量の演算方法を示すフロー図、図5は本発明の炉運転に用いられるスラグ温度計の一例を示す概略断面図、図6は本発明の実施例2に係る灰溶融炉を具備した遠隔監視システムを示す全体構成図、図7は本実施例2の遠隔監視システムを用いた運転方法を示すフロー図である。   FIG. 1 is a side sectional view of a plasma ash melting furnace which is an embodiment of an ash melting furnace to which the present invention is applied, and FIG. 2 is a flowchart showing an operation method of the ash melting furnace according to the first embodiment of the present invention. 3 is a flowchart showing a method for determining operating conditions in the operating method of FIG. 2, FIG. 4 is a flowchart showing a method for calculating the remaining amount of refractory bricks in Example 1, and FIG. 5 is used for the furnace operation of the present invention. 6 is a schematic cross-sectional view showing an example of a slag thermometer, FIG. 6 is an overall configuration diagram showing a remote monitoring system equipped with an ash melting furnace according to Embodiment 2 of the present invention, and FIG. 7 uses the remote monitoring system of Embodiment 2. It is the flowchart which shows the driving method which was.

図1を参照して本発明が適用されるプラズマ溶融炉につき説明する。
プラズマ灰溶融炉10は、炉本体11の内壁に耐火レンガ11Bが内張りされ、その外表面が鉄皮11Aで被覆されている。前記炉本体11の上部には主電極13が挿設され、これに対向して炉底部に炉底電極14が挿設されている。前記主電極13の周囲には短絡防止のための絶縁スリーブ12が配設されている。プラズマ灰溶融炉10では、これらの電極間に直流電源15により直流電流を通流して炉内にプラズマアークを発生させる。炉壁に設けられた灰投入口16より投入された灰は、プラズマアーク熱及び前記電極間を流れる電流のジュール熱により溶融スラグ18となり、出滓樋17より排出される。
A plasma melting furnace to which the present invention is applied will be described with reference to FIG.
In the plasma ash melting furnace 10, a refractory brick 11 </ b> B is lined on the inner wall of the furnace body 11, and the outer surface thereof is covered with an iron skin 11 </ b> A. A main electrode 13 is inserted in the upper part of the furnace body 11, and a furnace bottom electrode 14 is inserted in the furnace bottom so as to face the main electrode 13. An insulating sleeve 12 is disposed around the main electrode 13 to prevent a short circuit. In the plasma ash melting furnace 10, a direct current is passed between these electrodes by a direct current power source 15 to generate a plasma arc in the furnace. The ash charged from the ash inlet 16 provided on the furnace wall becomes molten slag 18 by plasma arc heat and Joule heat of current flowing between the electrodes, and is discharged from the tap 17.

また、前記プラズマ灰溶融炉10には各種検出機器が具備されている。例えば、炉蓋に設けられた計測用開口19に設置されたスラグ温度計20、炉壁に埋設され耐火レンガ温度を検出する熱電対21、前記出滓樋17の内部に通流する冷却水の入口温度及び出口温度を検出する温度検出計、炉内温度を検出する温度検出計、前記電極間の電流、電圧を計測する電流計及び電圧計、炉内へ投入する灰を計量する計量器などが挙げられる。
本実施例では、これらの検出機器等により取得した現状の運転データに基づき適正な運転条件を求め、この運転条件に基づいた灰溶融炉の運転を行なうものである。
The plasma ash melting furnace 10 is equipped with various detection devices. For example, a slag thermometer 20 installed in a measurement opening 19 provided in the furnace lid, a thermocouple 21 embedded in the furnace wall for detecting a refractory brick temperature, and cooling water flowing through the inside of the tap 17 A temperature detector that detects the inlet and outlet temperatures, a temperature detector that detects the furnace temperature, an ammeter and a voltmeter that measure the current and voltage between the electrodes, a meter that measures the ash to be put into the furnace, etc. Is mentioned.
In this embodiment, an appropriate operation condition is obtained based on the current operation data acquired by these detection devices and the ash melting furnace is operated based on this operation condition.

適正な運転条件を求めるためには、正確な運転データを収集する必要がある。例えば、前記スラグ温度計としては赤外線を利用した放射温度計、熱電対等を利用することができるが、灰溶融炉のように炉内が高温、腐食雰囲気で、且つ煤塵が多く存在する場合には図5に示すスラグ温度計を利用することが好ましい。
このスラグ温度計20は、前記計測用開口19に嵌め込まれた透過窓19aを介して炉外に配設される。該スラグ温度計20は、筐体201の炉側端部には集光レンズ202が配設され、該集光レンズ202と対面するごとく、所定角度を有して可視光分離ミラー203が配置される。該可視光分離ミラー203は前記集光レンズ202の光軸と直交する方向に可視光を反射する。また、スラグ液面18aから放射される光束の一部が通過可能なように、前記可視光分離ミラー203の一部には穴部203aが形成されている。さらに、該可視光分離ミラー203と対面する位置には可視光屈折ミラー204が配設され、ここに入射した可視光は入射光と略直交する方向に屈折される。前記筐体201の上面には視認窓211が設けられ、該視認窓211よりスラグ液面18aを容易に視認できるとともに、前記穴部203a、即ち温度計測箇所を黒点として正確に確認できる。
In order to obtain proper operating conditions, it is necessary to collect accurate operating data. For example, a radiation thermometer using infrared rays, a thermocouple, etc. can be used as the slag thermometer, but when the furnace is in a high temperature, corrosive atmosphere and a lot of dust is present like an ash melting furnace. It is preferable to use the slag thermometer shown in FIG.
The slag thermometer 20 is disposed outside the furnace through a transmission window 19 a fitted in the measurement opening 19. The slag thermometer 20 has a condensing lens 202 disposed at the furnace side end of the casing 201, and a visible light separating mirror 203 is disposed at a predetermined angle so as to face the condensing lens 202. The The visible light separation mirror 203 reflects visible light in a direction orthogonal to the optical axis of the condenser lens 202. Further, a hole 203a is formed in a part of the visible light separation mirror 203 so that a part of the light beam emitted from the slag liquid surface 18a can pass therethrough. Further, a visible light refraction mirror 204 is disposed at a position facing the visible light separation mirror 203, and the visible light incident thereon is refracted in a direction substantially orthogonal to the incident light. A visual recognition window 211 is provided on the upper surface of the housing 201, and the slag liquid surface 18a can be easily visually recognized from the visual recognition window 211, and the hole 203a, that is, the temperature measurement location can be accurately confirmed as a black spot.

一方、前記筐体201の光路下流側には、前記穴部203aを通過した光が入射するようにビームスプリッタ205が設けられている。該ビームスプリッタ205は、入光した赤外線を2以上の光束に分配し、一の赤外光を透過させ、他の一の赤外光を入射光と直交する方向に反射する。前記分配した赤外光の光路上には光検出素子である第1のサーモパイル208、第2のサーモパイル209が夫々配設され、夫々の光の進行方向前面には特定の波長域の赤外光のみを透過する第1のバンドパスフィルタ206、第2のバンドパスフィルタ207が設置される。前記第1、第2のバンドパスフィルタ206、207は、異なる2つの波長域の赤外光のみを透過する。これらのバンドパスフィルタの設定は、炉内ガスが吸収しない波長域の赤外光を選択的に使用することが好ましい。好適には、前記第1、第2のバンドパスフィルタ206、207で選択する波長域は、好適には8〜14μmの範囲内の異なる波長域とすると良い。
前記第1、第2のサーモパイル208、209で検出された電圧信号は信号処理装置210に送信され、得られた2の電圧信号の出力電圧比からスラグ温度が演算される。
On the other hand, a beam splitter 205 is provided on the downstream side of the optical path of the housing 201 so that light that has passed through the hole 203a is incident thereon. The beam splitter 205 distributes the incident infrared light into two or more light beams, transmits one infrared light, and reflects the other infrared light in a direction orthogonal to the incident light. A first thermopile 208 and a second thermopile 209, which are light detection elements, are disposed on the optical path of the distributed infrared light, and infrared light in a specific wavelength region is disposed in front of each light traveling direction. A first band-pass filter 206 and a second band-pass filter 207 that transmit only the light are provided. The first and second band pass filters 206 and 207 transmit only infrared light in two different wavelength ranges. These bandpass filters are preferably set by selectively using infrared light in a wavelength region that is not absorbed by the furnace gas. Preferably, the wavelength range selected by the first and second band pass filters 206 and 207 is preferably a different wavelength range within the range of 8 to 14 μm.
The voltage signals detected by the first and second thermopiles 208 and 209 are transmitted to the signal processing device 210, and the slag temperature is calculated from the output voltage ratio of the obtained two voltage signals.

このように、本実施例ではスラグ液面18aの温度を測定しつつ、計測視野を正確に確認することができる。
本実施例によれば、ビームスプリッタ205を用いることにより1つの光軸を分離しているため、対象物の温度分布や付着物による測定誤差が殆ど生じない。さらに、焦電素子を用いない構成であるため、チョッピングモータの変動により不安定となることがなく、測定の安定性が向上し、またサーモパイルそのものの応答時間で計測が可能となり、早い温度変化に追随できる。さらにまた、穴部203aを有する可視光分離ミラー203を用いているため、容易に計測視野を確認することができる。
Thus, in the present embodiment, the measurement visual field can be accurately confirmed while measuring the temperature of the slag liquid surface 18a.
According to the present embodiment, since one optical axis is separated by using the beam splitter 205, there is almost no measurement error due to the temperature distribution of the object and the attached matter. In addition, because it does not use pyroelectric elements, it does not become unstable due to fluctuations in the chopping motor, improving measurement stability, and enabling measurement with the response time of the thermopile itself, resulting in rapid temperature changes. You can follow. Furthermore, since the visible light separation mirror 203 having the hole 203a is used, the measurement visual field can be easily confirmed.

次に、図2を参照して前記プラズマ灰溶融炉10の運転方法につき説明する。
まず、前記各種計測機器より灰溶融炉の現状の運転データを収集する(S1)。前記運転データとしては、灰投入量(主灰、飛灰)、電力供給量、飛灰混合率、スラグ温度、出滓樋又は炉本体の各冷却水量及び冷却水温度、耐火レンガ温度、炉内温度、電流、電圧等が挙げられる。これらの運転データのうち少なくとも1以上により、耐火レンガの残存量予測を行なう(S2)。このとき、スラグ温度に基づき耐火レンガの残存量予測を行なう場合は、図5に示した前記スラグ温度計を用いることが好適である。また、スラグ温度計を設置しない場合には、灰投入量(主灰、飛灰)電力供給量、飛灰混合率、スラグ温度、出滓樋又は炉本体の各冷却水量及び冷却水温度、耐火レンガ温度、炉内温度、電流、電圧、出滓後スラグ温度(二色温度計計測)の何れか1以上によりスラグ温度の推定を行っても良い。
Next, an operation method of the plasma ash melting furnace 10 will be described with reference to FIG.
First, current operation data of the ash melting furnace is collected from the various measuring instruments (S1). As the operation data, ash input (main ash, fly ash), power supply, fly ash mixing ratio, slag temperature, amount of cooling water in the tap or furnace body, cooling water temperature, refractory brick temperature, in-furnace Examples include temperature, current, voltage, and the like. The remaining amount of refractory bricks is predicted based on at least one of these operation data (S2). At this time, when the remaining amount of the refractory brick is predicted based on the slag temperature, it is preferable to use the slag thermometer shown in FIG. If a slag thermometer is not installed, the amount of ash input (main ash, fly ash), power supply, fly ash mixing ratio, slag temperature, tap water or each cooling water amount of the furnace body, cooling water temperature, fire resistance The slag temperature may be estimated by any one or more of brick temperature, furnace temperature, current, voltage, and post-slag slag temperature (two-color thermometer measurement).

スラグ温度計で計測したスラグ温度により耐火レンガ残存量を予測する場合は、まず式(6)(実施例3に記載)により耐火物表面温度を推定する。そして式(5)(実施例3に記載)を用いて耐火物の侵食速度を算出し、侵食速度を積算することにより耐火物の侵食量が求められ、耐火レンガ厚さの初期値からこの侵食量を差し引くことで耐火レンガ残存量が求められる。
また、スラグ温度計を設置せず運転データから推定する場合は、例えば式(12)(実施例3に記載)を用い、灰投入量、電力よりスラグ温度を推定し、以下スラグ温度計測を行なう場合と同様の演算を行なうことにより耐火物の侵食量を求める。
When predicting the remaining amount of refractory bricks based on the slag temperature measured by the slag thermometer, first, the refractory surface temperature is estimated by Equation (6) (described in Example 3). Then, the erosion rate of the refractory is calculated using the equation (5) (described in Example 3), and the erosion amount of the refractory is obtained by integrating the erosion rates, and this erosion is determined from the initial value of the refractory brick thickness. The remaining amount of refractory bricks is obtained by subtracting the amount.
Moreover, when estimating from driving | running | working data, without installing a slag thermometer, slag temperature is estimated from ash injection amount and electric power, for example using Formula (12) (described in Example 3), and slag temperature measurement is performed below. The erosion amount of the refractory is obtained by performing the same calculation as in the case.

さらに、耐火レンガの残存量予測値と現状の運転データとから、運転処理量目標、運転日数目標、レンガ残存量安全基準を満たす運転条件を算出し、運転スケジュールを作成する(S3)。このとき、前記現状の運転データには、灰投入量(主灰、飛灰)、電力供給量、飛灰混合率、スラグ温度、出滓樋又は炉本体の各冷却水量及び冷却水温度、耐火レンガ温度、炉内温度、電流、電圧等が挙げられる。これらの運転データのうち少なくとも1以上を用いる。
そして、前記算出した運転条件に基づき溶融炉の運転・メンテナンスを行なう(S4)。
Furthermore, an operation condition that satisfies the operation processing amount target, the operation day target, and the brick remaining amount safety standard is calculated from the predicted value of the remaining amount of refractory bricks and the current operation data, and an operation schedule is created (S3). At this time, the current operation data includes ash input (main ash, fly ash), power supply, fly ash mixing ratio, slag temperature, tap water or each cooling water amount and cooling water temperature of the furnace body, fire resistance Examples include brick temperature, furnace temperature, current, and voltage. At least one or more of these operation data is used.
Then, the melting furnace is operated and maintained based on the calculated operating conditions (S4).

ここで、図3に基づきプラズマ溶融炉の運転条件判定方法の一例を説明する。
まず、灰投入量の目標値、運転時間の目標値からなる運転計画と、現在の耐火レンガ残存量、運転後のレンガ残存量の目標値を入力し(S11)、これらの入力値より運転後のレンガ残存量を演算する(S12)。
そして、運転後のレンガ残存量と、運転後レンガ残存量の目標値とを比較し(S13)、演算値の方が大きい場合には灰投入量ペース、基準電力の通知を行い(S14)、これに基づき炉運転を行なう。一方、演算値の方が小さい場合には、基準電力を変更し(S15)、基準電力が溶融適正電力の下限値を上回っているか否かを判別し(S16)、基準電力の方が大きい場合には再度運転後レンガ残存量の演算を行なう(S12)。基準電力の方が小さい場合には、当条件での運転は不能であることを通知し(S17)、運転計画を見直す等の処理を行う。
Here, an example of the operating condition determination method of the plasma melting furnace will be described with reference to FIG.
First, an operation plan composed of a target value of ash input amount, a target value of operation time, a current residual amount of refractory bricks, and a target value of residual brick amount after operation are input (S11), and after operation from these input values The remaining amount of brick is calculated (S12).
Then, the remaining brick amount after operation and the target value of the remaining brick amount after operation are compared (S13), and if the calculated value is larger, the ash input amount pace and the reference power are notified (S14), Based on this, the furnace operation is performed. On the other hand, when the calculated value is smaller, the reference power is changed (S15), it is determined whether or not the reference power exceeds the lower limit value of the melting appropriate power (S16), and the reference power is larger. In step S12, the remaining brick amount after operation is calculated again. If the reference power is smaller, notification is made that operation under this condition is impossible (S17), and processing such as reviewing the operation plan is performed.

図4は前記運転後レンガ残存量の演算方法の一例である。同図に示すように、灰投入量の目標値(S21)と、運転時間の目標値(S22)とから灰溶融炉における灰投入量ペースを算出し(S23)、該灰投入量ペースに基づいて基準電力を算出する(S24)。さらに、前記灰投入量ペースと前記基準電力とに加えて、現在のレンガ残存量(S25)を入力して、これらから運転後のレンガ残存量の予測値を算出する(S26)。
このように、耐火レンガの残存量、現状の運転データから耐火レンガ残存量の安全基準、及び運転日数目標を満たす運転条件を算出し、運転を行なうことにより耐火レンガ寿命が延命し、維持管理費の低減が図れる。
FIG. 4 shows an example of a method for calculating the post-operation brick residual amount. As shown in the figure, the ash input amount pace in the ash melting furnace is calculated from the target value (S21) of the ash input amount and the target value (S22) of the operation time (S23), and based on the ash input amount pace. The reference power is calculated (S24). Furthermore, in addition to the ash input amount pace and the reference power, the current brick remaining amount (S25) is input, and the predicted value of the brick remaining amount after operation is calculated from these (S26).
In this way, calculating the operating conditions that meet the safety standards for the remaining amount of refractory bricks and the operation days target from the remaining amount of refractory bricks and the current operation data, and by operating, the life of the refractory bricks is extended, and maintenance costs Can be reduced.

次に、本実施例に係る灰溶融炉の運転方法を遠隔監視システムを利用して行なう場合について説明する。
図6に本発明の実施例2に係る灰溶融炉を具備した遠隔監視システムを示す。
この遠隔監視システムは、プラズマ灰溶融炉10及び監視端末30を備えた各プラント300A、300B、300C、…と、監視サーバ40を備えた管理センター400からなり、前記監視端末30と前記監視サーバ40はインターネット若しくは専用回線等の通信ネットワーク50により接続されている。また、前記監視端末30と監視サーバ40間でのデータの送受信の際には、通信制御、情報の保護を目的として夫々ファイヤウォール31、41及びルータ32、42を介して通信している。
Next, the case where the operation method of the ash melting furnace which concerns on a present Example is performed using a remote monitoring system is demonstrated.
FIG. 6 shows a remote monitoring system equipped with an ash melting furnace according to Embodiment 2 of the present invention.
This remote monitoring system includes each plant 300A, 300B, 300C,... Equipped with a plasma ash melting furnace 10 and a monitoring terminal 30, and a management center 400 equipped with a monitoring server 40. The monitoring terminal 30 and the monitoring server 40 Are connected by a communication network 50 such as the Internet or a dedicated line. Further, when data is transmitted and received between the monitoring terminal 30 and the monitoring server 40, communication is performed via firewalls 31 and 41 and routers 32 and 42 for the purpose of communication control and information protection, respectively.

前記監視端末30の内部構成は、図6に示すように、プラント内におけるLAN等のネットワーク間の通信、及び前記通信ネットワーク50を介しての前記監視サーバ40との通信を行う通信部30aと、各種運転データを記憶する記憶部30bと、該運転データをプラズマ灰溶融炉10から取得する運転データ収集部30cと、LCDやCRTディスプレイ等の稼動計画を表示可能な表示部30dと、を備えている。前記プラズマ灰溶融炉10から取得する運転データとは、灰投入量(主灰、飛灰)、電力供給量、飛灰混合率、スラグ温度、出滓樋又は炉本体の各冷却水量及び冷却水温度、耐火レンガ温度、炉内温度、電流、電圧等が挙げられる。これらの運転データのうち少なくとも1以上である。   As shown in FIG. 6, the internal configuration of the monitoring terminal 30 includes a communication unit 30 a that performs communication between networks such as a LAN in a plant, and communication with the monitoring server 40 via the communication network 50. A storage unit 30b that stores various operation data, an operation data collection unit 30c that acquires the operation data from the plasma ash melting furnace 10, and a display unit 30d that can display an operation plan such as an LCD or a CRT display. Yes. The operation data acquired from the plasma ash melting furnace 10 is the amount of ash input (main ash, fly ash), power supply amount, fly ash mixing ratio, slag temperature, tapping or each cooling water amount and cooling water of the furnace body. Examples include temperature, refractory brick temperature, furnace temperature, current, voltage, and the like. At least one of these operation data.

一方、前記監視サーバ40の内部構成は、前記監視端末30と前記ネットワーク50を介して通信を行う通信部40aと、各プラントの監視端末30より集積した運転データを格納するデータベース40bと、該運転データより灰溶融炉の稼動計画を演算する演算部40cとを備えている。
前記演算部40cは、前記運転データに基づき各プラズマ灰溶融炉10の炉部材の交換時期、メンテナンス時期、清掃時期等の運転計画を演算する機能を有する。
On the other hand, the internal configuration of the monitoring server 40 includes a communication unit 40a that communicates with the monitoring terminal 30 via the network 50, a database 40b that stores operation data accumulated from the monitoring terminal 30 of each plant, and the operation A calculation unit 40c for calculating an operation plan of the ash melting furnace from the data.
The calculation unit 40c has a function of calculating an operation plan such as replacement time, maintenance time, and cleaning time of the furnace members of each plasma ash melting furnace 10 based on the operation data.

図7に、図6に示した遠隔監視システムを用いた溶融炉の運転方法のフローを示す。
まず、前記監視端末30側にて、灰溶融炉に設置した各種計測機器より現在の運転データを収集し(S31)、該収集した運転データを通信ネットワーク50を介して監視サーバ40へ送信する(S32)。
前記監視サーバ40側では、前記運転データを受信し(S33)、該運転データをデータベース40bに格納する(S34)。そして、必要とされる運転データを前記データベース40bより抽出し、該運転データより耐火レンガの残存量予測を行なう(S35)。
FIG. 7 shows a flow of a melting furnace operation method using the remote monitoring system shown in FIG.
First, on the monitoring terminal 30 side, current operation data is collected from various measuring devices installed in the ash melting furnace (S31), and the collected operation data is transmitted to the monitoring server 40 via the communication network 50 ( S32).
The monitoring server 40 side receives the operation data (S33) and stores the operation data in the database 40b (S34). Then, necessary operation data is extracted from the database 40b, and the remaining amount of refractory bricks is predicted from the operation data (S35).

一方、前記監視端末30では、主灰及び飛灰投入量、運転日数等の運転計画目標を前記監視サーバ40へ送信し、前記監視サーバ40では、前記残存量予測により得られた残存量予測値と、運転データと、前記運転計画目標とからレンガ残存基準を満たす運転条件を算出する(S37)。該算出した運転条件は前記監視端末30に送信し(S38)、該監視端末30では、この運転条件に基づいてプラズマ溶融炉の運転、メンテナンスを行なう(S39)。
このように、遠隔制御システムを用いることにより維持管理費のより一層の低減が達成できる。
On the other hand, the monitoring terminal 30 transmits the operation plan targets such as the main ash and fly ash input amount, the operation days, etc. to the monitoring server 40, and the monitoring server 40 obtains the remaining amount predicted value obtained by the remaining amount prediction. Then, the operation condition satisfying the brick residual standard is calculated from the operation data and the operation plan target (S37). The calculated operating conditions are transmitted to the monitoring terminal 30 (S38), and the monitoring terminal 30 performs operation and maintenance of the plasma melting furnace based on the operating conditions (S39).
As described above, the maintenance cost can be further reduced by using the remote control system.

本実施例3では、灰溶融炉の運転データを用いて侵食メカニズムに基づいた侵食予測式から耐火レンガの残存量を予測する方法について記載する。   Example 3 describes a method for predicting the remaining amount of refractory bricks from an erosion prediction formula based on the erosion mechanism using operation data of the ash melting furnace.

(耐火レンガの侵食メカニズム)
まず、耐火レンガの侵食のメカニズムについて説明する。ここでは、一例としてSiCを主とする耐火レンガの侵食について考察する。図8に示されるように、SiC耐火レンガは酸素と反応してSiOとなり(下記の化学反応式[1])、次にSiOがスラグ中のCaOやNaOやKOと反応してCaSiOが生成して(下記の化学反応式[2])、スラグに溶解し、SiO 2−がスラグに拡散するメカニズムを想定した。
SiC+0.5O → SiO [1]
CaO(NaO,KO)+SiO → CaSiO [2]
(Erosion mechanism of refractory bricks)
First, the mechanism of refractory brick erosion will be described. Here, erosion of refractory bricks mainly composed of SiC will be considered as an example. As shown in FIG. 8, the SiC refractory brick reacts with oxygen to become SiO 2 (the following chemical reaction formula [1]), and then SiO 2 reacts with CaO, Na 2 O, and K 2 O in the slag. Thus, it was assumed that CaSiO 3 was generated (the following chemical reaction formula [2]), dissolved in slag, and SiO 3 2− diffused into slag.
SiC + 0.5O 2 → SiO 2 [1]
CaO (Na 2 O, K 2 O) + SiO 2 → CaSiO 3 [2]

本メカニズムにおいて侵食の律速はSiO 2−の拡散であり、耐火レンガの侵食速度式は下記式(1)のように表される。

Figure 2006145122
ここで、mは溶解量、Cはスラグ中へのSiO 2−飽和濃度、Cはスラグ中SiO
濃度、Dは拡散係数、Aは反応面積、δは境界層厚さ、tは時間を表している。 In this mechanism, the rate of erosion is diffusion of SiO 3 2− , and the erosion rate equation of the refractory brick is expressed as the following equation (1).
Figure 2006145122
Here, m is the dissolved amount, C 0 is SiO 3 2− saturation concentration in the slag, and C is SiO 3 2 in the slag.
- concentration, D is the diffusion coefficient, A is the reaction area, [delta] is the boundary layer thickness, t represents time.

(拡散係数)
前記式(1)の拡散係数Dは、アレニウスの式を用いて下記式(2)のように表され、温度の関数となる。

Figure 2006145122
ここで、Dは拡散係数、Dは頻度因子、Eは拡散の活性化エネルギー、Rは気体定数、
Tは温度を表している。侵食速度と温度の関係について電気炉を用いた侵食実験を行なっ
た結果、図9に示すように温度上昇とともに侵食量が増大することが分かり、拡散の活性化エネルギーを実験的に把握した。尚、スラグの粘度もアレニウスの式を用いて下記式(3)のように表されるため、本実験から求めた活性化エネルギーEには温度によるスラグ粘性変化の影響も含まれているものと考えられる。
Figure 2006145122
ここで、μは粘度、Aは定数、Eは粘度の活性化エネルギー、Rは気体定数、Tは温度を表している。 (Diffusion coefficient)
The diffusion coefficient D of the equation (1) is expressed as the following equation (2) using the Arrhenius equation and is a function of temperature.
Figure 2006145122
Where D is the diffusion coefficient, D 0 is the frequency factor, E is the diffusion activation energy, R is the gas constant,
T represents temperature. As a result of conducting an erosion experiment using an electric furnace with respect to the relationship between the erosion rate and the temperature, it was found that the erosion amount increased with increasing temperature as shown in FIG. 9, and the activation energy of diffusion was experimentally grasped. In addition, since the viscosity of slag is also expressed by the following equation (3) using the Arrhenius equation, the activation energy E obtained from this experiment includes the effect of slag viscosity change due to temperature. Conceivable.
Figure 2006145122
Here, μ represents the viscosity, Aw represents a constant, Ew represents the activation energy of the viscosity, R represents the gas constant, and T represents the temperature.

(濃度)
図8において耐火レンガとスラグとの接触面はSiO 2−の飽和濃度となっており、スラグ中のSiO 2−濃度との濃度差で拡散する。スラグ中のSiO 2−濃度は塩基度(=CaO/SiO)によって決まるため、本実施例ではスラグ中のSiO 2−濃度を灰やスラグを表す一般的な指標である塩基度で表すことにした。この塩基度は、CaOとSiOの混合率で置き換えることもできる。侵食実験から求めたスラグの塩基度と侵食量の関係を図12に示す。これによれば、塩基度の上昇に伴い、侵食量は増大しており、本実施例では指数関数として近似し、侵食速度式に導入した。
(concentration)
Contact surface between the refractory bricks and the slag 8 is a saturation concentration of SiO 3 2-, diffuses at a density difference between SiO 3 2-concentration in the slag. Since the SiO 3 2− concentration in the slag is determined by the basicity (= CaO / SiO 2 ), in this embodiment, the SiO 3 2− concentration in the slag is expressed by basicity, which is a general index representing ash and slag. It was to be. This basicity can be replaced by the mixing ratio of CaO and SiO 2 . FIG. 12 shows the relationship between the basicity of the slag and the amount of erosion obtained from the erosion experiment. According to this, the amount of erosion increased as the basicity increased, and in this example, it was approximated as an exponential function and introduced into the erosion rate equation.

(境界層厚さ)
境界層厚さは流速の関数であるが、プラズマ灰溶融炉内のスラグ流速の計測は困難であるため、実用的には流速に代わるパラメータを選定する必要がある。プラズマ灰溶融炉内に供給された灰はスラグ液面(スラグライン)に浮遊して溶融するため、灰処理負荷が増大するとスラグ液面での溶融量が増大し、スラグ液面から加工するスラグ流速が増大する。スラグ液面でのスラグ流速が増大すると耐火レンガとスラグ液面との接触部分であるスラグラインの境界層が薄くなるため拡散速度は上昇する。このことから本実施例では流速に代わるパラメータとして下記式(4)に示す灰の処理負荷率を選定した。
(Boundary layer thickness)
Although the boundary layer thickness is a function of the flow velocity, it is difficult to measure the slag flow velocity in the plasma ash melting furnace, so it is necessary to select a parameter in place of the flow velocity in practice. The ash supplied to the plasma ash melting furnace floats on the slag liquid surface (slag line) and melts. Therefore, when the ash treatment load increases, the amount of melting at the slag liquid surface increases and slag is processed from the slag liquid surface. The flow rate increases. When the slag flow velocity at the slag liquid surface increases, the boundary layer of the slag line, which is the contact portion between the refractory brick and the slag liquid surface, becomes thin, so that the diffusion rate increases. Therefore, in this example, the ash treatment load factor represented by the following formula (4) was selected as a parameter instead of the flow velocity.

Figure 2006145122
ここで、vは処理負荷率である。
図13に試験炉における運転データ及び侵食量計測データから灰の処理負荷率と侵食速度の関係を整理した結果を示す。灰の処理負荷率の上昇とともに侵食速度は増大した。本実施例では指数関数として近似し侵食速度式に導入した。文献(新谷宏隆、川上辰男著「溶融石英質耐火レンガのCaO−Al−SiO系溶融スラグによる侵食」窯業協会誌 VoL94No.11(1986),P1183-1185)によると、侵食速度はスラグの流速の0.5〜0.7乗に比例すると報告されているが、本実験結果ではそれよりも大きな変化を示しており、連行(剥ぎ取り)効果によって境界層が極端に薄くなっている可能性が考えられる。
Figure 2006145122
Here, v is a processing load factor.
FIG. 13 shows the results of organizing the relationship between the ash treatment load factor and the erosion rate from the operation data and the erosion amount measurement data in the test furnace. The erosion rate increased with increasing ash treatment load factor. In this example, it was approximated as an exponential function and introduced into the erosion rate equation. According to the literature (Hirotaka Shintani, Ikuo Kawakami, “Erosion of fused quartz refractory bricks with CaO-Al 2 O 3 —SiO 2 system slag”, Journal of Ceramic Industry Association VoL94No.11 (1986), P1183-1185), Although it is reported that the flow rate of slag is proportional to the power of 0.5 to 0.7, the results of this experiment show a larger change, and the boundary layer becomes extremely thin due to the entrainment (stripping) effect. Possible possibility.

(侵食速度式)
SiO 2−の拡散を律速とした耐火レンガの侵食メカニズムに基づき、プラズマ灰溶融炉の運転パラメータを用いて下記式(5)に示される侵食速度式を作成した。

Figure 2006145122
ここで、A、B、Cは定数、Tは耐火レンガ表面温度、Eは活性化エネルギー、vは処理負荷率、ηは塩基度、xは侵食量、tは時間を表している。スラグの塩基度及び活性化エネルギーの影響は、プラズマ灰溶融炉を用いた侵食実験から、流速の影響は実炉侵食量計測結果から決定した。 (Erosion rate formula)
Based on the erosion mechanism of the refractory brick with rate limiting diffusion of SiO 3 2−, the erosion rate equation shown in the following equation (5) was created using the operating parameters of the plasma ash melting furnace.
Figure 2006145122
Here, A, B, and C are constants, T is the refractory brick surface temperature, E is the activation energy, v is the processing load factor, η is the basicity, x is the amount of erosion, and t is the time. The influence of slag basicity and activation energy was determined from erosion experiments using a plasma ash melting furnace, and the influence of flow velocity was determined from the results of actual erosion measurements.

耐火レンガ表面温度Tは、スラグ温度を用いて1次元熱通過モデルにより下記式(6)を用いて推定した。

Figure 2006145122
ここで、Tはスラグ温度、Tは水温度、αsrはスラグと耐火レンガの熱伝達率、λは耐火レンガの熱伝導率、添字1,2は夫々耐火レンガの種類を表している。スラグと耐火レンガの熱伝達率αsrは実炉における温度計測結果から求めた。 The refractory brick surface temperature T was estimated using the slag temperature by the following equation (6) using a one-dimensional heat passage model.
Figure 2006145122
Here, T s is the slag temperature, T w is the water temperature, α sr is the heat transfer coefficient of the slag and the refractory brick, λ is the heat conductivity of the refractory brick, and the subscripts 1 and 2 are the types of the refractory brick. . The heat transfer coefficient α sr of the slag and refractory brick was obtained from the temperature measurement result in the actual furnace.

(スラグ温度の計測)
耐火レンガ表面温度Tを求めるために本実施例ではスラグ温度を利用する方法を挙げているが、スラグは高温かつ侵食性が非常に強いことから熱電対による連続計測は困難である。そこで、本実施例では煤塵の影響を最小限に抑えることができるスラグ温度計を用いる。市販される2波長の放射温度計は波長が1μm近傍であり、炉内の高煤塵雰囲気を投下できないため、本実施例では遠赤外光を検知することとした。
図10は本実施例3に用いるスラグ温度計の概略図を示す。スラグ温度計20は、バンドパスフィルタ220とセンサ221とを内蔵し、スラグ面18aから放射される遠赤外光を検出して、プランクのエネルギ放射則において2つの波長域のエネルギ強度が温度ごとに一定であることを利用し、選択した2つの波長のエネルギ比から温度を推定するものであり、下記式により算出できる。
(Measurement of slag temperature)
In order to obtain the refractory brick surface temperature T, a method using the slag temperature is described in this embodiment, but since slag is high in temperature and very erosive, continuous measurement with a thermocouple is difficult. Therefore, in this embodiment, a slag thermometer that can minimize the influence of dust is used. Since a commercially available two-wavelength radiation thermometer has a wavelength of about 1 μm and cannot throw a high dust atmosphere in the furnace, far-infrared light is detected in this embodiment.
FIG. 10 shows a schematic view of a slag thermometer used in the third embodiment. The slag thermometer 20 includes a bandpass filter 220 and a sensor 221, detects far-infrared light radiated from the slag surface 18 a, and the energy intensity in the two wavelength ranges in accordance with Planck's energy radiation law for each temperature. Is used to estimate the temperature from the energy ratio of the two selected wavelengths, and can be calculated by the following equation.

Figure 2006145122
ここで、εはスラグの放射率、E(T)は温度Tの黒体からの放射強度、τは透過率、Tsはスラグ温度、添字λ、λは夫々波長を表す。
スラグ面18aから発せられる赤外光の煤塵雰囲気中の透過特性およびガス雰囲気中の透過特性を確認するため、フーリエ変換赤外分光法を用いてスラグ液面18aからの光を分光した。非灰処理中は煤塵及び赤外吸収ガスの発生はなく、スラグ液面18aから発せられる赤外光は全て透過する。計測した透過率(灰処理中の透過強度/非灰処理中の透過強度)を図11に示す。同図に示されるように、8〜15μmの波長域では透過率が0.9以上であり、炉内煤塵やガス吸収の影響を受け難いことが明らかである。従って、本実施例に係るスラグ温度計において、8〜15μmの範囲内の赤外光を利用すると良い。
Figure 2006145122
Here, ε is the slag emissivity, E (T) is the radiation intensity from the black body at the temperature T, τ is the transmittance, Ts is the slag temperature, and the suffixes λ 1 and λ 2 are the wavelengths.
In order to confirm the transmission characteristics of the infrared light emitted from the slag surface 18a in the dust atmosphere and the transmission characteristics in the gas atmosphere, the light from the slag liquid surface 18a was dispersed using Fourier transform infrared spectroscopy. During the non-ash treatment, no dust or infrared absorbing gas is generated, and all infrared light emitted from the slag liquid surface 18a is transmitted. FIG. 11 shows the measured transmittance (permeation intensity during ash treatment / permeation intensity during non-ash treatment). As shown in the figure, it is clear that the transmittance is 0.9 or more in the wavelength range of 8 to 15 μm, and is hardly affected by dust in the furnace or gas absorption. Therefore, in the slag thermometer according to the present embodiment, it is preferable to use infrared light in the range of 8 to 15 μm.

また、スラグ温度を熱バランスにより推定する方法を示す。スラグ温度計によりスラグ液面温度を計測可能であるが、計測用透過窓に塩類が付着する等の要因により透過窓が曇ることが原因で計測誤差が発生することがある。そこで、プラズマ溶融炉の入熱及び出熱のバランスを用いて出滓口でのスラグ温度を推定し、計測したスラグ温度と比較することでスラグ温度の信頼性を向上することを考えた。プラズマ溶融炉の熱入力は電力であり、出力は灰を溶融する熱量及び炉体冷却熱力である。熱バランスから求めたスラグ温度Tは灰投入量と電力から求まるバランス上の定常時のスラグ温度であり、下記式(8)のように表すことができる。 Moreover, the method to estimate slag temperature by heat balance is shown. Although the slag liquid surface temperature can be measured by a slag thermometer, a measurement error may occur due to the permeation window becoming cloudy due to factors such as salt adhering to the permeation window for measurement. Therefore, the slag temperature at the tap outlet was estimated using the balance between heat input and output heat of the plasma melting furnace, and the reliability of the slag temperature was improved by comparing with the measured slag temperature. The heat input of the plasma melting furnace is electric power, and the output is an amount of heat for melting ash and a furnace body cooling heat power. The slag temperature T s obtained from the heat balance is a steady-state slag temperature on the balance obtained from the ash input amount and the electric power, and can be expressed as the following formula (8).

Figure 2006145122
ここで、Qは電力、Hは灰のエンタルピー、Cは灰の比熱、Mは灰処理速度(又は灰処理量)、Qは炉体法熱量を表している。灰の熱物性であるH及びCの高温での測定は困難であるため、スラグ温度計測値と比較することにより決定した。式(8)はプラズマ溶融炉の運転条件のみから成り立っているため新たに計測機器を設置する必要がなく、実用的なスラグ温度を推定することができる。
Figure 2006145122
Here, Q p is power, H is enthalpy of ash, the C p specific heat of the ash, M ash processing speed (or ash throughput), Q r denotes the furnace body method heat. For measurements at a high temperature of H and C p is the thermal properties of the ash is difficult, was determined by comparing the slag temperature measurements. Since equation (8) is composed only of the operating conditions of the plasma melting furnace, it is not necessary to newly install a measuring device, and a practical slag temperature can be estimated.

試験炉の運転において、スラグ温度計で計測した出滓口近傍のスラグ液面18aの温度と、運転データを用いて熱バランスから推定した出滓口スラグ温度を比較すると、両者は変動の様子等において殆ど一致している。しかし、長期連続運転の際には計測孔への付着物や窓の汚れによってスラグ温度計による温度計測値に誤差が生じる場合があるため、両者を同時に用いることにより、誤差を検知することが可能となる。また、灰性状が変化した場合には灰の熱物性が変化するため、熱バランスから推定したスラグ温度に誤差が生じることがあり、スラグ温度計と併用することによりこの誤差を検知することが可能となる。
このように、本実施例のスラグ温度計測において、上記2種類の温度計測手段を併用することにより正確な温度計測を可能とするとともに、誤差が生じた場合にその原因を追求することにより炉の不具合を把握することができる。
In the operation of the test furnace, when the temperature of the slag liquid surface 18a near the tap outlet measured by the slag thermometer and the tap outlet slag temperature estimated from the heat balance using the operation data are compared, the two are in a state of fluctuation, etc. Are almost the same. However, during long-term continuous operation, there may be an error in the temperature measurement value by the slag thermometer due to deposits on the measurement hole and dirt on the window, so it is possible to detect the error by using both at the same time. It becomes. In addition, when the ash properties change, the thermal properties of the ash change, so an error may occur in the slag temperature estimated from the heat balance, and this error can be detected by using it together with the slag thermometer. It becomes.
As described above, in the slag temperature measurement of the present embodiment, it is possible to perform accurate temperature measurement by using the two types of temperature measuring means in combination, and in the case where an error occurs, by pursuing the cause of the error, It is possible to grasp the malfunction.

(耐火レンガ侵食予測)
前記侵食速度式(上記式(5))を用いて、試験炉の運転における侵食量を推定した。侵食速度式には開発したスラグ温度計による計測値及び熱バランスから推定したスラグ温度の両者を用い、夫々の侵食量を推定した。図14に侵食量の経時変化を示す。侵食量予測値は運転後に計測した侵食量と良く一致しており、スラグ温度計で計測したスラグ温度及び熱バランスから推定したスラグ温度を用いた侵食速度式の妥当性を確認できた。
(Fire brick erosion prediction)
Using the erosion rate equation (the above equation (5)), the erosion amount in the operation of the test furnace was estimated. The erosion rate equation was estimated using both the measured value of the developed slag thermometer and the slag temperature estimated from the heat balance. FIG. 14 shows the change over time in the amount of erosion. The predicted erosion amount was in good agreement with the erosion amount measured after operation, and the validity of the erosion rate equation using the slag temperature measured by the slag thermometer and the slag temperature estimated from the thermal balance could be confirmed.

(侵食速度と運転条件)
試験炉の運転における運転条件及び侵食速度の経時変化を図15に示す。スラグ温度が上昇した場合に耐火レンガの侵食が進んでおり、耐火レンガ侵食を抑制するためにはスラグ温度が上昇した場合に電力を低下してスラグ温度を低下することが有効であると考えられる。また、灰を処理していない場合には殆ど侵食しておらず、補修工事の日程などのために運転を停止できない場合には灰投入量を低下することで耐火レンガ寿命を延長することが可能である。
(Erosion speed and operating conditions)
FIG. 15 shows changes over time in operating conditions and erosion rates in the operation of the test furnace. When slag temperature rises, refractory brick erosion progresses, and to suppress refractory brick erosion, it is considered effective to lower slag temperature by lowering power when slag temperature rises. . In addition, when the ash is not treated, it hardly erodes, and when the operation cannot be stopped due to the schedule of repair work, etc., it is possible to extend the life of the refractory brick by reducing the amount of ash input. It is.

(耐火レンガ残存量の演算)
プラズマ溶融炉における耐火レンガの残存量の演算式は下記式(9)により求められる。

Figure 2006145122
ここで、入力パラメータ:初期レンガ厚さ、侵食量:時間当りの侵食量(mm)である。
侵食量の計算式を以下に示す。尚、入力データは電力と灰投入量のみで、後は係数であり、調整により係数の変更を行なう。演算周期は1時間とし、逐次データベースに格納するものとする。 (Calculation of remaining refractory bricks)
The calculation formula for the remaining amount of refractory bricks in the plasma melting furnace is obtained by the following formula (9).
Figure 2006145122
Here, input parameters: initial brick thickness, erosion amount: erosion amount per hour (mm).
The calculation formula of erosion amount is shown below. The input data is only the power and ash input amount, and the rest is a coefficient, and the coefficient is changed by adjustment. The calculation cycle is 1 hour and is stored in the database sequentially.

侵食速度式には、以下の式(10)を用いる。

Figure 2006145122
ここで、A、B、C、Dは係数、T[℃]は耐火レンガ温度、v[kg/m2h]、η、η[−]は塩基度である。 The following equation (10) is used for the erosion rate equation.
Figure 2006145122
Here, A, B, C and D are coefficients, T r [° C.] is the refractory brick temperature, v [kg / m 2 h], η and η 0 [−] are basicity.

耐火レンガ表面温度は1次元の熱伝導と考え、以下の式(11)で計算した。

Figure 2006145122
ここで、T[℃]はレンガ表面温度、T[℃]はスラグ温度、T[℃]は水温度、αsr[kcal/m2h℃]はスラグと耐火レンガの熱伝達率、α[kcal/m2h℃]は水熱伝達率、λ[kcal/mh℃]は耐火レンガ熱伝導率、λ[kcal/mh℃]はスタンプ熱伝導率、x[m]はレンガ厚さ、x[m]はスタンプ厚さである。
また、処理負荷率は上記した式(4)により計算される。 The refractory brick surface temperature was considered as one-dimensional heat conduction, and was calculated by the following equation (11).
Figure 2006145122
Here, T r [° C.] is the brick surface temperature, T s [° C.] is the slag temperature, T w [° C.] is the water temperature, and α sr [kcal / m 2 h ° C.] is the heat transfer coefficient between the slag and the refractory brick. , Α w [kcal / m 2 h ℃] is the water heat transfer coefficient, λ r [kcal / mh ° C] is the refractory brick thermal conductivity, λ s [kcal / mh ° C] is the stamp thermal conductivity, x r [m ] Is the brick thickness and x s [m] is the stamp thickness.
Further, the processing load factor is calculated by the above equation (4).

さらに、計算スラグ温度は以下式(12)のように表される。灰投入量と電力から計算したバランス上のスラグ温度である。

Figure 2006145122
ここで、Q[kW]は電力、H[kcal/kg]は灰潜熱、C[kcal/kg℃]は灰比熱、T[℃]は計算スラグ温度、M[t/h]は灰投入量、Q[kWh/t]は排ガス持出し熱量、Q[kW]は炉体冷却熱量、Ts0[℃]はスラグ温度定数である。 Further, the calculated slag temperature is expressed as in the following equation (12). This is the slag temperature on the balance calculated from the ash input and power.
Figure 2006145122
Where Q p [kW] is electric power, H f [kcal / kg] is ash latent heat, C p [kcal / kg ° C.] is ash specific heat, T s [° C.] is calculated slag temperature, M [t / h] Is the amount of ash input, Q g [kWh / t] is the amount of heat exhausted from the exhaust gas, Q r [kW] is the amount of heat for cooling the furnace body, and T s0 [° C.] is the slag temperature constant.

ここで、本実施例に係る残存量予測方法を用いて、図1に示したプラズマ溶融炉の残存量を予測した試験炉データを表1に示す。

Figure 2006145122
このように、前記スラグ温度は放射温度計を用いて測定したスラグ表面温度である。また、侵食速度は、前記式(10)により算出し、耐火レンガ残存予測値は、前記式(9)により算出した。これらの式から求めた値より、レンガ残存量を簡単に且つ正確に求めることができる。 Here, Table 1 shows test furnace data in which the remaining amount of the plasma melting furnace shown in FIG. 1 is predicted using the remaining amount prediction method according to the present embodiment.
Figure 2006145122
Thus, the slag temperature is a slag surface temperature measured using a radiation thermometer. Moreover, the erosion rate was calculated by the said Formula (10), and the refractory brick residual prediction value was calculated by the said Formula (9). From the values obtained from these equations, the remaining amount of brick can be obtained easily and accurately.

本発明が適用される灰溶融炉の一実施例であるプラズマ灰溶融炉の側断面図である。It is a sectional side view of the plasma ash melting furnace which is one Example of the ash melting furnace to which this invention is applied. 本発明の実施例1に係る灰溶融炉の運転方法を示すフロー図である。It is a flowchart which shows the operating method of the ash melting furnace which concerns on Example 1 of this invention. 図2の運転方法において運転条件を判定する方法を示すフロー図である。It is a flowchart which shows the method of determining an operating condition in the driving | running method of FIG. 本実施例1における耐火レンガ残存量の演算方法を示すフロー図である。It is a flowchart which shows the calculation method of the firebrick remaining amount in the present Example 1. FIG. 本発明の炉運転に用いられるスラグ温度計の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the slag thermometer used for the furnace operation of this invention. 本発明の実施例2に係る灰溶融炉を具備した遠隔監視システムを示す全体構成図である。It is a whole block diagram which shows the remote monitoring system which comprised the ash melting furnace which concerns on Example 2 of this invention. 本実施例2の遠隔監視システムを用いた運転方法を示すフロー図である。It is a flowchart which shows the driving | operation method using the remote monitoring system of the present Example 2. SiCを含む耐火レンガの侵食過程を示す説明図である。It is explanatory drawing which shows the erosion process of the refractory brick containing SiC. スラグ温度と耐火レンガの侵食速度の関係を示すグラフである。It is a graph which shows the relationship between slag temperature and the erosion rate of a refractory brick. 本実施例3に用いる放射温度計の概略図である。It is the schematic of the radiation thermometer used for the present Example 3. 煤塵雰囲気及びガス雰囲気中における赤外光の透過特性を示すグラフである。It is a graph which shows the permeation | transmission characteristic of the infrared light in a dust atmosphere and gas atmosphere. スラグの塩基度と耐火レンガの侵食量の関係を示すグラフである。It is a graph which shows the relationship between the basicity of slag and the erosion amount of a refractory brick. 灰の処理負荷率と耐火レンガの侵食速度の関係を示すグラフである。It is a graph which shows the relationship between the processing load factor of ash, and the erosion rate of a refractory brick. 実施例3に示した侵食速度式から算出した推定侵食量の経時変化と試験炉における侵食量の計測値を示すグラフである。6 is a graph showing a change with time of an estimated erosion amount calculated from an erosion rate equation shown in Example 3 and a measured value of the erosion amount in a test furnace. 試験炉における運転条件及び侵食速度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the operating condition and erosion rate in a test furnace.

符号の説明Explanation of symbols

10 プラズマ溶融炉
11 炉本体
13 主電極
14 炉底電極
15 直流電源
16 灰投入口
17 出滓口
18 溶融スラグ
19 計測用開口
20 スラグ温度計
21 熱電対
40 管理サーバ
40b データベース
50 通信ネットワーク
DESCRIPTION OF SYMBOLS 10 Plasma melting furnace 11 Furnace main body 13 Main electrode 14 Furnace bottom electrode 15 DC power supply 16 Ash inlet 17 Outlet 18 Molten slag 19 Measurement opening 20 Slag thermometer 21 Thermocouple 40 Management server 40b Database 50 Communication network

Claims (9)

炉内壁に耐火物が内張りされた灰溶融炉にて焼却灰及び飛灰等の灰を溶融処理する灰溶融炉の運転方法において、
前記灰溶融炉の運転データを収集する運転データ収集ステップと、
前記運転データに基づき前記耐火物の残存量を予測する残存量予測ステップと、
前記耐火物の残存量と前記運転データから運転条件を導く運転条件ステップと、
前記運転条件に基づいて前記灰溶融炉を運転するステップと、を備えたことを特徴とする灰溶融炉の運転方法。
In an ash melting furnace operating method in which ash such as incinerated ash and fly ash is melted in an ash melting furnace with a refractory lined on the inner wall of the furnace,
An operation data collection step for collecting operation data of the ash melting furnace;
A remaining amount prediction step of predicting the remaining amount of the refractory based on the operation data;
An operation condition step for deriving an operation condition from the remaining amount of the refractory and the operation data;
And a step of operating the ash melting furnace based on the operating conditions.
前記耐火物の残存量予測ステップでは、灰溶融炉の灰投入量、投入電力、主灰/飛灰混合率、スラグ温度、冷却水量及び冷却水温度、耐火物温度、炉内温度、電流、電圧から選択された1以上の運転データに基づき前記耐火物の残存量を予測するようにしたことを特徴とする請求項1記載の灰溶融炉の運転方法。   In the refractory remaining amount prediction step, the ash input amount, input power, main ash / fly ash mixture ratio, slag temperature, cooling water amount and cooling water temperature, refractory temperature, furnace temperature, current, voltage of the ash melting furnace The ash melting furnace operation method according to claim 1, wherein the remaining amount of the refractory is predicted based on one or more operation data selected from the above. 前記残存量予測ステップでは、前記運転データから耐火物表面温度を求め、該耐火物表面温度の温度特性を用い、これに塩基度と処理負荷率を補正係数として加えたアレニウスの式に基づく近似式から前記耐火物の侵食速度を算出し、
耐火物初期値と前記侵食速度に基づき耐火物の残存量を予測することを特徴とする請求項1記載の灰溶融炉の運転方法。
In the remaining amount prediction step, the surface temperature of the refractory is obtained from the operation data, the temperature characteristics of the surface temperature of the refractory are used, and an approximate expression based on the Arrhenius equation in which basicity and processing load factor are added as correction factors. Calculate the erosion rate of the refractory from
The operation method of the ash melting furnace according to claim 1, wherein the remaining amount of the refractory is predicted based on an initial value of the refractory and the erosion rate.
前記運転条件ステップでは、前記予測した耐火物残存量と、予め設定された耐火物残存基準値より運転条件を導くようにしたことを特徴とする請求項1記載の灰溶融炉の運転方法。   2. The operating method of an ash melting furnace according to claim 1, wherein in the operating condition step, the operating condition is derived from the predicted refractory remaining amount and a preset refractory remaining reference value. 前記灰溶融炉に設けられた監視端末と、該監視端末と通信ネットワークを介して接続された監視サーバとを備えた請求項1記載の灰溶融炉の運転方法であって、
前記監視端末にて前記運転データ収集ステップを行い、該収集した運転データを前記監視サーバに送信し、前記監視サーバにて受信した前記運転データに基づき前記残存量予測ステップ及び前記運転条件ステップを行った後に、導いた運転条件を前記監視端末に送信し、該監視端末にて前記運転条件に基づき前記灰溶融炉の運転を行なうことを特徴とする灰溶融炉の運転方法。
The operation method of the ash melting furnace according to claim 1, comprising a monitoring terminal provided in the ash melting furnace, and a monitoring server connected to the monitoring terminal via a communication network,
The monitoring terminal performs the operation data collection step, transmits the collected operation data to the monitoring server, and performs the remaining amount prediction step and the operation condition step based on the operation data received by the monitoring server. Then, the derived operating conditions are transmitted to the monitoring terminal, and the ash melting furnace is operated based on the operating conditions at the monitoring terminal.
主灰及び飛灰等の灰を溶融処理する灰溶融炉の炉内壁に内張りされた耐火物の残存量を予測する耐火物の残存量予測方法において、
前記耐火物の表面温度特性を用い、これに塩基度と処理負荷率を補正係数として加えたアレニウスの式に基づく近似式から前記耐火物の侵食速度を算出し、
耐火物初期値と前記侵食速度に基づき耐火物の残存量を予測することを特徴とする耐火物の残存量予測方法。
In the method for predicting the remaining amount of refractory that predicts the remaining amount of refractory lined on the inner wall of the ash melting furnace that melts ash such as main ash and fly ash,
Using the surface temperature characteristics of the refractory, the erosion rate of the refractory is calculated from an approximate expression based on the Arrhenius equation with the basicity and the processing load factor added as a correction coefficient thereto,
A method for predicting a residual amount of a refractory, comprising predicting a residual amount of a refractory based on an initial value of the refractory and the erosion rate.
前記近似式は、下記式により表されることを特徴とする請求項6記載の耐火物の残存量予測方法。
Figure 2006145122
The method for predicting a remaining amount of a refractory according to claim 6, wherein the approximate expression is represented by the following expression.
Figure 2006145122
前記耐火物の表面温度は、スラグ温度より一次元熱通過モデルに基づき算出することを特徴とする請求項6若しくは7記載の耐火物の残存量予測方法。   8. The method for predicting a remaining amount of a refractory according to claim 6, wherein the surface temperature of the refractory is calculated from a slag temperature based on a one-dimensional heat passage model. 前記スラグ温度は、スラグ液面から放射される2波長域の遠赤外光を検知し、これに基づきスラグ液面温度を算出する2波長温度計により計測されることを特徴とする請求項6記載の耐火物の残存量予測方法。


The slag temperature is measured by a two-wavelength thermometer that detects far-infrared light in a two-wavelength region radiated from the slag liquid surface and calculates the slag liquid surface temperature based on the detected far-infrared light. The method for predicting the remaining amount of refractory as described.


JP2004336600A 2004-11-19 2004-11-19 Method for predicting remaining amount of refractory and method for operating ash melting furnace using the same Expired - Fee Related JP4548777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004336600A JP4548777B2 (en) 2004-11-19 2004-11-19 Method for predicting remaining amount of refractory and method for operating ash melting furnace using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004336600A JP4548777B2 (en) 2004-11-19 2004-11-19 Method for predicting remaining amount of refractory and method for operating ash melting furnace using the same

Publications (2)

Publication Number Publication Date
JP2006145122A true JP2006145122A (en) 2006-06-08
JP4548777B2 JP4548777B2 (en) 2010-09-22

Family

ID=36625019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336600A Expired - Fee Related JP4548777B2 (en) 2004-11-19 2004-11-19 Method for predicting remaining amount of refractory and method for operating ash melting furnace using the same

Country Status (1)

Country Link
JP (1) JP4548777B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070061A (en) * 2006-09-14 2008-03-27 Mitsubishi Heavy Ind Ltd Method and device for monitoring furnace bottom of fusion furnace
KR101536525B1 (en) * 2014-05-30 2015-07-14 현대중공업 주식회사 Method for setting operation model of gasification unit
CN112229232A (en) * 2020-10-19 2021-01-15 江苏天楹等离子体科技有限公司 Novel plasma melting furnace temperature measuring system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184607A (en) * 1984-02-29 1985-09-20 Kawasaki Steel Corp Operating method of blast furnace
JPH0578727A (en) * 1991-09-19 1993-03-30 Nippon Steel Corp Method for operating furnace and method for lining refractory
JPH08247850A (en) * 1995-03-08 1996-09-27 Hitachi Zosen Corp Temperature measuring method and device for molten slug in ash fusion furnace
JPH1123164A (en) * 1997-07-04 1999-01-26 Takuma Co Ltd Method for detecting damage on wall of plasma melting furnace
JP2000002411A (en) * 1998-06-16 2000-01-07 Mitsubishi Heavy Ind Ltd Operation control method for waste plasma melting furnace
JP2001249049A (en) * 2000-03-07 2001-09-14 Mitsubishi Heavy Ind Ltd Method for measuring temperature of molten slag
JP2002081992A (en) * 2000-06-29 2002-03-22 Mitsubishi Heavy Ind Ltd Plasma ash melting furnace and method for operating the same
JP2002221310A (en) * 2001-01-24 2002-08-09 Sintokogio Ltd Monitor system for monitoring operation of melting furnace
JP2002324128A (en) * 2001-04-25 2002-11-08 Kobe Steel Ltd System for remote operation of garbage incineration plant, method therefor, monitor apparatus and program for remote operation processing
JP2004138500A (en) * 2002-10-17 2004-05-13 Mitsubishi Heavy Ind Ltd Temperature measurement system in furnace and operation control method of melting furnace
JP2004257703A (en) * 2003-02-27 2004-09-16 Takuma Co Ltd Electric melting furnace controller

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184607A (en) * 1984-02-29 1985-09-20 Kawasaki Steel Corp Operating method of blast furnace
JPH0578727A (en) * 1991-09-19 1993-03-30 Nippon Steel Corp Method for operating furnace and method for lining refractory
JPH08247850A (en) * 1995-03-08 1996-09-27 Hitachi Zosen Corp Temperature measuring method and device for molten slug in ash fusion furnace
JPH1123164A (en) * 1997-07-04 1999-01-26 Takuma Co Ltd Method for detecting damage on wall of plasma melting furnace
JP2000002411A (en) * 1998-06-16 2000-01-07 Mitsubishi Heavy Ind Ltd Operation control method for waste plasma melting furnace
JP2001249049A (en) * 2000-03-07 2001-09-14 Mitsubishi Heavy Ind Ltd Method for measuring temperature of molten slag
JP2002081992A (en) * 2000-06-29 2002-03-22 Mitsubishi Heavy Ind Ltd Plasma ash melting furnace and method for operating the same
JP2002221310A (en) * 2001-01-24 2002-08-09 Sintokogio Ltd Monitor system for monitoring operation of melting furnace
JP2002324128A (en) * 2001-04-25 2002-11-08 Kobe Steel Ltd System for remote operation of garbage incineration plant, method therefor, monitor apparatus and program for remote operation processing
JP2004138500A (en) * 2002-10-17 2004-05-13 Mitsubishi Heavy Ind Ltd Temperature measurement system in furnace and operation control method of melting furnace
JP2004257703A (en) * 2003-02-27 2004-09-16 Takuma Co Ltd Electric melting furnace controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070061A (en) * 2006-09-14 2008-03-27 Mitsubishi Heavy Ind Ltd Method and device for monitoring furnace bottom of fusion furnace
JP4707635B2 (en) * 2006-09-14 2011-06-22 三菱重工環境・化学エンジニアリング株式会社 Method and apparatus for monitoring the bottom of melting furnace
KR101536525B1 (en) * 2014-05-30 2015-07-14 현대중공업 주식회사 Method for setting operation model of gasification unit
CN112229232A (en) * 2020-10-19 2021-01-15 江苏天楹等离子体科技有限公司 Novel plasma melting furnace temperature measuring system
CN112229232B (en) * 2020-10-19 2024-02-02 江苏天楹等离子体科技有限公司 Novel plasma melting furnace temperature measurement system

Also Published As

Publication number Publication date
JP4548777B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
US9500528B2 (en) Method for maintaining a temperature of a metal melt
US11312648B2 (en) Control system for furnace
CA3043819C (en) System and method of operating a batch melting furnace
RU2636795C2 (en) Method and device for detecting leakage in area by at least one furnace cooling unit and furnace
JP4548777B2 (en) Method for predicting remaining amount of refractory and method for operating ash melting furnace using the same
KR19990063751A (en) Method and device for measuring and adjusting carbon content of steel in BOF container
JP2008075950A (en) Furnace bottom monitoring method and device for melting furnace
JP4191885B2 (en) Plasma ash melting furnace and operating method thereof
WO2015175785A1 (en) Furnace control for manufacturing steel using slag height measurement and off-gas analysis systems
JP4662360B2 (en) Method and apparatus for measuring slag temperature in plasma melting furnace
JP4056534B2 (en) Furnace bottom temperature measuring method and apparatus, and melting furnace bottom monitoring method and apparatus
JP2004138500A (en) Temperature measurement system in furnace and operation control method of melting furnace
JP4949074B2 (en) Method and apparatus for controlling operation of plasma melting furnace
JP2006257458A (en) Method for predicting wear of molten iron trough
JP3868398B2 (en) Remote monitoring system for melting furnace
JP3611299B2 (en) Melting slag depth measurement method
JP2006133234A (en) Slug temperature measuring method and measuring device
JP4285743B2 (en) Melting furnace temperature measuring device and monitoring device
EP3204527B1 (en) System and method for control of a copper melting furnace
JP4146420B2 (en) Blast furnace tapping temperature and hot metal / molten slag mixing ratio measurement method
KR20230013096A (en) Converter blowing control method and converter blowing control system
JP2005195447A (en) Method and apparatus for measuring slag temperature
JP2005315777A (en) Spark radiation measurement method and apparatus therefor
UA49344C2 (en) A method of a heating station burning through determination
JP2003294372A (en) Refractory material diagnosing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees