JP2004257703A - Electric melting furnace controller - Google Patents

Electric melting furnace controller Download PDF

Info

Publication number
JP2004257703A
JP2004257703A JP2003051218A JP2003051218A JP2004257703A JP 2004257703 A JP2004257703 A JP 2004257703A JP 2003051218 A JP2003051218 A JP 2003051218A JP 2003051218 A JP2003051218 A JP 2003051218A JP 2004257703 A JP2004257703 A JP 2004257703A
Authority
JP
Japan
Prior art keywords
electrode
control
control unit
main electrode
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003051218A
Other languages
Japanese (ja)
Other versions
JP4199563B2 (en
Inventor
Kichiji Matsuda
吉司 松田
Koutarou Katou
考太郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2003051218A priority Critical patent/JP4199563B2/en
Publication of JP2004257703A publication Critical patent/JP2004257703A/en
Application granted granted Critical
Publication of JP4199563B2 publication Critical patent/JP4199563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Incineration Of Waste (AREA)
  • Discharge Heating (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric melting furnace controller capable of providing stable operation not affected by experience of an operator with respect to an electric melting furnace having a main electrode, a furnace bottom electrode, and a starting electrode. <P>SOLUTION: In the electric melting furnace controller 1, sending or exchange of control data is carried out between an electrode vertical movement control panel 23 moving electrode positions of the main electrode and the starting electrode in the furnace, and an electric power unit applying a voltage between each electrode, and operation control with respect to each electrode is carried out. It is provided with a starting control part 6 carrying out automatic operation control of the main electrode and the starting electrode in response to a state of an object to be melted at starting, and controlling the furnace until steady operation of melting the object to be melted is achieved just by automatic operation control of the main electrode, and an electrode vertical movement control part 7 carrying out movement control of the electrode position of the main electrode with respect to the electrode vertical movement control panel 23 so as to control voltages applied to the main electrode and the starting electrode at a set value during the steady operation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、炉内に主電極と炉底電極とスタート電極とを備え、主電極と炉底電極間或いは主電極とスタート電極間に印加された高電圧によって発生する電流により炉底電極上にある被溶融物を溶融する電気式溶融炉に関し、より具体的には、各電極に対する運転制御を行う電気式溶融炉制御装置に関する。
【0002】
【従来の技術】
近年、ゴミ焼却施設において発生する焼却灰や煤塵を溶融して無害化し、リサイクル可能なスラグを生成する溶融炉の実用化が進んでいる。溶融炉は種々の方式のものが開発実用化されているが、炉内に主電極(黒鉛電極)と炉底電極とスタート電極(黒鉛電極)とを備え、主電極と炉底電極間或いは主電極とスタート電極間に印加された高電圧によって発生する電流により炉底電極上にある被溶融物を溶融する電気式溶融炉が実用化されてまだ数年程度である。
【0003】
上記電気式溶融炉では、主電極と炉底電極の間に直流電圧を印加し、プラズマアークを発生させて溶融スラグを加熱し、順次供給される灰等の被溶融物を溶融する。また、スラグ中を電流が流れるためジュール熱も利用でき効率的な溶融が行われる。溶融した灰等はスラグとなって連続オーバーフロー出滓後冷却され、コンベヤにより排出される。
【0004】
上記電気式溶融炉の運転は、定常運転時は主電極と炉底電極間を流れる電流値を一定に調整しながら、主電極と炉底電極の間隔を調整しながら設定した制御電圧値となるよう主電極の昇降制御を行う。
【0005】
しかし、定常運転時は被溶融物が溶融スラグとなっているが、運転開始時には被溶融物は必ずしも溶融状態でなく、また、その組成もガラス質のものや金属質のもの、つまり、導電性物質と非導電性物質が混在しており、更に、その混在の仕方も一様に混在している場合と、下層部に重い金属質の導電性物質が集中し、上層部に軽いガラス質の非導電性物質が集中している場合があり得る。従って、被溶融物の状態に応じて、運転開始時に定常運転時と同様に主電極と炉底電極間で電流が流れて、主電極の制御だけで定常運転に移行できる場合や、運転開始時に主電極と炉底電極間で電流が流れず、スタート電極を用いて被溶融物を上層部から徐々に溶融していき、最終的に、主電極と炉底電極間に電流が流れる状態に持っていき、定常運転に移行できる場合があり、被溶融物の状態に応じた複雑な立ち上げ制御が要求される。
【0006】
また、電極は黒鉛でできているため、プラズマアークの発生により徐々に磨耗していくので、短くなった電極の電極棒に新たな電極棒を自動で継ぎ足す電極自動継足制御が必要となる。
【0007】
尚、炉内に主電極と炉底電極とスタート電極とを備えた電気式溶融炉に関しては、本願出願人による下記の特許文献1〜3がある。
【0008】
【特許文献1】
特開平11−237018号公報
【特許文献2】
特開平09−156529号公報
【特許文献3】
特開平09−243267号公報
【0009】
【発明が解決しようとする課題】
上記の如く、電気式溶融炉の運転には、運転立ち上げ時の制御、定常運転時の制御、及び、電極自動継足制御が要求されるが、電気式溶融炉自体の基本的な構成は同じでも、使用される環境つまりゴミ焼却施設などの違いにより様々な製品仕様となるため、上記各制御は夫々別個独立した制御装置を用いて各別自動的に或いは手動操作によって行われていた経緯がある。また、数多くのプラントの電気式溶融炉で上記各制御の内容も画一化されていない現状があった。このため、ある程度熟練した操作員の経験に依存する場合もあった。このことは、上記電気式溶融炉が実用化されてまだ数年程度であるため、今までは、上記各制御を画一化して統合化するための十分な実地データがなかったという背景もある。
【0010】
ここで、本願発明者は、過去の電気式溶融炉の実用化経験に基づいて、上記各制御の画一化・統合化を図るべく本発明に至った。本発明は、上述の問題点に鑑みてなされたものであり、その目的は、上記問題点を解消し、操作員の経験に影響されない安定した電気式溶融炉の操業が可能な電気式溶融炉制御装置を提供することにある。
【0011】
【課題を解決するための手段】
この目的を達成するための本発明に係る電気式溶融炉制御装置の第一の特徴構成は、炉内に主電極と炉底電極とスタート電極とを備え、前記主電極と前記炉底電極間或いは前記主電極と前記スタート電極間に印加された高電圧によって発生する電流により前記炉底電極上にある被溶融物を溶融する電気式溶融炉において、前記主電極と前記スタート電極の前記炉内での電極位置を移動させる電極昇降制御手段、及び、前記各電極間に電圧を印加する電源装置との間で、制御データの送信または送受信を行い、前記各電極に対する運転制御を行う電気式溶融炉制御装置であって、起動時に、前記被溶融物の状態に応じて前記主電極と前記スタート電極の自動運転制御を行い、前記主電極の自動運転制御だけで前記被溶融物を溶融する定常運転にまで立ち上げる起動制御部と、定常運転時に、前記主電極と前記スタート電極に印加される電圧を制御すべく、前記主電極の前記炉内での電極位置の移動制御を前記電極昇降制御手段に対して行う電極昇降制御部と、を備えている点にある。
【0012】
尚、上記各電極間に高電圧を印加して発生する電流には、高電圧印加によって発生するプラズマアークの放電電流、被溶融物の導電物質中を流れる電流の少なくとも何れかが一方が含まれ、通常その両方が含まれる。
【0013】
上記第一の特徴構成によれば、起動制御部が、起動時の立ち上げ制御において、被溶融物の状態に応じて主電極とスタート電極の自動運転制御を行うので、同じ制御アルゴリズムを同じく主電極とスタート電極を用いた立ち上げを行う種々の電気式溶融炉に画一的に使用でき、且つ、起動制御部と電極昇降制御部の両制御部を備えているので、被溶融物の初期状態に拘わらず、立ち上げ制御から定常運転時の主電極の電極昇降制御が統合して行える。つまり、立ち上げ制御から定常運転時の主電極の電極昇降制御が自動的に行えるか、或いは、操作員による確認操作が介在するとしても操作員の経験に影響されない安定した操業が可能となる。
【0014】
同第二の特徴構成は、前記起動制御部は、制御開始後に前記主電極の下降を開始するとともに、前記主電極と前記炉底電極間を流れる第1電流値を判定し、前記第1電流値が所定の第1閾値より小さい場合に、前記主電極を所定の下降位置まで下降させる前記主電極の下降制御を行い、引き続き、前記スタート電極の下降を開始するとともに、前記主電極と前記スタート電極間を流れる第2電流値を判定し、前記第2電流値が所定の第2閾値以上になると、前記スタート電極の下降を停止する前記スタート電極の下降制御を行い、前記主電極と前記スタート電極の下降停止位置のままで、前記主電極と前記スタート電極間に電流を流して前記被溶融物を溶融する点にある。
【0015】
上記第二の特徴構成によれば、起動時の被溶融物の状態が、主電極と炉底電極間に十分な電流を流し得ない状態、つまり、固形状態(非溶融状態)にある場合に、主電極とスタート電極の両電極の下降停止位置が概ね被溶融物と接触する位置のまま、両電極間の通電を行う。一般的には(例えば、通常のアーク溶接などでは)溶融促進をねらい、電力をかせごうと高電圧を得るために被溶融物とは一定間隔を設けて放電を行うが、本特徴構成では、主電極とスタート電極の下降停止位置のままで被溶融物の表面に沿ってプラズマアークを発生させることにより、被溶融物の表面から内部に向けて被溶融物を溶融することで、効率的且つ比較的高速な溶融が可能となり、早期に定常運転に移行できる。
【0016】
同第三の特徴構成は、前記起動制御部は、前記主電極と前記スタート電極を所定の下降停止位置で停止させた状態で、前記主電極と前記スタート電極間に電流を流して前記被溶融物を溶融した後、前記スタート電極を所定の上昇停止位置に戻す際に、前記スタート電極の上昇を、間に所定の停止期間を挟みながら複数回に分けて実行する点にある。
【0017】
上記第三の特徴構成によれば、スタート電極の上昇を段階的に行うことで、スタート電極を冷却しながら上昇させることができるので、スタート電極に近接する炉壁の損傷を抑制することができる。
【0018】
同第四の特徴構成は、前記電極昇降制御部は、前記主電極の電極位置の移動制御を、PID制御で行うPID制御部と、ステップ制御で行うステップ制御部と、リニア制御で行うリニア制御部を備えている点にある。
【0019】
上記第四の特徴構成によれば、複数の制御部を備えていることで、万が一主電極の電極昇降制御を実施中の制御部が故障しても、直ぐに他の制御部がバックアップして当該制御を継続することができ、電気式溶融炉の運転停止を回避できる。
【0020】
同第五の特徴構成は、前記電極昇降制御部は、制御開始直後は、前記ステップ制御部または前記リニア制御部による制御を行う点にある。
【0021】
上記第五の特徴構成によれば、制御開始直後は被溶融物の状態が安定しておらず、変動が大きいため、制御に比較的時間の要するPID制御に対し、応答性の良いステップ制御部またはリニア制御部を用いることで、大きな変動に対してより安定した制御が可能となる。
【0022】
同第六の特徴構成は、前記主電極または前記スタート電極に電極棒を継ぎ足すために、少なくとも、予備の電極棒を搬送する搬送手段、前記予備の電極棒を前記主電極または前記スタート電極に自動で継ぎ足す電極自動継足装置、及び、前記電極昇降制御手段との間で、制御データの送信または送受信を行い、前記予備の電極棒の保管場所から前記予備の電極棒を取り出し、前記予備の電極棒を前記主電極または前記スタート電極に自動で継ぎ足すまでの制御を行う電極自動継足制御部を、更に備えている点にある。
【0023】
上記第六の特徴構成によれば、同じ電気式溶融炉制御装置が電極自動継足制御部を備えることで、起動制御部による立ち上げ制御と、電極昇降制御部による定常運転時の主電極の昇降制御と、電極自動継足制御部による電極自動継足制御の各制御を、従来の電気式溶融炉では夫々個別に行っていたものを、相互に連携させた画一的な制御が容易にできるようになる。
【0024】
同第七の特徴構成は、前記電極自動継足制御部による電極自動継足が終了した後、前記起動制御部による立ち上げ制御が自動的に開始される点にある。
【0025】
上記第七の特徴構成によれば、電極自動継足中に停止させた電気式溶融炉の運転を自動的に再開させることが可能となる。
【0026】
【発明の実施の形態】
本発明に係る電気式溶融炉制御装置(以下、適宜「本発明装置」という。)の実施の形態につき、図面に基づいて説明する。
【0027】
先ず、本発明装置1の制御対象である電気式溶融炉30は、図2に示すように、炉壁天井部35aを貫通して炉内36に挿入される主電極31とスタート電極33が設けられ、夫々主電極31用の電極昇降装置23aとスタート電極33用の電極昇降装置23bによって各別に支持され、各電極の炉内36での先端位置を上下に移動可能な構成となっている。炉底部35bには炉底電極32が設けられ集電板34に接続されている。また、炉側壁部35cは被溶融物である灰の供給口37が設けられて、スクリューコンベア等の搬送手段によって炉内36に被溶融物が供給される。主電極31は主電極31を支持する支持アームを介して高電圧を発生する直流電源装置22aの負極に接続されている。スタート電極33はスタート電極33を支持する支持アームを介して直流電源装置22aの一方の正極に接続されている。炉底電極32は集電板34を介して直流電源装置22aの他方の正極に接続されている。直流電源装置22aには、高圧配電盤に設けられたVCB(真空遮断器)22bを経由して特高電圧が供給される。
【0028】
上記構成の電気式溶融炉30では、主電極31と炉底電極32間に直流高電圧を印加し、プラズマアークを発生させて炉底電極32上の溶融スラグ40を加熱し、順次供給される灰等の被溶融物を溶融する。また、スラグ中を電流が流れるためジュール熱も利用でき効率的な溶融が行われる。溶融した灰等はスラグとなって、炉側壁部35cに設けられた出滓口38から連続オーバーフロー出滓後冷却され、コンベヤにより排出される。
【0029】
図1に示すように、本発明装置1は、制御演算処理部2と、制御演算処理部2と電気式溶融炉30の電極昇降装置23a、23bの電極昇降装置制御盤23、直流電源装置22a、VCB22b等との間で制御用の入出力データの授受を行うためのI/Oインターフェース3と、各種データを表示する表示器4とを備えて構成され、一つの制御盤として、電気式溶融炉30の立ち上げ制御と定常運転時の主電極昇降制御と電極自動継足制御の3つの制御機能を発揮する。
【0030】
制御演算処理部2は汎用コンピュータで構成される中央演算処理部5と専用コントローラで構成されるPID制御部12からなり、更に、中央演算処理部5は、前記立ち上げ制御を専ら行う起動制御部6と、前記定常運転時の主電極昇降制御を専ら行う電極昇降制御部7と、前記電極自動継足制御を専ら行う電極自動継足制御部8と、制御監視用に用いる分散型制御システム(DCS)20とコンピュータネットワークの一種であるデータリンク21を介して入出力データの授受を行うためのDCSインターフェース9を備えている。尚、PID制御部12は、電極昇降制御部7の電極昇降制御をPID制御によって実行するPID制御機能を専用コントローラで実現したもので、電極昇降制御部7の一部を成す。また、中央演算処理部5の起動制御部6、PID制御部12を除く電極昇降制御部7、及び、電極自動継足制御部8は、中央演算処理部5を構成する汎用コンピュータによるプログラムの実行によりソフトウェア処理により実現される。更に、中央演算処理部5内の電極昇降制御部7は、電極昇降制御部7の電極昇降制御をソフトウェア処理によるステップ制御によって実行するステップ制御部10と、電極昇降制御部7の電極昇降制御をソフトウェア処理によるリニア制御によって実行するリニア制御部11を備えるとともに、ステップ制御部10、リニア制御部11、PID制御部12の何れの制御部によって電極昇降制御を行うかの管理や、各制御部間で制御が引き継がれた場合の管理等も行う。
【0031】
I/Oインターフェース3は、電極昇降装置制御盤23、直流電源装置22a、VCB22b、電極自動継足装置24aを直接制御する電極自動継足装置制御盤24、及び、電極置台装置25aを直接制御する電極置台装置制御盤25との間で、個別の通信線またはデータリンク等を介して制御用の入出力データの入出力を行う。
【0032】
本実施形態では、電極自動継足制御において新電極(予備の電極棒)を電極置台装置25aから、現在使用中の旧電極の上方まで搬送する炉頂クレーン26との制御用の入出力データの授受は、DCS20を経由して行う構成となっている。
【0033】
次に、本発明装置1の起動制御部6による電気式溶融炉30の立ち上げ制御の処理手順につき、図3〜図5のフローチャートを用いて説明する。以下の説明では、特に断らない限り各処理は起動制御部6によって実行される。
【0034】
操作員によるスタート指令(#0)をDCS20から受信すると、各機器状態(警報の有無等)の確認とそれに応じたアラーム表示等の前処理とタイミングタイマによる時間遅延処理を行い(#1)、VCB22bに対してVCB入指令を出力する(#2)。VCB22bはVCB入指令によりオンし、直流電源装置22aに特高電圧が供給される。引き続き、DCS20のVCB入状態入力を受信後、電極昇降装置制御盤23に対し、主電極下降指令を出力する(#3)。電極昇降装置制御盤23は主電極下降指令により主電極31用の電極昇降装置23aに対し下降制御を開始する。主電極31が下降するに従い、被溶融物の状態に応じた主電極31と炉底電極32間を流れる第1電流値Iの変化を検出すべく、直流電源装置22aから第1電流値I(データ)を受け取り(#4)、第1電流値Iが所定の第1閾値I1A以上かを判定する(#5:初期電流オーバー判定)。第1電流値Iが第1閾値I1Aより小さい場合は、電極昇降装置制御盤23から主電極ワイヤー緩みデータを受け取り(#6)、主電極ワイヤー緩みの有無を判定する(#7)。主電極ワイヤー緩み判定により、ワイヤー緩みが無い場合は、主電極31の下端が下まで下降しきっていないと判定し、ステップ#4及び#5に戻る。ここで、ステップ#7の判定で、ワイヤー緩みがある場合は、主電極31が下まで下降しているのでそれ以上は下降できず、しかも、第1電流値Iが第1閾値I1Aより小さいので、被溶融物が固形(非溶融)状態であると判断して、後述するスタート電極33を用いる第2パターンの立ち上げ制御(ステップ#20〜#46)に移行する。
【0035】
ステップ#5の初期電流オーバー判定で、第1電流値Iが第1閾値I1A以上である場合は、被溶融物がある程度導通状態(溶融状態)にあるので、主電極31と炉底電極32間に直流電圧を印加するだけでスタート電極33を用いずに立ち上げ制御を完了できる。(第1パターンの立ち上げ制御)
【0036】
第1パターンの立ち上げ制御では、第1電流値Iが第1閾値I1A以上になると主電極31の下降を停止すべく、電極昇降装置制御盤23に対し主電極下降停止指令を出力する(#8)。電極昇降装置制御盤23は主電極下降停止指令により電極昇降装置23aに対し主電極31の下降を停止させる。引き続き、メインアーク起動タイマによる時間遅延処理を行い(#9)、第1電流値Iが第1閾値I1Aより大きい第2閾値I1B以上になるまで、主電極31と炉底電極32間の直流電圧印加を主電極31の下降停止位置のままで継続させる(#10〜#12)。詳細には、直流電源装置22aから第1電流値I(データ)を受け取り(#10)、第1電流値Iが第2閾値I1B以上かを判定し(#11:第2初期電流オーバー判定)、第1電流値Iが第2閾値I1B以上になるまでステップ#10と#11を繰り返すとともに、並行して初期電流オーバータイマによる時間遅延処理を行う(#12)。尚、当該時間遅延処理の間も第2初期電流オーバー判定(#10、#11)を行い、第1電流値Iが第2閾値I1B以上であることを確実にする。
【0037】
第1電流値Iが第2閾値I1B以上になり、初期電流オーバータイマによる時間遅延処理も完了した後に、主電極31と炉底電極32間の電圧Vが定常運転を開始するのに適切な電圧値となるように、主電極31の下端位置を上昇させるべく、電極昇降装置制御盤23に対し主電極上昇指令を出力する(#13)。電極昇降装置制御盤23は主電極上昇指令により電極昇降装置23aに対し主電極31の上昇制御を開始する。
【0038】
主電極31と炉底電極32間の電圧値V(データ)を直流電源装置22aから受け取り(#14)、電圧値Vが所定の第1閾値電圧V1A以上かを判定し(#15)、VがV1A以上となるまで、ステップ#14と#15を繰り返すとともに、VがV1A以上となると、電極昇降装置制御盤23に対し、主電極上昇停止指令を出力する(#16)。第1電流値Iが所定電流値以上あるかの確認や、定常運転開始時の条件設定等の所定の後処理(#17)を経て定常運転に移行する。
【0039】
次に、第2パターンの立ち上げ制御について説明する。ステップ#7の判定で、ワイヤー緩みがある場合、スタート電極起動タイマによる時間遅延処理を行い(#20)、DCS20で操作員がスタート電極の使用を選択していることを条件に、電極昇降装置制御盤23に対し、スタート電極下降指令を出力する(#21)。電極昇降装置制御盤23はスタート電極下降指令によりスタート電極33用の電極昇降装置23bに対し下降制御を開始する。スタート電極33が下降し被溶融物の表面に近接するに従い、被溶融物の状態に応じた主電極31とスタート電極33間を流れる第2電流値Iの変化を検出すべく、直流電源装置22aから第1電流値Iと第2電流値Iの合計である第3電流値I(データ)を受け取り(#22)、第3電流値Iが所定の第3閾値I3A以上かを判定する(#23:第3初期電流オーバー判定)。第3電流値Iが第3閾値I3Aより小さい場合は、電極昇降装置制御盤23からスタート電極ワイヤー緩みデータを受け取り(#24)、スタート電極ワイヤー緩みの有無を判定する(#25)。スタート電極ワイヤー緩み判定により、ワイヤー緩みが無い場合は、スタート電極33の下端が下まで下降しきっていないと判定し、ステップ#22及び#23に戻る。
【0040】
ここで、第3電流値Iが第3閾値I3Aより小さく、しかもワイヤー緩みがある場合は、被溶融物の表面近傍に非導電性物質が集中し固形状態(非溶融状態)にあるため、一旦立ち上げ制御を中断し、被溶融物の表面近傍に導電性物質を供給する処置を施すべく、DCS20に対しアラームを発生する。
【0041】
ステップ#23の第3初期電流オーバー判定で、第3電流値Iが所定の第3閾値I3A以上である場合は、スタート電極33のその下降位置で主電極31とスタート電極33間で被溶融物の表面に沿ってプラズマアークを発生して被溶融物を溶融可能と判定して、スタート電極の下降を停止すべく、電極昇降装置制御盤23に対し、スタート電極下降停止指令を出力する(#26)。電極昇降装置制御盤23はスタート電極下降停止指令により電極昇降装置23bに対し下降を停止させる。主電極31とスタート電極33は、夫々の電極の停止位置を維持したまま、被溶融物の表面に沿って両電極間にプラズマアークを発生し続けて、プラズマアーク及びプラズマアークによる下方への熱伝導により被溶融物を表面から徐々に溶融する(#27〜#30)。詳細には、主電極31とスタート電極33間に高電圧が印加された状態で、タイミングタイマによる時間遅延処理を行い(#27)、直流電源装置22aから第1電流値I(データ)を受け取り(#28)、第1電流値Iが第2閾値I1B以上かを判定し(#29:第2初期電流オーバー判定)、第1電流値Iが第2閾値I1B以上になるまでステップ#28と#29を繰り返すとともに、並行して初期電流オーバータイマによる時間遅延処理を行う(#30)。尚、当該時間遅延処理(#30)の間も第2初期電流オーバー判定(#28、#29)を行い、第1電流値Iが第2閾値I1B以上であることを確実にする。これにより被溶融物は十分に定常運転に移行可能な状態になったので、第2パターンの立ち上げ制御を終了すべく終了工程(#31〜#46)に入る。
【0042】
第1電流値Iが第2閾値I1B以上になり、初期電流オーバータイマによる時間遅延処理も完了した後に、先ず、VCB22bに対してVCB切指令を出力する(#31)。VCB22bはVCB切指令によりオフし、直流電源装置22aへの特高電圧供給が遮断され、主電極31と炉底電極32間、及び、主電極31とスタート電極33間での高電圧の印加が解除される。
【0043】
次に、電極昇降装置制御盤23から主電極支腕位置データを受け取り(#32)、当該主電極支腕位置を記憶し(#33)、電極昇降装置制御盤23に対し、主電極上昇指令を出力する(#34)。電極昇降装置制御盤23は主電極上昇指令により主電極31用の電極昇降装置23aに対し上昇制御を開始する。
【0044】
主電極31の上昇中、電極昇降装置制御盤23から主電極支腕位置データを受け取り(#35)、ステップ#33で記憶した主電極支腕位置と現在の主電極支腕位置から上昇距離の判定を行いながら(#36)、所定距離を上昇する。主電極31が所定距離を上昇したと判定した後、電極昇降装置制御盤23に対し主電極上昇停止指令を出力する(#37)。電極昇降装置制御盤23は主電極上昇停止指令により電極昇降装置23aに対し主電極31の上昇を停止させる。
【0045】
引き続き、スタート電極の段階的な上昇制御(#38〜#46)を実行する。詳細には、電極昇降装置制御盤23に対し、スタート電極上昇指令を出力する(#38)。電極昇降装置制御盤23はスタート電極上昇指令によりスタート電極33用の電極昇降装置23bに対し上昇制御を開始する。タイミングタイマによる時間遅延処理を行い(#39)、電極昇降装置制御盤23に対し、スタート電極上昇停止指令を出力する(#40)。電極昇降装置制御盤23はスタート電極上昇停止指令により電極昇降装置23bに対し上昇を停止させる。更に、再度タイミングタイマによる時間遅延処理を行い(#41)、電極昇降装置制御盤23に対し、スタート電極上昇指令を出力する(#42)。電極昇降装置制御盤23は再びスタート電極上昇指令によりスタート電極33用の電極昇降装置23bに対し上昇制御を開始する。再々度タイミングタイマによる時間遅延処理を行い(#43)、電極昇降装置制御盤23に対し、再度スタート電極上昇停止指令を出力する(#44)。電極昇降装置制御盤23はスタート電極上昇停止指令により電極昇降装置23bに対し上昇を停止させる。電極昇降装置制御盤23からスタート電極支腕位置データを受け取り(#45)、スタート電極支腕位置が所定高さ以上であるかを判定し(#46)、所定高さに到達していない場合は、所定高さに到達するまで、ステップ#38〜#46の処理を繰り返し、第2パターンの立ち上げ制御を終了する。
【0046】
次に、本発明装置1の電極昇降制御部7による主電極31の電極昇降制御について説明する。
【0047】
電極昇降制御部7は、ステップ制御部10、リニア制御部11、PID制御部12の何れか一つの制御部を用いて、電極昇降装置制御盤23に対し種々の制御指令を出力し、主電極31用の電極昇降装置23aに対し昇降制御を行う。直流電源装置22aに対し、主電極31と炉底電極32間を流れる第1電流値Iが定電流となるよう定電流制御しながら、主電極31の昇降制御により、主電極31と炉底電極32間の距離を調整することで、両電極間に掛かるプラズマ電圧(V)の制御を行う。
【0048】
電極昇降制御部7に対する第1電流値I及び電圧値Vの各設定値は、DCS20から入力される。また、DCS20から電流・電圧の設定値を変更した場合、変化率設定により実設定値が徐々に変化するように構成されている。尚、変化率設定は、電極昇降制御の制御モード毎に切り替わる。制御モードには、ステップ制御部10によるステップ制御モード、リニア制御部11によるリニア制御モード、PID制御部12によるPID制御モード、更に、手動による手動モードの4制御モードがあり、制御モード毎に、電圧設定値と電流設定値に対する増加率と減少率が予め設定されテーブル化されている。
【0049】
次に、PID制御部12によるPID制御モードの電極昇降制御の概略を説明する。PID制御部12は、直流電源装置22aから受け取った電圧Vと電圧設定値に基づき、図6に示す処理手順で演算処理を行う。
【0050】
先ず、電圧Vと電圧設定値の偏差DVを求め、その偏差DVに対して、図7に示すギャップ演算特性に基づき、偏差DV’を出力するギャップ演算を行い、次に、その偏差DV’を補償する逆動作を誘引するPID演算を実行し、主電極昇降速度を出力する。そのPID出力に対し出力リミッタ処理を施し、所定の出力上限値及び出力下限値の範囲内で主電極昇降速度を出力する。尚、ギャップ演算のギャップ幅GW、PID演算の比例、積分、微分の各設定値、出力リミッタ処理の出力上限値及び出力下限値は、夫々設定値として設定されている。
【0051】
また、他の制御モードからPID制御モードに移行した場合は、移行前の出力からの動作となる。逆に、PID制御中にPID制御部12が故障した場合は、予めPID制御故障時の制御モードで設定された制御モード(ステップ制御モードまたはリニア制御モード)に自動的に移行する。
【0052】
次に、ステップ制御部10によるステップ制御モードの電極昇降制御の概略を説明する。ステップ制御部10は、直流電源装置22aから受け取った電圧Vと電圧設定値に基づき、図8に示す処理手順で演算処理を行う。
【0053】
先ず、電圧Vと電圧設定値の偏差DVを求め、その偏差DVが、図8に示す6つの領域の何れに該当するかを判定し、電極昇降装置制御盤23に対し、5通りの電極昇降制御を実行する。つまり、ΔV1、ΔV2、−ΔV1、−ΔV2の4つの偏差判定閾値を設定しておき(但し、ΔV2>ΔV1)、DV≧ΔV2の場合に第1下降動作を、ΔV2>DV≧ΔV1の場合に第2下降動作を、DV≦−ΔV2の場合に第1上昇動作を、−ΔV2<DV≦−ΔV1の場合に第2上昇動作を実行し、−ΔV1<DV<ΔV1の場合は何れの昇降動作も実行しない。
【0054】
第1下降動作と第1上昇動作、第2下降動作と第2上昇動作は、夫々電極の移動方向が逆であるだけで、各制御中の動作時間と停止時間の設定値は同じである。これに対し、第1下降動作と第2下降動作、第1上昇動作と第2上昇動作は、夫々電極の移動方向は同じであるが、各制御中の動作時間と停止時間の設定値が異なり、各第1動作の方が、大きな下降または上昇を行うように設定されている。
【0055】
従って、ステップ制御部10は、上記要領で第1下降動作、第2下降動作、第1上昇動作、または、第2上昇動作の何れかが選択された場合、各動作の動作時間と停止時間の設定値に基づき、主電極31用の電極昇降装置23aに対し、電極下降指令及び電極下降停止指令、または、電極上昇指令及び電極上昇停止指令を出力する。また、何れの動作も選択されなかった場合は、何れの昇降制御指令も出力しない。
【0056】
次に、リニア制御部11によるリニア制御モードの電極昇降制御の概略を説明する。リニア制御部11は、直流電源装置22aから受け取った電圧Vと電圧設定値に基づき、図9に示す処理手順で演算処理を行う。
【0057】
先ず、電圧Vと電圧設定値の偏差DVを求め、その偏差DVに対して、図7に示すギャップ演算特性に基づき、偏差DV’を出力するギャップ演算を行い、次に、その偏差DV’を補償する逆動作を誘引する比率演算(数1の比率演算式参照)を実行し、主電極昇降速度Rを出力する。
【0058】
【数1】R=GA・DV’+BI
【0059】
その比率演算出力Rに対し出力リミッタ処理を施し、所定の出力上限値及び出力下限値の範囲内で主電極昇降速度を出力する。ここで、ギャップ演算のギャップ幅GW、比率演算式のゲインGAとバイアスBI、出力リミッタ処理の出力上限値及び出力下限値が、夫々設定値として設定されている。ギャップ演算のギャップ幅GWはPID制御モード時と同じ設定でも異なる設定の何れでもよい。
【0060】
電極昇降制御部7は、主電極31の電極昇降制御の開始時点で、予め設定されたステップ制御モードまたはリニア制御モードを選択して、対応するステップ制御部10、リニア制御部11を起動し、電圧変動が安定してきた時点で、実行中の制御モードからPID制御モードに移行するようにするのも好ましい。
【0061】
次に、本発明装置1の電極自動継足制御部8による主電極31の電極自動継足制御における処理手順の概略につき、図10のフローチャートを用いて説明する。尚、本実施形態では、複数の電気式溶融炉30に対して、電極自動継足に必要な電極自動継足装置24aと電極自動継足装置制御盤24、電極置台装置25aと電極置台装置制御盤25、及び、炉頂クレーン26を共用する場合の電極自動継足制御について説明する。但し、本実施形態では、本発明装置1は電気式溶融炉30毎に各別に設けられており、電極自動継足制御部8も制御対象である電気式溶融炉30(以下、適宜「自炉」と称す。)に対して電極自動継足制御を実行する。以下の説明では、特に断らない限り各工程における各処理は電極自動継足制御部8によって実行される。
【0062】
先ず、継足準備工程(#100)につき説明する。電極昇降装置制御盤23から主電極昇降装置位置データを受け取り、自炉の主電極31が電極自動継足可能か否かの判定をし、可能である場合にDCS20に対し、その旨のメッセージを出力する。DCS20からの操作員による継足準備開始指令を受け取ると、自炉を運転対象とする炉頂クレーン26に対し、電極自動継足制御のために選択された旨の選択指令を出力するとともに、関連する各装置23〜26から異常の有無を確認するための各状態データを取得し、更に、電極昇降装置制御盤23からスタート電極支腕位置データを受け取り、電極自動継足操作可能かを判定する。何れも異常が無ければ、電極自動継足装置制御盤24と炉頂クレーン26に対し、継足準備指令を出力する。電極自動継足装置制御盤24と炉頂クレーン26は、夫々継足準備指令を受け取ると所定の継足準備動作を実行し、終了するとその旨を電極自動継足制御部8に出力する。電極自動継足装置制御盤24と炉頂クレーン26の両方から継足準備動作終了データを受け取ると、その旨のメッセージをDCS20に対し出力する。
【0063】
次に、自動継足工程(#110)につき説明する。DCS20の継足準備動作終了メッセージに基づき、操作員がDCS20上で自動継足開始指令を発し、当該指令をDCS20から受け取ると、自動継足開始指令を各関連装置に発信する。自動継足工程(#110)では、先ず、電極払出工程(#111)が実行される。
【0064】
電極払出工程(#111)では、電極置台装置制御盤25が自動継足開始指令を受け取ると、電極置台装置25aが所定の電極払出動作を行い、新しい電極を取り出し可能な状態にする。電極置台装置制御盤25から電極取出可能データを受け取ると、電極自動継足装置制御盤24に対し、新電極準備指令を発信する。
【0065】
電極払出工程(#111)に引き続き、灰供給運転中の場合にこれを停止させる灰供給停止工程(#112)と新電極つかみ工程(#113)が並行して実行される。新電極つかみ工程(#113)では、電極自動継足装置制御盤24が新電極準備指令を受け取ると、電極自動継足装置24aが新電極をつかむ動作を行う。この動作において、同時に、旧電極の上端部の雌ねじ部に螺合する雄ねじ接合部材を新電極の先端部(下端部)の雌ねじ部に取り付ける。
【0066】
新電極つかみ工程(#113)に引き続き、クレーン中間点移動工程(#114)において、クレーン中間点移動指令が、炉頂クレーン26に対し出力され、炉頂クレーン26が当該指令を受け取り、クレーンを中間点まで移動させる。
【0067】
引き続き、電極動作停止工程(#115)を実行する。詳細には、炉頂クレーン26が中間点まで移動し、灰供給運転の停止を確認した後、VCB22bがオン状態である場合、つまり、直流電源装置22aに特高電圧が供給され各電極間に高電圧が印加されている場合に、電極昇降装置制御盤23に対し、電極自動昇降運転を停止させ、VCB22bをオフする指令を出力する。主電極31に対する高電圧の印加と昇降制御が解除された後、所定秒経過後、電極昇降装置制御盤23に対し、電極待機位置昇降指令を出力し、電極昇降装置制御盤23は当該指令を受け取り、主電極31を所定の待機位置まで上昇または下降させる。
【0068】
電極動作停止工程(#115)の開始時に、電極昇降制御部7が電極昇降装置制御盤23、直流電源装置22a、VCB22bに対し、主電極31の電極昇降制御を実行中であれば、電極自動継足制御部8の制御が、電極昇降制御部7の電極昇降制御に優先して実行され、電極昇降制御部7による電極昇降制御は中断される。
【0069】
電極動作停止工程(#115)に引き続き、クレーン継足点移動工程(#116)において、先ず、炉頂クレーン26の移動の障害となる、手すり通行ゲートを開放する指令をDCS20に出力するとともに、手すり通行ゲート開状態データをDCS20から受け取り、炉頂クレーン26に対し、クレーン継足点移動指令を出力する。炉頂クレーン26は当該指令を受け取り、クレーンを継足点へ移動する。引き続き、電極昇降装置制御盤23に対し、N2脱着装置開放指令を出力し、電極昇降装置23aのN2脱着装置開放の確認データを電極昇降装置制御盤23から受け取る。
【0070】
次に、炉頂クレーン26が継足点へ移動後、電極自動継足装置カバー下降工程(#117)において、電極自動継足装置制御盤24に対し、電極自動継足装置カバー下降指令を出力し、電極自動継足装置24aがカバー下降処理を実行する。
【0071】
引き続き、クレーン継足点移動工程(#116)において、電極昇降装置制御盤23から電極昇降装置23aのN2脱着装置開放の確認データを受け取り、クレーン巻下・主電極上昇工程(#118)において、電極自動継足装置24aによるカバー下降処理が終了した後、炉頂クレーン26に対し、クレーン巻下指令を出力し、炉頂クレーン26が巻き下げ動作を開始する。炉頂クレーン26から継足高さに到達したか、クレーン巻下が完了したかの確認を行った後、電極昇降装置制御盤23に対し、主電極上昇指令を出力する。電極昇降装置23aが主電極31の上昇を開始するとともに、電極自動継足装置制御盤24から旧電極上端位置検知データを受け取り、当該位置検知データに基づき、電極昇降装置制御盤23に対し、主電極上昇停止指令を出力し、主電極31は上昇を停止する。
【0072】
引き続き、電極継足工程(#119)において、電極昇降装置制御盤23に対し、電極継足指令を出力し、電極昇降装置制御盤23は当該指令により、旧電極に新電極を継ぎ足す継足動作を実行する。継足動作終了後、その旨の終了通知を受け取り、DCS20に継足動作終了メッセージを出力する。
【0073】
引き続き、電極掴み替え工程(#120)が実行される。電極継足工程(#119)終了時点では、旧電極は電極昇降装置23aの電極支持アームに支持され、新電極は電極自動継足装置24aに支持されている。そこで、新電極が電極自動継足装置24aに支持されている状態で、電極昇降装置制御盤23に対し、電極掴み替え指令を出力し、電極昇降装置23aが支持個所を旧電極から新電極に移動する。電極掴み替えが完了すると、電極自動継足装置制御盤24に対し、新電極放し指令を出力し、電極自動継足装置24aに対し、新電極の支持を解除させる。
【0074】
電極自動継足装置24aが新電極放し動作を終了すると、クレーン退避工程(#121)が実行され、炉頂クレーン26がクレーン巻上動作、中間点移動動作等を実行する。引き続き、後処理工程(#122)において、手すり通行デートを閉鎖する指令をDCS20に出力するとともに、手すり通行ゲート閉状態データをDCS20から受け取り、電極昇降装置制御盤23に対し、N2脱着装置装着指令を出力し、電極昇降装置23aのN2脱着装置装着の確認データを電極昇降装置制御盤23から受け取る。
【0075】
後処理工程(#122)の完了を確認すると、電極自動継足制御部8は、起動制御部6に対し、電気式溶融炉30の立ち上げ制御を指示する(#123)。起動制御部6による立ち上げ制御終了後に、電極昇降制御部7による定常運転に移行すると、灰供給装置に対し、灰供給運転開始指令を出力する(#124)。灰供給装置からの灰供給運転中である旨の確認データを受け取り、クレーン退避工程(#121)における炉頂クレーン26の退避動作の完了を確認すると、終了工程(#125)において、DCS20に対し、自動継足完了メッセージを出力するとともに、DSC20から操作員による自動継足完了確認指令を受け取って、炉頂クレーン26に対し、自動継足制御完了指示を出力し、主電極31の電極自動継足制御を終了する。
【0076】
上記の如く、本発明装置1が、起動制御部6と電極昇降制御部7と電極自動継足制御部8を統合して備えていることで、主電極31の電極自動継足制御において、電気式溶融炉30の立ち上げ制御と定常運転時の主電極31の自動昇降制御が自動的に円滑に実行させて、主電極31の電極自動継足制御を終了させることができる。
【0077】
以下に、別の実施形態につき説明する。
上記実施の形態では、本発明装置1は電気式溶融炉30毎に各別に設けられている構成を前提に説明したが、1台の本発明装置1が、複数の電気式溶融炉30を同時に制御する形態であっても構わない。
【0078】
また、本発明装置1の起動制御部6、電極昇降制御部7、電極自動継足制御部8の各制御部の具体的な動作・処理手順及び構成は、上記実施形態の動作・処理手順及び構成に限定されるものではなく、本発明の技術的範囲内において適宜変更可能である。
【0079】
例えば、電極昇降制御部7のPID制御部12を専用コントローラで構成せずに、ステップ制御部10及びリニア制御部11と同様にソフトウェア処理により実現しても構わない。更に、電極自動継足制御部8による電極自動継足制御はスタート電極33に対して実行しても構わない。
【0080】
【発明の効果】
以上、本発明によれば、操作員の経験に影響されない安定した電気式溶融炉の立ち上げ制御、定常運転時の主電極の自動昇降制御、更に、主電極の電極自動継足制御が可能となる。
【図面の簡単な説明】
【図1】本発明に係る電気式溶融炉制御装置の一実施の形態を示すブロック構成図
【図2】本発明に係る電気式溶融炉制御装置が制御対象とする電気式溶融炉の構成概念図
【図3】電気式溶融炉の立ち上げ制御の処理手順を示すフローチャート
【図4】電気式溶融炉の立ち上げ制御の処理手順を示すフローチャート
【図5】電気式溶融炉の立ち上げ制御の処理手順を示すフローチャート
【図6】PID制御部によるPID制御の処理手順を説明する工程図
【図7】ギャップ演算に用いる入出力特性を示す図
【図8】ステップ制御部によるステップ制御の処理手順を説明する説明図
【図9】リニア制御部によるリニア制御の処理手順を説明する工程図
【図10】電極自動継足制御の処理手順を示すフローチャート
【符号の説明】
1: 本発明に係る電気式溶融炉制御装置
2: 制御演算処理部
3: I/Oインターフェース
4: 表示器
5: 中央演算処理部
6: 起動制御部
7: 電極昇降制御部
8: 電極自動継足制御部
9: DCSインターフェース
10: ステップ制御部
11: リニア制御部
12: PID制御部
20: 分散型制御システム(DCS)
21: データリンク
22a:直流電源装置
22b:VCB(真空遮断器)
23: 電極昇降装置制御盤
23a:主電極用の電極昇降装置
23b:スタート電極用の電極昇降装置
24: 電極自動継足装置制御盤
24a:電極自動継足装置
25: 電極置台装置制御盤
25a:電極置台装置
26: 炉頂クレーン
30: 電気式溶融炉
31: 主電極
32: 炉底電極
33: スタート電極
34: 集電板
35a:炉壁天井部
35b:炉底部
35c:炉側壁部
36: 炉内
37: 灰供給口
38: 出滓口
40: 溶融スラグ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention includes a main electrode, a bottom electrode, and a start electrode in a furnace, and a current generated by a high voltage applied between the main electrode and the bottom electrode or between the main electrode and the start electrode causes a current to be generated on the bottom electrode. The present invention relates to an electric melting furnace for melting an object to be melted, and more specifically, to an electric melting furnace control device for controlling operation of each electrode.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a melting furnace that melts incineration ash and dust generated in a garbage incineration facility to make it harmless and produces recyclable slag has been put into practical use. Various types of melting furnaces have been developed and put into practical use. However, the furnace has a main electrode (graphite electrode), a furnace bottom electrode, and a start electrode (graphite electrode). An electric melting furnace for melting an object to be melted on a furnace bottom electrode by a current generated by a high voltage applied between an electrode and a start electrode has been practically used for only several years.
[0003]
In the electric melting furnace, a DC voltage is applied between the main electrode and the furnace bottom electrode to generate a plasma arc to heat the molten slag and melt the sequentially supplied ash or the like. In addition, since current flows in the slag, Joule heat can be used and efficient melting is performed. The molten ash and the like becomes slag and is cooled after the continuous slag is discharged and discharged by a conveyor.
[0004]
The operation of the electric melting furnace is a control voltage value that is set while adjusting the distance between the main electrode and the bottom electrode while constantly adjusting the current value flowing between the main electrode and the bottom electrode during steady operation. The elevation control of the main electrode is performed.
[0005]
However, at the time of steady operation, the material to be melted is a molten slag, but at the start of operation, the material to be melted is not necessarily in a molten state, and the composition thereof is glassy or metallic, that is, conductive. The substance and the non-conductive substance are mixed, and the way of mixing is also uniformly mixed.When the heavy metal conductive substance is concentrated in the lower layer, the light glassy Non-conductive substances may be concentrated. Therefore, depending on the state of the material to be melted, a current flows between the main electrode and the furnace bottom electrode at the start of operation as in the case of the steady operation, and the operation can be shifted to the steady operation only by controlling the main electrode, No current flows between the main electrode and the furnace bottom electrode, the material to be melted is gradually melted from the upper layer using the start electrode, and finally, a state where current flows between the main electrode and the furnace bottom electrode is maintained. In some cases, the operation can be shifted to the steady operation, and complicated start-up control according to the state of the material to be melted is required.
[0006]
In addition, since the electrodes are made of graphite, they gradually wear due to the occurrence of plasma arc, so it is necessary to automatically add new electrode rods to the shortened electrode rods. .
[0007]
In addition, regarding the electric melting furnace provided with the main electrode, the furnace bottom electrode, and the start electrode in the furnace, there are the following Patent Documents 1 to 3 by the present applicant.
[0008]
[Patent Document 1]
JP-A-11-237018
[Patent Document 2]
JP 09-156529 A
[Patent Document 3]
JP-A-09-243267
[0009]
[Problems to be solved by the invention]
As described above, the operation of the electric melting furnace requires control at the start-up of the operation, control during the steady operation, and automatic electrode extension control, but the basic configuration of the electric melting furnace itself is as follows. Even though they are the same, various product specifications are caused by differences in the environment in which they are used, that is, garbage incineration facilities, etc., and the above-described respective controls are performed automatically or manually using respective independent control devices. There is. In addition, there has been a situation in which the contents of the above-mentioned respective controls have not been standardized in electric melting furnaces of many plants. For this reason, it sometimes depends on the experience of a somewhat skilled operator. This is because the electric melting furnace has only been used for several years, and there is not enough practical data to standardize and integrate the above controls until now. .
[0010]
Here, the inventor of the present application has arrived at the present invention in an effort to standardize and integrate the above-described respective controls based on past experience in practical use of an electric melting furnace. The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to solve the above-mentioned problems and to realize an electric melting furnace capable of operating a stable electric melting furnace without being affected by the experience of an operator. It is to provide a control device.
[0011]
[Means for Solving the Problems]
A first characteristic configuration of the electric melting furnace control device according to the present invention for achieving this object includes a main electrode, a furnace bottom electrode, and a start electrode in a furnace, and a space between the main electrode and the furnace bottom electrode. Alternatively, in an electric melting furnace that melts a material to be melted on the furnace bottom electrode by a current generated by a high voltage applied between the main electrode and the start electrode, the inside of the furnace includes the main electrode and the start electrode. Electrode melting control means for transmitting or receiving control data between the electrode lifting / lowering control means for moving the electrode position in and the power supply device for applying a voltage between the respective electrodes, and controlling the operation of the respective electrodes. A furnace control device, which performs automatic operation control of the main electrode and the start electrode in accordance with the state of the material to be melted at the time of startup, and melts the material to be melted only by automatic operation control of the main electrode. For driving In the startup control unit to start up, during the steady operation, in order to control the voltage applied to the main electrode and the start electrode, to control the movement of the electrode position of the main electrode in the furnace to the electrode elevation control means And an electrode lifting / lowering control unit for the same.
[0012]
The current generated by applying a high voltage between the electrodes includes at least one of a discharge current of a plasma arc generated by the application of a high voltage and a current flowing in a conductive material of a material to be melted. , Usually both.
[0013]
According to the first characteristic configuration, the start control unit performs the automatic operation control of the main electrode and the start electrode according to the state of the material to be melted in the start-up control at the time of start-up. It can be used uniformly for various electric melting furnaces that start up using electrodes and start electrodes, and has both a start control unit and an electrode elevation control unit. Irrespective of the state, the control of raising and lowering the main electrode during the steady operation from the start-up control can be performed in an integrated manner. That is, the control of raising and lowering the electrode of the main electrode during the steady operation can be automatically performed from the start-up control, or a stable operation that is not affected by the experience of the operator can be performed even if the confirmation operation by the operator is involved.
[0014]
In the second characteristic configuration, the activation control unit starts lowering the main electrode after the control is started, determines a first current value flowing between the main electrode and the furnace bottom electrode, and determines the first current value. When the value is smaller than a predetermined first threshold, the main electrode is lowered to lower the main electrode to a predetermined lowering position. Then, the lowering of the start electrode is started, and the main electrode and the starter are started. A second current value flowing between the electrodes is determined, and when the second current value becomes equal to or more than a predetermined second threshold value, the start electrode is controlled to stop lowering the start electrode, and the main electrode and the start electrode are controlled. The present invention is characterized in that a current flows between the main electrode and the start electrode to melt the material to be melted while the electrode is kept at the lowering stop position.
[0015]
According to the second characteristic configuration, when the state of the material to be melted at the time of startup is a state in which a sufficient current cannot flow between the main electrode and the furnace bottom electrode, that is, in a solid state (non-molten state), The energization is performed between the main electrode and the start electrode while the descent stop positions of the two electrodes are almost in contact with the material to be melted. In general (for example, in normal arc welding, etc.), the discharge is performed at a certain interval from the object to be melted in order to obtain a high voltage to obtain high power in order to promote melting. By generating a plasma arc along the surface of the material to be melted while the descent and stop positions of the main electrode and the start electrode remain, the material to be melted from the surface of the material to the inside is efficiently and efficiently. Relatively high-speed melting becomes possible, and it is possible to shift to a steady operation at an early stage.
[0016]
The third characteristic configuration is that, in a state where the start control unit stops the main electrode and the start electrode at a predetermined descent stop position, a current flows between the main electrode and the start electrode, and When the start electrode is returned to the predetermined raising / stopping position after the material is melted, the starting electrode is raised in a plurality of times with a predetermined stop period interposed therebetween.
[0017]
According to the third characteristic configuration, the start electrode can be raised while cooling the start electrode by raising the start electrode stepwise, so that damage to the furnace wall close to the start electrode can be suppressed. .
[0018]
The fourth characteristic configuration is such that the electrode elevation control unit controls the movement of the electrode position of the main electrode by PID control, a step control unit performed by step control, and a linear control performed by linear control. It has a part.
[0019]
According to the fourth characteristic configuration, since a plurality of control units are provided, even if the control unit that is performing the electrode lifting / lowering control of the main electrode fails, another control unit immediately backs up the control unit. Control can be continued, and operation stop of the electric melting furnace can be avoided.
[0020]
The fifth characteristic configuration is that the electrode elevation control unit performs control by the step control unit or the linear control unit immediately after the control is started.
[0021]
According to the fifth characteristic configuration, since the state of the material to be melted is not stable immediately after the start of the control and the fluctuation is large, the step control unit having a good response to the PID control that requires a relatively long time for the control. Alternatively, by using the linear control unit, more stable control can be performed for a large fluctuation.
[0022]
The sixth characteristic configuration is that, in order to add an electrode rod to the main electrode or the start electrode, at least, a transport unit that transports a spare electrode rod, the spare electrode rod is attached to the main electrode or the start electrode. The automatic electrode extension device for automatically replenishing, and transmission or transmission and reception of control data between the electrode lifting and lowering control means, taking out the spare electrode rod from the storage location of the spare electrode rod, An automatic electrode extension control unit that controls until the electrode rod is automatically extended to the main electrode or the start electrode is further provided.
[0023]
According to the sixth characteristic configuration, the same electric melting furnace control device includes an electrode automatic extension control unit, so that the start-up control unit performs start-up control and the electrode lifting control unit controls the main electrode during steady operation. Elevation control and automatic electrode extension control by the electrode automatic extension control unit can be easily controlled in a uniform manner by linking them to each other instead of individually controlling each in the conventional electric melting furnace. become able to.
[0024]
The seventh characteristic configuration is that, after the automatic electrode extension by the electrode automatic extension controller ends, the start-up control by the activation controller is automatically started.
[0025]
According to the seventh characteristic configuration, it is possible to automatically restart the operation of the electric melting furnace stopped during the automatic electrode extension.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of an electric melting furnace control device according to the present invention (hereinafter, appropriately referred to as “the present invention device”) will be described with reference to the drawings.
[0027]
First, as shown in FIG. 2, an electric melting furnace 30 to be controlled by the apparatus 1 of the present invention is provided with a main electrode 31 and a start electrode 33 which penetrate through a furnace wall ceiling 35a and are inserted into a furnace 36. The electrodes are individually supported by an electrode lifting / lowering device 23a for the main electrode 31 and an electrode lifting / lowering device 23b for the start electrode 33, respectively, so that the tip positions of the respective electrodes in the furnace 36 can be moved up and down. A furnace bottom electrode 32 is provided on the furnace bottom 35b, and is connected to the current collector 34. The furnace side wall 35c is provided with a supply port 37 for the ash, which is the material to be melted, and the material to be melted is supplied into the furnace 36 by a conveying means such as a screw conveyor. The main electrode 31 is connected to a negative electrode of a DC power supply device 22a that generates a high voltage via a support arm that supports the main electrode 31. The start electrode 33 is connected to one positive electrode of the DC power supply device 22a via a support arm that supports the start electrode 33. The furnace bottom electrode 32 is connected via a current collector 34 to the other positive electrode of the DC power supply device 22a. An extra-high voltage is supplied to the DC power supply 22a via a VCB (vacuum breaker) 22b provided on a high-voltage switchboard.
[0028]
In the electric melting furnace 30 having the above-described configuration, a high DC voltage is applied between the main electrode 31 and the bottom electrode 32 to generate a plasma arc to heat the molten slag 40 on the bottom electrode 32 and to be sequentially supplied. Melts materials such as ash. In addition, since current flows in the slag, Joule heat can be used and efficient melting is performed. The molten ash or the like becomes slag, and is cooled after being discharged from a slag port 38 provided in the furnace side wall portion 35c, and discharged by a conveyor.
[0029]
As shown in FIG. 1, the apparatus 1 of the present invention includes a control operation processing unit 2, a control operation processing unit 2, an electrode lifting / lowering device control panel 23 of the electrode lifting / lowering devices 23 a and 23 b of the electric melting furnace 30, and a DC power supply 22 a. , An I / O interface 3 for transmitting and receiving control input / output data to and from the VCB 22b, and a display 4 for displaying various data. The three control functions of the start-up control of the furnace 30, the control of raising and lowering the main electrode during steady operation, and the automatic electrode extension control are exhibited.
[0030]
The control processing unit 2 comprises a central processing unit 5 composed of a general-purpose computer and a PID control unit 12 composed of a dedicated controller. The central processing unit 5 further includes a start control unit that exclusively performs the start-up control. 6, an electrode lifting / lowering control unit 7 for exclusively performing the main electrode lifting / lowering control during the normal operation, an electrode automatic / continuously extending control unit 8 for exclusively performing the above-mentioned electrode automatic continuation control, and a distributed control system used for control monitoring ( A DCS interface 9 for exchanging input / output data via a data link 21 which is a kind of computer network. The PID control unit 12 realizes a PID control function of executing the electrode elevation control of the electrode elevation control unit 7 by PID control with a dedicated controller, and forms a part of the electrode elevation control unit 7. The activation control unit 6 of the central processing unit 5, the electrode elevation control unit 7 excluding the PID control unit 12, and the automatic electrode extension control unit 8 execute programs by a general-purpose computer constituting the central processing unit 5. Is realized by software processing. Further, the electrode elevation control unit 7 in the central processing unit 5 executes a step control unit 10 for executing the electrode elevation control of the electrode elevation control unit 7 by step control by software processing, and an electrode elevation control of the electrode elevation control unit 7. In addition to the linear control unit 11 which is executed by linear control by software processing, management of which one of the step control unit 10, the linear control unit 11, and the PID control unit 12 performs the electrode elevation control, and the control between the control units And also manages when the control is taken over.
[0031]
The I / O interface 3 directly controls the electrode lifting / lowering device control panel 23, the DC power supply device 22a, the VCB 22b, the electrode automatic continuation device control panel 24 for directly controlling the electrode automatic continuation device 24a, and the electrode mounting table device 25a. Input / output of control input / output data is performed with the electrode mounting table control panel 25 via an individual communication line or a data link.
[0032]
In the present embodiment, in the automatic electrode extension control, input / output data for control with a furnace crane 26 that conveys a new electrode (spare electrode rod) from the electrode mounting device 25a to above the currently used old electrode is used. The exchange is performed via the DCS 20.
[0033]
Next, a processing procedure of the start-up control of the electric melting furnace 30 by the start control unit 6 of the apparatus 1 of the present invention will be described with reference to the flowcharts of FIGS. In the following description, each process is executed by the activation control unit 6 unless otherwise specified.
[0034]
When a start command (# 0) by the operator is received from the DCS 20, confirmation of the status of each device (presence or absence of an alarm, etc.), pre-processing such as alarm display, and time delay processing by a timing timer are performed (# 1). A VCB input command is output to the VCB 22b (# 2). The VCB 22b is turned on by the VCB input command, and an extra-high voltage is supplied to the DC power supply 22a. Subsequently, after receiving the VCB input state input of the DCS 20, the main electrode lowering command is output to the electrode lifting device control panel 23 (# 3). The electrode lifting / lowering device control panel 23 starts lowering control for the electrode lifting / lowering device 23a for the main electrode 31 in response to the main electrode lowering command. As the main electrode 31 descends, the first current value I flowing between the main electrode 31 and the furnace bottom electrode 32 according to the state of the material to be melted. 1 In order to detect the change in the first current value I 1 (Data) (# 4), the first current value I 1 Is a predetermined first threshold value I 1A It is determined whether or not this is the case (# 5: initial current excess determination). First current value I 1 Is the first threshold I 1A If it is smaller, the main electrode wire looseness data is received from the electrode lifting / lowering device control panel 23 (# 6), and the presence or absence of the main electrode wire looseness is determined (# 7). If there is no loose wire in the main electrode wire looseness determination, it is determined that the lower end of the main electrode 31 is not completely lowered, and the process returns to steps # 4 and # 5. Here, in the determination of step # 7, if there is a wire looseness, the main electrode 31 has been lowered to a lower position, so it cannot be lowered any further, and the first current value I 1 Is the first threshold I 1A Since it is smaller, it is determined that the material to be melted is in a solid (non-molten) state, and the process proceeds to the second pattern start-up control (steps # 20 to # 46) using the start electrode 33 described below.
[0035]
In the initial current excess determination in step # 5, the first current value I 1 Is the first threshold I 1A In the case described above, since the material to be melted is in a conductive state (molten state) to some extent, the start-up control is completed without using the start electrode 33 only by applying a DC voltage between the main electrode 31 and the furnace bottom electrode 32. it can. (Startup control of the first pattern)
[0036]
In the start-up control of the first pattern, the first current value I 1 Is the first threshold I 1A Then, a main electrode descent stop command is output to the electrode lifting / lowering device control panel 23 to stop the descent of the main electrode 31 (# 8). The electrode lifting / lowering device control panel 23 causes the electrode lifting / lowering device 23a to stop lowering the main electrode 31 in response to the main electrode descent stop command. Subsequently, a time delay process is performed by the main arc start timer (# 9), and the first current value I 1 Is the first threshold I 1A Larger second threshold I 1B Until the above, the application of the DC voltage between the main electrode 31 and the furnace bottom electrode 32 is continued at the descent stop position of the main electrode 31 (# 10 to # 12). More specifically, the first current value I 1 (Data) (# 10), the first current value I 1 Is the second threshold I 1B It is determined whether the above is the case (# 11: second initial current excess determination), and the first current value I 1 Is the second threshold I 1B Until the above, steps # 10 and # 11 are repeated, and a time delay process by the initial current over timer is performed in parallel (# 12). Note that the second initial current excess determination (# 10, # 11) is also performed during the time delay processing, and the first current value I 1 Is the second threshold value I 1B Make sure it's over.
[0037]
First current value I 1 Is the second threshold value I 1B As described above, after the time delay processing by the initial current over timer is completed, the voltage V between the main electrode 31 and the furnace bottom electrode 32 is changed. 1 A main electrode raising command is output to the electrode lifting / lowering device control panel 23 in order to raise the lower end position of the main electrode 31 so that the voltage value becomes appropriate for starting the steady operation (# 13). The electrode lifting / lowering device control panel 23 starts the lifting control of the main electrode 31 with respect to the electrode lifting / lowering device 23a according to the main electrode lifting command.
[0038]
Voltage V between main electrode 31 and furnace bottom electrode 32 1 (#) Is received from the DC power supply device 22a (# 14), and the voltage value V 1 Is a predetermined first threshold voltage V 1A Is determined (# 15). 1 Is V 1A Until the above, steps # 14 and # 15 are repeated, and V 1 Is V 1A Then, a main electrode lifting stop command is output to the electrode lifting device control panel 23 (# 16). First current value I 1 Is determined to be equal to or greater than a predetermined current value, and after a predetermined post-processing (# 17) such as setting conditions at the start of the steady operation, the operation is shifted to the steady operation.
[0039]
Next, start-up control of the second pattern will be described. If it is determined in step # 7 that the wire is loose, a time delay process is performed by the start electrode activation timer (# 20), and the electrode lifting / lowering device is operated on the condition that the operator selects the use of the start electrode in the DCS20. A start electrode lowering command is output to the control panel 23 (# 21). The electrode lifting / lowering device control panel 23 starts lowering control for the electrode lifting / lowering device 23b for the start electrode 33 in response to the start electrode lowering command. As the start electrode 33 descends and approaches the surface of the material to be melted, the second current value I flowing between the main electrode 31 and the start electrode 33 according to the state of the material to be melted. 2 In order to detect the change in the first current value I 1 And the second current value I 2 The third current value I which is the sum of 3 (Data) (# 22), the third current value I 3 Is a predetermined third threshold value I 3A It is determined whether this is the case (# 23: third initial current excess determination). Third current value I 1 Is the third threshold value I 3A If it is smaller, the start electrode wire looseness data is received from the electrode lifting / lowering device control panel 23 (# 24), and it is determined whether or not the start electrode wire is loose (# 25). If there is no loose wire in the start electrode wire looseness determination, it is determined that the lower end of the start electrode 33 is not completely lowered, and the process returns to steps # 22 and # 23.
[0040]
Here, the third current value I 3 Is the third threshold value I 3A If the wire is smaller and the wire is loose, the non-conductive substance is concentrated near the surface of the material to be melted and is in a solid state (non-molten state). An alarm is issued to the DCS 20 to take a measure to supply a conductive material to the DCS 20.
[0041]
In the third initial current excess determination in step # 23, the third current value I 3 Is a predetermined third threshold value I 3A In the case described above, it is determined that a plasma arc is generated along the surface of the material to be melted between the main electrode 31 and the start electrode 33 at the lowered position of the start electrode 33 to melt the material to be melted. A stop electrode lowering stop command is output to the electrode lifter control panel 23 to stop the lowering of the electrode (# 26). The electrode lifting / lowering device control panel 23 causes the electrode lifting / lowering device 23b to stop lowering in response to a start electrode lowering / stopping command. The main electrode 31 and the start electrode 33 continue to generate a plasma arc between the two electrodes along the surface of the material to be melted while maintaining the stop positions of the respective electrodes, and the plasma arc and the downward heat generated by the plasma arc The material to be melted is gradually melted from the surface by conduction (# 27 to # 30). More specifically, while a high voltage is applied between the main electrode 31 and the start electrode 33, time delay processing is performed by a timing timer (# 27), and the first current value I is output from the DC power supply device 22a. 1 (Data) (# 28), the first current value I 1 Is the second threshold value I 1B (# 29: second initial current excess determination), and the first current value I 1 Is the second threshold value I 1B Until the above, steps # 28 and # 29 are repeated, and time delay processing by the initial current over timer is performed in parallel (# 30). Note that the second initial current excess determination (# 28, # 29) is also performed during the time delay processing (# 30), and the first current value I 1 Is the second threshold value I 1B Make sure it's over. As a result, the material to be melted is in a state in which the operation can be shifted to the steady operation sufficiently, and the process enters the end process (# 31 to # 46) to end the start-up control of the second pattern.
[0042]
First current value I 1 Is the second threshold value I 1B As described above, after the time delay processing by the initial current over timer is completed, first, a VCB disconnection command is output to the VCB 22b (# 31). The VCB 22b is turned off by the VCB disconnection command, the supply of the extra-high voltage to the DC power supply 22a is cut off, and the application of the high voltage between the main electrode 31 and the furnace bottom electrode 32 and between the main electrode 31 and the start electrode 33 is stopped. It is released.
[0043]
Next, the main electrode support arm position data is received from the electrode lifting / lowering device control panel 23 (# 32), the main electrode support position is stored (# 33), and the main electrode lifting command is sent to the electrode lifting / lowering device control panel 23. Is output (# 34). The electrode lifting / lowering device control panel 23 starts lifting control on the electrode lifting / lowering device 23a for the main electrode 31 in response to the main electrode lifting command.
[0044]
While the main electrode 31 is being lifted, main electrode arm position data is received from the electrode lifting / lowering device control panel 23 (# 35), and the rising distance from the main electrode arm position stored in step # 33 and the current main electrode arm position is determined. While making the determination (# 36), the user increases the predetermined distance. After determining that the main electrode 31 has risen a predetermined distance, the main electrode 31 outputs a main electrode lifting stop command to the electrode lifting device control panel 23 (# 37). The electrode lifting / lowering device control panel 23 causes the electrode lifting / lowering device 23a to stop raising the main electrode 31 in response to the main electrode lifting / stopping command.
[0045]
Subsequently, the stepwise rising control of the start electrode (# 38 to # 46) is executed. Specifically, a start electrode raising command is output to the electrode lifting device control panel 23 (# 38). The electrode lifting / lowering device control panel 23 starts lifting control on the electrode lifting / lowering device 23b for the start electrode 33 in response to the start electrode raising command. A time delay process is performed by the timing timer (# 39), and a start electrode raising / stopping command is output to the electrode lifting / lowering device control panel 23 (# 40). The electrode lifting / lowering device control panel 23 causes the electrode lifting / lowering device 23b to stop lifting in response to a start electrode lifting / stopping command. Further, time delay processing is again performed by the timing timer (# 41), and a start electrode raising command is output to the electrode lifting device control panel 23 (# 42). The electrode lifting / lowering device control panel 23 again starts the lifting control on the electrode lifting / lowering device 23b for the start electrode 33 according to the start electrode raising command. Time delay processing is again performed by the timing timer (# 43), and a start electrode raising / stopping command is output again to the electrode lifting / lowering device control panel 23 (# 44). The electrode lifting / lowering device control panel 23 causes the electrode lifting / lowering device 23b to stop lifting in response to a start electrode lifting / stopping command. Start electrode arm position data is received from the electrode lifting / lowering device control panel 23 (# 45), and it is determined whether the start electrode arm position is at or above a predetermined height (# 46). Repeats the processes of steps # 38 to # 46 until the predetermined height is reached, and ends the startup control of the second pattern.
[0046]
Next, the electrode lifting control of the main electrode 31 by the electrode lifting controller 7 of the device 1 of the present invention will be described.
[0047]
The electrode lifting / lowering control unit 7 outputs various control commands to the electrode lifting / lowering apparatus control panel 23 using any one of the step control unit 10, the linear control unit 11, and the PID control unit 12, and outputs the main electrode. The lifting control is performed for the electrode lifting device 23a for 31. A first current value I flowing between the main electrode 31 and the furnace bottom electrode 32 is supplied to the DC power supply device 22a. 1 By adjusting the distance between the main electrode 31 and the furnace bottom electrode 32 by raising and lowering the main electrode 31 while controlling the constant current so that the current becomes a constant current, the plasma voltage (V) applied between both electrodes is adjusted. 1 ).
[0048]
The first current value I for the electrode elevation control unit 7 1 And voltage value V 1 Are input from the DCS 20. Further, when the set values of the current and the voltage are changed from the DCS 20, the actual set values are gradually changed by the change rate setting. The change rate setting is switched for each control mode of the electrode elevation control. The control mode includes four control modes: a step control mode by the step control unit 10, a linear control mode by the linear control unit 11, a PID control mode by the PID control unit 12, and a manual mode by manual operation. An increase rate and a decrease rate with respect to the voltage set value and the current set value are set in advance and are tabulated.
[0049]
Next, an outline of the electrode elevation control in the PID control mode by the PID control unit 12 will be described. The PID control unit 12 controls the voltage V received from the DC power supply 22a. 1 The arithmetic processing is performed according to the processing procedure shown in FIG.
[0050]
First, the voltage V 1 , A gap calculation for outputting the difference DV ′ based on the gap calculation characteristics shown in FIG. 7, and then performing the reverse operation to compensate for the difference DV ′. Is performed, and the main electrode lifting / lowering speed is output. The PID output is subjected to an output limiter process, and the main electrode lifting / lowering speed is output within a range of a predetermined output upper limit value and a predetermined output lower limit value. It should be noted that the gap width GW of the gap calculation, the respective set values of the proportional, integral, and derivative of the PID calculation, the output upper limit value and the output lower limit value of the output limiter process are set as set values.
[0051]
When the mode is shifted from another control mode to the PID control mode, the operation is performed from the output before the shift. Conversely, if the PID control unit 12 fails during the PID control, the control mode automatically shifts to the control mode (step control mode or linear control mode) set in advance in the PID control failure control mode.
[0052]
Next, an outline of the electrode control in the step control mode by the step control unit 10 will be described. The step controller 10 controls the voltage V received from the DC power supply 22a. 1 The arithmetic processing is performed according to the processing procedure shown in FIG.
[0053]
First, the voltage V 1 And the voltage setting value is determined, and it is determined which of the six regions shown in FIG. 8 corresponds to the deviation DV, and the electrode lifting / lowering device control panel 23 performs five types of electrode lifting / lowering control. . That is, four deviation determination thresholds of ΔV1, ΔV2, −ΔV1, and −ΔV2 are set (however, ΔV2> ΔV1), the first descending operation is performed when DV ≧ ΔV2, and the deviation operation is performed when ΔV2> DV ≧ ΔV1. The second descending operation is performed by performing a first ascending operation when DV ≦ −ΔV2, a second ascending operation when −ΔV2 <DV ≦ −ΔV1, and any elevating operation when −ΔV1 <DV <ΔV1. Also do not execute.
[0054]
The first descent operation and the first elevating operation, and the second descent operation and the second elevating operation, respectively, have the same operation time and stop time during each control, except that the moving directions of the electrodes are opposite. On the other hand, the first descent operation and the second descent operation, and the first ascent operation and the second ascent operation have the same moving direction of the electrodes, respectively, but the operation time during each control and the set value of the stop time are different. Each of the first operations is set to perform a large descending or ascending.
[0055]
Accordingly, when any one of the first descending operation, the second descending operation, the first ascending operation, and the second ascending operation is selected in the manner described above, the step control unit 10 determines the operation time and the stop time of each operation. Based on the set value, an electrode lowering command and an electrode lowering stop command, or an electrode raising command and an electrode raising stop command are output to the electrode raising and lowering device 23a for the main electrode 31. If no operation is selected, no elevation control command is output.
[0056]
Next, an outline of the electrode control in the linear control mode by the linear control unit 11 will be described. The linear controller 11 controls the voltage V received from the DC power supply 22a. 1 The arithmetic processing is performed according to the processing procedure shown in FIG.
[0057]
First, the voltage V 1 , A gap calculation for outputting the difference DV ′ based on the gap calculation characteristics shown in FIG. 7, and then performing the reverse operation to compensate for the difference DV ′. Is performed (refer to the ratio calculation equation of Equation 1), and the main electrode lifting / lowering speed R is output.
[0058]
## EQU1 ## R = GA.DV '+ BI
[0059]
An output limiter process is performed on the ratio calculation output R to output a main electrode elevating speed within a range of a predetermined output upper limit value and a predetermined output lower limit value. Here, the gap width GW of the gap calculation, the gain GA and the bias BI of the ratio calculation expression, the output upper limit value and the output lower limit value of the output limiter process are set as the set values, respectively. The gap width GW of the gap calculation may be the same as or different from that in the PID control mode.
[0060]
The electrode elevation control unit 7 selects a preset step control mode or linear control mode at the time of starting the electrode elevation control of the main electrode 31, and activates the corresponding step control unit 10 and linear control unit 11, It is also preferable to shift from the control mode being executed to the PID control mode when the voltage fluctuation has stabilized.
[0061]
Next, an outline of a processing procedure in the electrode automatic extension control of the main electrode 31 by the electrode automatic extension control unit 8 of the device 1 of the present invention will be described with reference to a flowchart of FIG. In the present embodiment, for a plurality of electric melting furnaces 30, an electrode automatic extension device 24a and an electrode automatic extension device control panel 24 necessary for automatic electrode extension, an electrode mounting device 25a, and an electrode mounting device control device. The electrode automatic extension control when the panel 25 and the top crane 26 are shared will be described. However, in the present embodiment, the apparatus 1 of the present invention is provided separately for each electric melting furnace 30, and the automatic electrode extension control unit 8 is also controlled by the electric melting furnace 30 (hereinafter referred to as “own furnace” as appropriate). ) Is performed. In the following description, each process in each process is executed by the electrode automatic extension control unit 8 unless otherwise specified.
[0062]
First, the extension preparation step (# 100) will be described. The main electrode lifting / lowering device position data is received from the electrode lifting / lowering device control panel 23, and it is determined whether or not the main electrode 31 of the own furnace is capable of automatic electrode extension. If it is possible, a message to that effect is sent to the DCS 20. Output. Upon receiving a command to start the extension from the DCS 20, the operator outputs a selection command to the top crane 26, which operates the own furnace, to the effect that the electrode has been selected for automatic electrode extension control. Each state data for confirming the presence or absence of abnormality is obtained from each of the devices 23 to 26, and further, the start electrode arm position data is received from the electrode lifting / lowering device control panel 23, and it is determined whether or not the electrode automatic extension operation is possible. . If there is no abnormality in any of them, a continuation preparation command is output to the electrode automatic continuation device control panel 24 and the furnace top crane 26. The electrode automatic extension device control panel 24 and the furnace top crane 26 execute a predetermined extension operation when they receive the extension instruction, and output to the automatic electrode extension control unit 8 when the operation is completed. Upon receiving the extension preparation operation end data from both the electrode automatic extension device control panel 24 and the top crane 26, a message to that effect is output to the DCS 20.
[0063]
Next, the automatic extension step (# 110) will be described. On the basis of the message of the end of the DCS 20 preparation operation, the operator issues an automatic start command on the DCS 20 and, when the command is received from the DCS 20, transmits an automatic start command to the related devices. In the automatic extension step (# 110), first, the electrode dispensing step (# 111) is executed.
[0064]
In the electrode dispensing step (# 111), when the electrode table controller 25 receives the automatic extension start command, the electrode table 25a performs a predetermined electrode dispensing operation, and a new electrode can be taken out. When receiving the electrode take-out data from the electrode stand device control panel 25, it sends a new electrode preparation command to the electrode automatic extension device control panel 24.
[0065]
Subsequent to the electrode dispensing step (# 111), the ash supply stopping step (# 112) for stopping the ash supply operation during the ash supply operation and the new electrode gripping step (# 113) are executed in parallel. In the new electrode gripping step (# 113), when the automatic electrode extension device control panel 24 receives a new electrode preparation command, the automatic electrode extension device 24a performs an operation of gripping a new electrode. In this operation, at the same time, a male screw joint member screwed to the female screw portion at the upper end of the old electrode is attached to the female screw portion at the tip (lower end) of the new electrode.
[0066]
Subsequent to the new electrode gripping step (# 113), in the crane intermediate point moving step (# 114), a crane intermediate point moving command is output to the furnace crane 26, the furnace crane 26 receives the command, and Move to the middle point.
[0067]
Subsequently, the electrode operation stopping step (# 115) is executed. Specifically, after the top crane 26 moves to the intermediate point and confirms that the ash supply operation has stopped, when the VCB 22b is in the ON state, that is, when a very high voltage is supplied to the DC power supply 22a, When a high voltage is applied, an instruction to stop the automatic electrode lifting operation and turn off the VCB 22b is output to the electrode lifting device control panel 23. After the application of the high voltage to the main electrode 31 and the lifting / lowering control are released, after a lapse of a predetermined second, an electrode standby position lifting / lowering command is output to the electrode lifting / lowering device control panel 23, and the electrode lifting / lowering device control panel 23 outputs the command. Upon receipt, the main electrode 31 is raised or lowered to a predetermined standby position.
[0068]
At the start of the electrode operation stopping step (# 115), if the electrode lifting / lowering control unit 7 is performing the electrode lifting / lowering control of the main electrode 31 with respect to the electrode lifting / lowering device control panel 23, the DC power supply device 22a, and the VCB 22b, The control of the extension control unit 8 is executed prior to the electrode elevation control of the electrode elevation control unit 7, and the electrode elevation control by the electrode elevation control unit 7 is interrupted.
[0069]
Subsequent to the electrode operation stopping step (# 115), in the crane splicing point moving step (# 116), first, a command to open the handrail passage gate, which is an obstacle to the movement of the furnace top crane 26, is output to the DCS 20, It receives the handrail gate open state data from the DCS 20 and outputs a crane splice point movement command to the furnace top crane 26. The top crane 26 receives the command, and moves the crane to the extension point. Subsequently, an N2 desorption device opening command is output to the electrode lifting / lowering device control panel 23, and confirmation data for opening the N2 desorption device of the electrode lifting / lowering device 23a is received from the electrode lifting / lowering device control panel 23.
[0070]
Next, after the furnace top crane 26 moves to the extension point, in the electrode automatic extension apparatus cover lowering step (# 117), an electrode automatic extension apparatus cover lowering command is output to the electrode automatic extension apparatus control panel 24. Then, the automatic electrode extension device 24a executes the cover lowering process.
[0071]
Subsequently, in the crane extension point moving step (# 116), confirmation data of opening of the N2 desorption device of the electrode lifting / lowering device 23a is received from the electrode lifting / lowering device control panel 23, and in the crane lowering / main electrode raising process (# 118), After the cover lowering process by the electrode automatic extension device 24a is completed, a crane lowering command is output to the furnace top crane 26, and the furnace top crane 26 starts the lowering operation. After confirming whether the extension height has been reached from the furnace top crane 26 or whether crane lowering has been completed, a main electrode lifting command is output to the electrode lifting device control panel 23. The electrode lifting / lowering device 23a starts to raise the main electrode 31 and receives the old electrode top position detection data from the electrode automatic extension device control panel 24, and sends the main signal to the electrode lifting / lowering device control panel 23 based on the position detection data. An electrode rising stop command is output, and the main electrode 31 stops rising.
[0072]
Subsequently, in the electrode extension process (# 119), an electrode extension command is output to the electrode lifting / lowering device control panel 23, and the electrode lifting / lowering device control panel 23 uses the command to add the new electrode to the old electrode. Perform the action. After the completion of the extension operation, the end notification is received, and a termination operation end message is output to the DCS 20.
[0073]
Subsequently, an electrode gripping step (# 120) is executed. At the end of the electrode extension step (# 119), the old electrode is supported by the electrode support arm of the electrode lifting and lowering device 23a, and the new electrode is supported by the automatic electrode extension device 24a. Therefore, in a state where the new electrode is supported by the electrode automatic extension device 24a, an electrode gripping command is output to the electrode lifting / lowering device control panel 23, and the electrode lifting / lowering device 23a changes the supporting point from the old electrode to the new electrode. Moving. When the electrode gripping is completed, a new electrode release command is output to the electrode automatic extension device control panel 24 to cause the automatic electrode extension device 24a to release the support of the new electrode.
[0074]
When the automatic electrode extension device 24a completes the new electrode releasing operation, a crane retreating step (# 121) is executed, and the furnace top crane 26 executes a crane hoisting operation, an intermediate point moving operation, and the like. Subsequently, in the post-processing step (# 122), a command to close the handrail passing date is output to the DCS 20, and the handrail passing gate closed state data is received from the DCS 20, and the N2 desorption device mounting command is sent to the electrode lifting / lowering device control panel 23. Is received from the electrode lifting / lowering device control panel 23 to confirm that the electrode lifting / lowering device 23a is attached to the N2 desorption device.
[0075]
When the completion of the post-processing step (# 122) is confirmed, the electrode automatic extension control unit 8 instructs the activation control unit 6 to control the startup of the electric melting furnace 30 (# 123). After the start-up control by the activation control unit 6 is completed, when the operation shifts to the steady operation by the electrode lifting and lowering control unit 7, an ash supply operation start command is output to the ash supply device (# 124). When the confirmation data indicating that the ash supply operation is being performed from the ash supply device is received and the completion of the evacuation operation of the furnace top crane 26 in the crane evacuation process (# 121) is confirmed, the DCS 20 is sent to the DCS 20 in the end process (# 125). , An automatic extension completion message is output, and an automatic extension completion confirmation command is received from the DSC 20 by an operator, and an automatic extension control completion instruction is output to the furnace top crane 26, and the electrode automatic extension of the main electrode 31 is performed. End the foot control.
[0076]
As described above, since the device 1 of the present invention integrally includes the activation control unit 6, the electrode elevation control unit 7, and the automatic electrode extension control unit 8, the electric control for the automatic electrode extension control of the main electrode 31 is performed. The start-up control of the melting furnace 30 and the automatic elevating control of the main electrode 31 during the steady operation are automatically and smoothly executed, and the electrode automatic extension control of the main electrode 31 can be ended.
[0077]
Hereinafter, another embodiment will be described.
In the above embodiment, the description has been made on the premise that the present invention apparatus 1 is provided separately for each electric melting furnace 30. However, one present invention apparatus 1 simultaneously operates a plurality of electric melting furnaces 30. The control form may be used.
[0078]
The specific operation, processing procedure, and configuration of each control unit of the activation control unit 6, the electrode elevation control unit 7, and the electrode automatic extension control unit 8 of the device 1 of the present invention are the same as those of the above embodiment. The configuration is not limited, and can be appropriately changed within the technical scope of the present invention.
[0079]
For example, the PID control unit 12 of the electrode lifting / lowering control unit 7 may be realized by software processing similarly to the step control unit 10 and the linear control unit 11 without using a dedicated controller. Further, the electrode automatic extension control by the electrode automatic extension control unit 8 may be executed for the start electrode 33.
[0080]
【The invention's effect】
As described above, according to the present invention, stable start-up control of the electric melting furnace not affected by the experience of the operator, automatic raising and lowering control of the main electrode at the time of steady operation, and further, automatic electrode extension control of the main electrode can be performed. Become.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of an electric melting furnace control device according to the present invention.
FIG. 2 is a configuration conceptual diagram of an electric melting furnace to be controlled by an electric melting furnace control device according to the present invention.
FIG. 3 is a flowchart showing a processing procedure of start-up control of an electric melting furnace.
FIG. 4 is a flowchart showing a processing procedure of start-up control of an electric melting furnace.
FIG. 5 is a flowchart showing a processing procedure of start-up control of the electric melting furnace.
FIG. 6 is a process diagram illustrating a processing procedure of PID control by a PID control unit.
FIG. 7 is a diagram showing input / output characteristics used for gap calculation.
FIG. 8 is an explanatory diagram illustrating a processing procedure of step control by a step control unit.
FIG. 9 is a process diagram illustrating a processing procedure of linear control performed by a linear control unit.
FIG. 10 is a flowchart showing a processing procedure of electrode automatic extension control;
[Explanation of symbols]
1: Electric melting furnace control device according to the present invention
2: Control operation processing unit
3: I / O interface
4: Display
5: Central processing unit
6: Start control unit
7: Electrode lifting control unit
8: Electrode automatic extension control section
9: DCS interface
10: Step control unit
11: Linear control unit
12: PID control unit
20: Distributed control system (DCS)
21: Data link
22a: DC power supply
22b: VCB (vacuum breaker)
23: Electrode lifting device control panel
23a: electrode lifting device for main electrode
23b: Electrode lifting device for start electrode
24: Electrode automatic extension device control panel
24a: Automatic electrode extension device
25: Electrode table control panel
25a: Electrode mounting device
26: Furnace crane
30: Electric melting furnace
31: Main electrode
32: Furnace bottom electrode
33: Start electrode
34: current collector
35a: Furnace wall ceiling
35b: Furnace bottom
35c: Furnace side wall
36: inside the furnace
37: Ash supply port
38: Outlet
40: Molten slag

Claims (7)

炉内に主電極と炉底電極とスタート電極とを備え、前記主電極と前記炉底電極間或いは前記主電極と前記スタート電極間に印加された高電圧によって発生する電流により前記炉底電極上にある被溶融物を溶融する電気式溶融炉において、
前記主電極と前記スタート電極の前記炉内での電極位置を移動させる電極昇降制御手段、及び、前記各電極間に電圧を印加する電源装置との間で、制御データの送信または送受信を行い、前記各電極に対する運転制御を行う電気式溶融炉制御装置であって、
起動時に、前記被溶融物の状態に応じて前記主電極と前記スタート電極の自動運転制御を行い、前記主電極の自動運転制御だけで前記被溶融物を溶融する定常運転にまで立ち上げる起動制御部と、
定常運転時に、前記主電極と前記スタート電極に印加される電圧を制御すべく、前記主電極の前記炉内での電極位置の移動制御を前記電極昇降制御手段に対して行う電極昇降制御部と、を備えていることを特徴とする電気式溶融炉制御装置。
A main electrode, a bottom electrode, and a start electrode are provided in the furnace, and a current generated by a high voltage applied between the main electrode and the bottom electrode or between the main electrode and the start electrode is applied to the bottom electrode. In the electric melting furnace to melt the material to be melted in,
Electrode lifting control means for moving the electrode position in the furnace of the main electrode and the start electrode, and, between the power supply device for applying a voltage between the respective electrodes, transmission or transmission of control data, An electric melting furnace control device that performs operation control on each of the electrodes,
At the time of start-up, start-up control for performing automatic operation control of the main electrode and the start electrode in accordance with the state of the material to be melted, and starting up to a steady operation for melting the material to be melted only by automatic operation control of the main electrode. Department and
During steady operation, to control the voltage applied to the main electrode and the start electrode, an electrode elevation control unit that performs movement control of the electrode position of the main electrode in the furnace with respect to the electrode elevation control means. An electric melting furnace control device, comprising:
前記起動制御部は、制御開始後に前記主電極の下降を開始するとともに、前記主電極と前記炉底電極間を流れる第1電流値を判定し、前記第1電流値が所定の第1閾値より小さい場合に、前記主電極を所定の下降位置まで下降させる前記主電極の下降制御を行い、引き続き、前記スタート電極の下降を開始するとともに、前記主電極と前記スタート電極間を流れる第2電流値を判定し、前記第2電流値が所定の第2閾値以上になると、前記スタート電極の下降を停止する前記スタート電極の下降制御を行い、
前記主電極と前記スタート電極の下降停止位置のままで、前記主電極と前記スタート電極間に電流を流して前記被溶融物を溶融することを特徴とする請求項1に記載の電気式溶融炉制御装置。
The start control unit starts lowering the main electrode after the control is started, determines a first current value flowing between the main electrode and the furnace bottom electrode, and determines that the first current value is higher than a predetermined first threshold value. When it is smaller, the lowering control of the main electrode to lower the main electrode to a predetermined lowering position is performed, and subsequently, the lowering of the start electrode is started, and the second current value flowing between the main electrode and the start electrode is controlled. When the second current value is equal to or more than a predetermined second threshold value, the start electrode is controlled to lower to stop the lowering of the start electrode,
2. The electric melting furnace according to claim 1, wherein an electric current is applied between the main electrode and the start electrode to melt the material to be melted while the descent and stop positions of the main electrode and the start electrode remain. 3. Control device.
前記起動制御部は、前記主電極と前記スタート電極を所定の下降停止位置で停止させた状態で、前記主電極と前記スタート電極間に電流を流して前記被溶融物を溶融した後、前記スタート電極を所定の上昇停止位置に戻す際に、前記スタート電極の上昇を、間に所定の停止期間を挟みながら複数回に分けて実行することを特徴とする請求項1または2に記載の電気式溶融炉制御装置。The start control unit, in a state where the main electrode and the start electrode are stopped at a predetermined descent stop position, after flowing a current between the main electrode and the start electrode to melt the object to be melted, The electric system according to claim 1, wherein when the electrode is returned to a predetermined stop position, the start electrode is raised in a plurality of times with a predetermined stop period therebetween. Melting furnace control device. 前記電極昇降制御部は、前記主電極の電極位置の移動制御を、PID制御で行うPID制御部と、ステップ制御で行うステップ制御部と、リニア制御で行うリニア制御部を備えていることを特徴とする請求項1〜3の何れか1項に記載の電気式溶融炉制御装置。The electrode elevation control unit includes a PID control unit that performs movement control of the electrode position of the main electrode by PID control, a step control unit that performs step control, and a linear control unit that performs linear control. The electric melting furnace control device according to any one of claims 1 to 3. 前記電極昇降制御部は、制御開始直後は、前記ステップ制御部または前記リニア制御部による制御を行うことを特徴とする請求項4に記載の電気式溶融炉制御装置。5. The electric melting furnace control device according to claim 4, wherein the electrode raising / lowering control unit performs control by the step control unit or the linear control unit immediately after starting the control. 前記主電極または前記スタート電極に電極棒を継ぎ足すために、少なくとも、予備の電極棒を搬送する搬送手段、前記予備の電極棒を前記主電極または前記スタート電極に自動で継ぎ足す電極自動継足装置、及び、前記電極昇降制御手段との間で、制御データの送信または送受信を行い、前記予備の電極棒の保管場所から前記予備の電極棒を取り出し、前記予備の電極棒を前記主電極または前記スタート電極に自動で継ぎ足すまでの制御を行う電極自動継足制御部を、更に備えていることを特徴とする請求項1〜5の何れか1項に記載の電気式溶融炉制御装置。In order to add an electrode rod to the main electrode or the start electrode, at least a conveying means for conveying a spare electrode rod, and an electrode automatic extension for automatically adding the spare electrode rod to the main electrode or the start electrode. Device, and, between the electrode lifting and lowering control means, transmits or receives control data, takes out the spare electrode rod from the storage location of the spare electrode rod, the spare electrode rod the main electrode or The electric melting furnace control device according to any one of claims 1 to 5, further comprising an electrode automatic extension control unit that controls until the start electrode is automatically extended. 前記電極自動継足制御部による電極自動継足が終了した後、前記起動制御部による立ち上げ制御が自動的に開始されることを特徴とする請求項6に記載の電気式溶融炉制御装置。7. The electric melting furnace control device according to claim 6, wherein after the electrode automatic extension is completed by the electrode automatic extension control unit, the start-up control by the activation control unit is automatically started. 8.
JP2003051218A 2003-02-27 2003-02-27 Electric melting furnace controller Expired - Fee Related JP4199563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003051218A JP4199563B2 (en) 2003-02-27 2003-02-27 Electric melting furnace controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051218A JP4199563B2 (en) 2003-02-27 2003-02-27 Electric melting furnace controller

Publications (2)

Publication Number Publication Date
JP2004257703A true JP2004257703A (en) 2004-09-16
JP4199563B2 JP4199563B2 (en) 2008-12-17

Family

ID=33116415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051218A Expired - Fee Related JP4199563B2 (en) 2003-02-27 2003-02-27 Electric melting furnace controller

Country Status (1)

Country Link
JP (1) JP4199563B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145122A (en) * 2004-11-19 2006-06-08 Mitsubishi Heavy Ind Ltd Operating method of ash melting furnace and method of estimating residual volume of refractory
CN100455967C (en) * 2005-07-18 2009-01-28 宝山钢铁股份有限公司 Simulation analogue regulator for DC electric arc furnace control and protective function
CN104215085A (en) * 2013-06-04 2014-12-17 宁夏嘉翔自控技术有限公司 Safe electric automatic control system of carbon electric forging furnace
JP2015199083A (en) * 2014-04-07 2015-11-12 新日鐵住金株式会社 Tundish plasma heating device, and heating method for molten steel in tundish
CN105716416A (en) * 2014-12-03 2016-06-29 冯志权 Variable-frequency electric arc furnace
CN106766972A (en) * 2016-12-14 2017-05-31 内蒙古鄂尔多斯电力冶金集团股份有限公司 A kind of charge level control method of three-phase alternating current mineral hot furnace
CN113814522A (en) * 2021-08-11 2021-12-21 西北工业大学 Electric arc melting system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145122A (en) * 2004-11-19 2006-06-08 Mitsubishi Heavy Ind Ltd Operating method of ash melting furnace and method of estimating residual volume of refractory
JP4548777B2 (en) * 2004-11-19 2010-09-22 三菱重工環境・化学エンジニアリング株式会社 Method for predicting remaining amount of refractory and method for operating ash melting furnace using the same
CN100455967C (en) * 2005-07-18 2009-01-28 宝山钢铁股份有限公司 Simulation analogue regulator for DC electric arc furnace control and protective function
CN104215085A (en) * 2013-06-04 2014-12-17 宁夏嘉翔自控技术有限公司 Safe electric automatic control system of carbon electric forging furnace
JP2015199083A (en) * 2014-04-07 2015-11-12 新日鐵住金株式会社 Tundish plasma heating device, and heating method for molten steel in tundish
CN105716416A (en) * 2014-12-03 2016-06-29 冯志权 Variable-frequency electric arc furnace
CN105716416B (en) * 2014-12-03 2018-09-18 冯志权 A kind of frequency conversion type electric arc furnaces
CN106766972A (en) * 2016-12-14 2017-05-31 内蒙古鄂尔多斯电力冶金集团股份有限公司 A kind of charge level control method of three-phase alternating current mineral hot furnace
CN106766972B (en) * 2016-12-14 2019-02-19 内蒙古鄂尔多斯电力冶金集团股份有限公司 A kind of charge level control method of three-phase alternating current mineral hot furnace
CN113814522A (en) * 2021-08-11 2021-12-21 西北工业大学 Electric arc melting system

Also Published As

Publication number Publication date
JP4199563B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
CN100462176C (en) Consumable electrode type welding method
JP2004257703A (en) Electric melting furnace controller
JPS63157765A (en) Method and device for controlling output of short circuit transfer type arc welding machine
JP4815175B2 (en) Electrode lifting device for arc furnace
JP2979816B2 (en) Method for switching speed of arc furnace electrode lifting device
MXPA04008441A (en) Voltage regulated gmaw welding using a constant current power source and wire feeder having variable gain.
CN113321403A (en) Method and apparatus for melting glass
JP2004174523A (en) Method for controlling arc welding
JP4264467B2 (en) Apparatus and method for controlling electric furnace electrode
JP3894746B2 (en) Twin torch type plasma melting furnace and operation method thereof
KR100479832B1 (en) Electrode feed rate control method for Electro-Slag Remelting process
JP2001250673A (en) Electrode lifting control device for ac arc furnace
JP2000077180A (en) Electrode controll method for three-phase alternating current electric furnace
JP2001004281A (en) Controller for electrode lifting device for arc furnace
JPH0331035Y2 (en)
JPH0254892A (en) Voltage control method of dc arc furnace
JPH0257889A (en) Electrode elevation control method for dc arc furnace
US20010035399A1 (en) Method and apparatus for improved arc initiation
JPH0714674A (en) Control of ash fusion furnace
JPH0257888A (en) Electrode elevation control method for dc arc furnace
JP2015112607A (en) Consumable electrode type arc welder, and wire feeding control method in consumable electrode type arc welder
JP2794774B2 (en) Operation method of DC arc furnace
JPH06176866A (en) Control device for electrode of melting furnace
JP2665296B2 (en) DC arc furnace voltage controller
JP2000048949A (en) Electrode control system for arc furnace

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141010

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees