JPH0257888A - Electrode elevation control method for dc arc furnace - Google Patents
Electrode elevation control method for dc arc furnaceInfo
- Publication number
- JPH0257888A JPH0257888A JP63205807A JP20580788A JPH0257888A JP H0257888 A JPH0257888 A JP H0257888A JP 63205807 A JP63205807 A JP 63205807A JP 20580788 A JP20580788 A JP 20580788A JP H0257888 A JPH0257888 A JP H0257888A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- movable electrode
- electrode
- moving electrode
- arc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000000463 material Substances 0.000 claims description 3
- 239000000155 melt Substances 0.000 claims description 2
- 238000002844 melting Methods 0.000 abstract description 4
- 230000008018 melting Effects 0.000 abstract description 4
- 238000001514 detection method Methods 0.000 abstract description 3
- 230000000630 rising effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000001174 ascending effect Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Furnace Details (AREA)
- Discharge Heating (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は直流アーク炉の可動電極(アーク電極とも言う
)の位置を制御する直流アーク炉の電極昇降制御方法に
係・す、特にポーリング時およびスクラップ崩れ時にお
けるサイドアーク現象に伴うアーク切れの発生を無くし
得るようにした直流アーク炉の電極昇降制御方法に関す
るものである。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for controlling the elevation of a DC arc furnace electrode, which controls the position of a movable electrode (also referred to as an arc electrode) in a DC arc furnace, particularly during poling. The present invention also relates to a method for controlling electrode elevation in a DC arc furnace that can eliminate the occurrence of arc breakage due to the side arc phenomenon when scrap collapses.
(従来の技術)
一般に、例えば製鉄用の直流アーク炉においては、可動
電極からアークを発生させながら、溶解原料であるスク
ラップ等の被溶解物(以下、スクラップと指称する)を
溶解して炉底に溶鋼を得るものであるが、そのスクラッ
プの溶解時にスクラップの形状が時々刻々と変化し、そ
れに伴ってアーク電流が変化することがら、所望のアー
ク電流を確実に得る。すなわちアークを確実に発生させ
るには、可動電極を繁雑に昇降制御する必要がある。(Prior art) Generally, in a DC arc furnace for steelmaking, for example, an arc is generated from a movable electrode, and materials to be melted such as scrap (hereinafter referred to as scrap), which are melting raw materials, are melted at the bottom of the furnace. However, when the scrap is melted, the shape of the scrap changes from time to time, and the arc current changes accordingly, so the desired arc current can be obtained reliably. That is, in order to reliably generate an arc, it is necessary to control the movement of the movable electrode in a complicated manner.
このため、従来では第3図に示すように、直流アーク炉
1の内部にスクラップ2を充填して炉上部に炉蓋3を閉
止した後、その炉蓋3上部からカーボン電極等の可動電
極4を挿入し、炉用変圧器5、サイリスタ変換器6.平
滑リアクトル7を介して、可動電極4と炉底電極8との
間に所定のアーク電流を流し、常に所望とする電圧を印
加するように可動電極4を位置制御しながら、可動電極
4の先端からアークを発生させてスクラップ2を順次溶
解している。(このように、可動電極4を降下させなが
らスクラップ2を溶解して孔を作っていく操業段階をポ
ーリング期と呼んでいる。)すなわち、このアーク発生
時に、可動電極4と炉底電極8との間の電圧V「を電圧
検出器9で検出し、この検出電圧Vrと電圧設定器10
で予め定められた設定電圧Vdとの電圧偏差を減算器1
1で求め、さらにこの電圧偏差が零となるように調節部
12で比例積分演算を行ない、これによって得られた操
作出力(制御信号)を電極昇降用電動機13に与える。For this reason, conventionally, as shown in FIG. 3, after filling the inside of a DC arc furnace 1 with scrap 2 and closing a furnace lid 3 on the top of the furnace, a movable electrode such as a carbon electrode is inserted from the top of the furnace lid 3. Insert the furnace transformer 5, thyristor converter 6. A predetermined arc current is passed between the movable electrode 4 and the bottom electrode 8 via the smoothing reactor 7, and while controlling the position of the movable electrode 4 so as to always apply a desired voltage, the tip of the movable electrode 4 is The scrap 2 is sequentially melted by generating an arc. (The operating stage in which the movable electrode 4 is lowered while melting the scrap 2 and creating holes is called the poling stage.) In other words, when this arc occurs, the movable electrode 4 and the bottom electrode 8 A voltage V" between
The voltage deviation from the predetermined set voltage Vd is subtracted by subtractor 1.
1, the adjusting section 12 performs a proportional integral calculation so that this voltage deviation becomes zero, and the operation output (control signal) obtained thereby is given to the electric motor 13 for lifting and lowering the electrode.
そして、この電極昇降用電動機13は操作出力に基づい
て正転または逆転し、それに伴ってウィンチ14が一端
を固定端とするワイヤ15の他端を巻取りまたは巻戻す
ことにより、このワイヤ15を介してマスト16を昇降
制御する。この時、マスト16上部に水平に固定された
ホルダアーム17が一緒に昇降することにより、このホ
ルダアーム17を介して可動電極4が昇降され、可動電
極4と炉底電極8との間に所定の電圧が印加されて、可
動電極4の先端から所望形状のアークが発生する。The electric motor 13 for lifting and lowering the electrode rotates forward or backward based on the operation output, and the winch 14 accordingly winds or unwinds the other end of the wire 15, which has one end as a fixed end. The mast 16 is controlled to move up and down. At this time, the holder arm 17 horizontally fixed to the upper part of the mast 16 moves up and down together, so that the movable electrode 4 is raised and lowered via this holder arm 17, and a predetermined position is placed between the movable electrode 4 and the hearth bottom electrode 8. is applied, and an arc having a desired shape is generated from the tip of the movable electrode 4.
従って、この種の電極昇降制御方法は、設定電圧が検出
電圧よりも小(Vd−Vr<0)なる関係にある時は可
動電極4を下降させ、設定電圧が検出電圧よりも大(V
d−Vr>O)なる関係にある時は可動電極4を上昇さ
せるように制御を行なっている。なお、アーク電流の制
御においては、サイリスタ変換器6の直流出力側または
炉底電極8の出力側よりアーク電流を抽出し、この検出
電流I「と設定電流!dとの電流偏差が零となるよ・う
に自動電流調整器でゲート制御角αを求め、このゲート
制御角αに応じてサイリスタ変換器6のゲートを制御す
るようにしている。Therefore, in this type of electrode elevation control method, when the set voltage is smaller than the detected voltage (Vd-Vr<0), the movable electrode 4 is lowered, and the set voltage is larger than the detected voltage (Vd-Vr<0).
d-Vr>O), control is performed to raise the movable electrode 4. In controlling the arc current, the arc current is extracted from the DC output side of the thyristor converter 6 or the output side of the hearth bottom electrode 8, and the current deviation between the detected current I' and the set current !d becomes zero. The gate control angle α is determined using an automatic current regulator, and the gate of the thyristor converter 6 is controlled in accordance with this gate control angle α.
(発明が解決しようとする課8)
ところで、上述したような電極昇降制御方法では、基本
的には可動電極4と炉底電極8との間の電圧、すなわち
アーク電圧とアーク長が比例することから、アーク電圧
と電極位置も比例関係にあるものとし、可動電極4全昇
降制御することによってアーク電圧の制御を行なってい
る。すなわち、可動電極を上昇させるとアーク電圧も比
例して上昇し、逆に可動電極を下降させるとアーク電圧
は比例して低下するものとして、可動電極4の昇降制御
を行なっている。しかしながら、特にポーリング時やス
クラップ崩れ時(可動電極4の近傍位置にスクラップ2
が存在する状態の時)においては、アーク電圧と可動電
極の昇降位置は必ずしも比例関係にはないため、良好な
制御を行なうことができず、アーク切れが発生してしま
うという問題がある。すなわちこれは、ポーリング時に
はアークが空孔の側面に飛ぶ現象(ポーリング中に細い
穴を掘ったときに上方でアークが発生したり、あるいは
ポーリング後のスクラップ崩れで電極側面にスクラップ
が接触する)、いわゆるサイドアーク現象が発生するこ
とにより、可動電極をいくら上昇させても電圧が上昇せ
ず、最終的に上昇させ過ぎてアーク切れが発生するもの
である。(Issue 8 to be solved by the invention) By the way, in the electrode elevation control method as described above, basically the voltage between the movable electrode 4 and the furnace bottom electrode 8, that is, the arc voltage, and the arc length are proportional. Therefore, it is assumed that the arc voltage and the electrode position are also in a proportional relationship, and the arc voltage is controlled by controlling the entire movable electrode 4 to move up and down. That is, when the movable electrode 4 is raised, the arc voltage increases proportionally, and when the movable electrode is lowered, the arc voltage decreases proportionally. However, especially when polling or scrap collapses (scrap 2 is placed near the movable electrode 4),
2), since the arc voltage and the vertical position of the movable electrode are not necessarily in a proportional relationship, good control cannot be performed and there is a problem that arc breakage occurs. In other words, this is a phenomenon in which the arc flies to the side of the hole during poling (an arc occurs above when a thin hole is dug during poling, or scrap comes into contact with the side of the electrode due to scrap crumbling after poling), Due to the so-called side arc phenomenon, the voltage does not increase no matter how much the movable electrode is raised, and eventually the voltage is raised too much and arc breakage occurs.
そして、このアーク切れが発生した時には、可動電極4
を溶鋼面まで下降させてその都度再点弧を繰返して行な
わなければならない。この結果、直流アーク炉1の操業
時間が伸びて生産性の低下および原単位の悪化を招くば
かりでなく、可動電極4を下降させて再点弧を行なうま
での間は投入電力が低下して不安定となる。When this arc breakage occurs, the movable electrode 4
must be lowered to the molten steel surface and re-ignited each time. As a result, not only does the operating time of the DC arc furnace 1 become longer, resulting in lower productivity and worse unit consumption, but also the input power is reduced until the movable electrode 4 is lowered and re-ignited. Becomes unstable.
本発明は上記のような問題を解決するために成されたも
ので、その目的はポーリング時におけるサイドアーク現
象によるアーク切れの発生を無(して、生産性の向上、
原単位の向上、ならびに投入電力の安定化を図ることが
可能な直流アーク炉の電極昇降制御方法を提供すること
を目的とする。The present invention has been made to solve the above-mentioned problems, and its purpose is to eliminate arc breakage due to side arc phenomenon during polling, improve productivity,
The object of the present invention is to provide a method for controlling the elevation of electrodes in a DC arc furnace, which is capable of improving unit consumption and stabilizing input power.
(課題を解決するための手段および作用)上記の目的を
達成するために本発明では、直流アーク炉内の被溶解物
を溶解する可動電極に印加される電圧を検出し、この検
出電圧と予め定められた設定電圧との電圧偏差に応じて
、可動電極の昇降制御を行なう直流アーク炉の電極昇降
制御方法において、可動電極が連続して規定値以上上昇
したことを検知し、可動電極の上昇量に対応して増加し
た可動電極の電圧を検出し、可動電極の上昇量に対する
可動電極電圧の増加量が規定値以下である時に、可動電
極の上昇方向の作動を規定時間停止させるようにするこ
とにより、上昇限界値以上の可動電極の上昇を阻止して
、ボー、リング時におけるサイドアーク現象によってア
ーク切れが発生しないようにして、良好な電極昇降制御
を行なうことが可能となる。(Means and operations for solving the problem) In order to achieve the above object, the present invention detects the voltage applied to the movable electrode that melts the material to be melted in the DC arc furnace, and In a method for controlling the elevation of a movable electrode in a DC arc furnace, the elevation of the movable electrode is controlled in accordance with the voltage deviation from a predetermined set voltage. Detects the voltage of the movable electrode that has increased in accordance with the amount of rise, and when the amount of increase in the movable electrode voltage with respect to the amount of rise of the movable electrode is less than a specified value, the operation of the movable electrode in the upward direction is stopped for a specified period of time. By doing so, it is possible to prevent the movable electrode from rising above the rising limit value, to prevent arc breakage from occurring due to the side arc phenomenon during bow and ring, and to perform good electrode elevation control.
(実施例)
以下、本発明の一実施例について図面を参照して説明す
る。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.
第1図は、本発明の方法を適用した直流アーク炉の電極
昇降制御システムの全体構成例を示す図であり、第3図
と同一部分には同一符号を付してその説明を省略し、こ
こでは異なる部分についてのみ述べる。FIG. 1 is a diagram showing an example of the overall configuration of an electrode lifting control system for a DC arc furnace to which the method of the present invention is applied, and the same parts as in FIG. Only the different parts will be described here.
本システムは第1図に示すように、電圧検出器9と、電
圧設定器10と、減算器11と、速度設定制御器18と
、上昇/下降切換回路19と、速度検出器20と、速度
制御器21と、位置検出器22と、電極上昇限界演算回
路23と、タイマー回路24とから構成している。As shown in FIG. 1, this system includes a voltage detector 9, a voltage setter 10, a subtracter 11, a speed setting controller 18, a rise/fall switching circuit 19, a speed detector 20, and a speed It is composed of a controller 21, a position detector 22, an electrode rise limit calculation circuit 23, and a timer circuit 24.
ここで、電圧検出器9は可動電極4と炉底電極8との間
の電圧V「を検出するものであり、電圧設定器10は予
め設定電圧Vdを設定するものである。また、減算器1
1は、電圧検出器9で検出された電圧V「と、電圧設定
器1oで設定された設定電圧Vdとの電圧偏差(Vd−
Vr)を算出するものである。さらに、速度設定制御器
18は減算器11からの電圧偏差を入力とし、当該電圧
偏差が零となるように比例積分演算を行なって速度設定
値(絶対値)を出力するものである。Here, the voltage detector 9 detects the voltage V' between the movable electrode 4 and the bottom electrode 8, and the voltage setter 10 sets the set voltage Vd in advance. 1
1 is the voltage deviation (Vd-
Vr). Further, the speed setting controller 18 inputs the voltage deviation from the subtractor 11, performs proportional integral calculation so that the voltage deviation becomes zero, and outputs a speed setting value (absolute value).
一方、上昇/下降切換回路19は減算器11がらの電圧
偏差、および速度設定制御器18がらの速度設定値を入
力とし、当該電圧偏差の正負の極性に応じて速度設定値
に正または負の極性を付加して上昇または下降方向の移
動速度指令値として出力するものである。すなわち、電
圧偏差が正の時には上昇方向の移動速度指令値を、また
電圧偏差が負の時には下降方向の移動速度指令値を出力
するものである。また、速度検出器20は電極昇降用電
動機13の回転速度、すなわち可動電極4の昇降速度を
検出するものである。さらに、速度制御器21は上昇/
下降切換回路19からの移動速度指令値、および速度検
出器20からの検出速度を入力とし、両者の偏差が零と
なるように比例積分演算を行なって操作出力(#御信号
)を電極昇降用電動機13に与えるものである。On the other hand, the rise/fall switching circuit 19 inputs the voltage deviation from the subtracter 11 and the speed setting value from the speed setting controller 18, and changes the speed setting value to positive or negative depending on the positive or negative polarity of the voltage deviation. It adds polarity and outputs it as a moving speed command value in the upward or downward direction. That is, when the voltage deviation is positive, a moving speed command value in the upward direction is output, and when the voltage deviation is negative, a moving speed command value in the downward direction is output. Further, the speed detector 20 detects the rotational speed of the electrode lifting motor 13, that is, the lifting speed of the movable electrode 4. Furthermore, the speed controller 21 increases/
The moving speed command value from the lowering switching circuit 19 and the detected speed from the speed detector 20 are input, proportional integral calculation is performed so that the deviation between the two becomes zero, and the operation output (# control signal) is used for electrode elevation. This is given to the electric motor 13.
一方、位置検出器22は、可動電極4の位置を検出する
ものである。また、電極上昇限界演算回路23は、電圧
検出器9からの検出電圧Vr、Ti圧設定器10からの
設定電圧Vd、位置検出器22からの検出位置を入力と
し、可動電極4の上昇量ΔLに対応して増加した可動電
極4の電圧ΔVを検出して、可動電極4の上昇量に対す
る可動電極電圧の増加量、すなわち第2図に示すような
電位傾度X−ΔV/ΔLが規定値以下である時に、動作
信号を出力するものである。さらに、タイマー回路24
は電極上昇限界演算回路23からの動作信号を入力とし
、当該動作信号により規定時間Tだけ動作して、その動
作信号を上記速度設定制御器18へ与えて上昇速度設定
値零を設定するものである。この場合、規定時間Tとし
ては、サイドアーク現象に起因するスクラップ(例えば
、スクラップ崩れで可動電極側面に接触したスクラップ
)が溶けるのに要する時間相当に設定している。On the other hand, the position detector 22 detects the position of the movable electrode 4. Further, the electrode rise limit calculation circuit 23 inputs the detected voltage Vr from the voltage detector 9, the set voltage Vd from the Ti pressure setting device 10, and the detected position from the position detector 22, and receives the rising amount ΔL of the movable electrode 4. Detects the voltage ΔV of the movable electrode 4 that has increased in response to the amount of increase in the movable electrode 4, and determines that the amount of increase in the movable electrode voltage with respect to the amount of rise of the movable electrode 4, that is, the potential gradient X-ΔV/ΔL as shown in FIG. It outputs an operation signal when . Furthermore, the timer circuit 24
receives the operation signal from the electrode rise limit calculation circuit 23, operates for a specified time T based on the operation signal, and supplies the operation signal to the speed setting controller 18 to set the rise speed setting value zero. be. In this case, the prescribed time T is set to correspond to the time required for the scrap caused by the side arc phenomenon (for example, scrap that has come into contact with the side surface of the movable electrode due to scrap collapse) to melt.
次に、本実施例における直流アーク炉の電極昇降制御方
法について説明する。Next, a method for controlling the electrode elevation of the DC arc furnace in this embodiment will be explained.
いま、サイリスタ変換器6を点弧することによって、直
流アーク炉1の可動電極4と炉底電極8との間に直流高
電圧が印加され、可動電極4の先端からアークが発生し
て直流アーク炉1の操業が開始され、最初の段階である
ポーリング期に移行する。一方、可動電極4と炉底電極
8との間の電圧Vrが電圧検出器9で検出され、この検
出電圧Vrは減算器11で設定電圧Vdとの電圧偏差(
Vd−Vr)が求められる。次に、速度設定制御器18
ではこの電圧偏差が零となるように比例積分演算が行な
われ、電圧偏差に対応した大きさの速度設定値が上昇/
下降切換回路19に入力される。そして、上昇/下降切
換回路19では減算器11からの電圧偏差の正負の極性
に応じて、上昇または下降方向の移動速度指令値が得ら
れる。Now, by igniting the thyristor converter 6, a DC high voltage is applied between the movable electrode 4 and the furnace bottom electrode 8 of the DC arc furnace 1, and an arc is generated from the tip of the movable electrode 4, causing a DC arc. The operation of the furnace 1 is started, and the process moves to the polling period, which is the first stage. On the other hand, the voltage Vr between the movable electrode 4 and the furnace bottom electrode 8 is detected by the voltage detector 9, and this detected voltage Vr is detected by the subtractor 11, and the voltage deviation (
Vd-Vr) is calculated. Next, the speed setting controller 18
Then, proportional-integral calculation is performed so that this voltage deviation becomes zero, and the speed setting value increases /
It is input to the downward switching circuit 19. Then, in the ascending/descending switching circuit 19, a moving speed command value in the ascending or descending direction is obtained depending on the positive or negative polarity of the voltage deviation from the subtracter 11.
すなわち、電圧偏差が正の時には上昇方向の移動速度指
令値が、また電圧偏差が負の時には下降方向の移動速度
指令値が得られ、これが速度制御器21に対して出力さ
れる。さらに、速度制御器21では上昇/下降切換回路
19からの移動速度指令値と、速度検出器20からの検
出速度との偏差が求められ、この偏差が零となるように
比例積分演算を行なって操作出力(制御信号)が電極昇
降用電動機13に対して与えられる。そして、この速度
制御器21からの移動速度指令値に応じて、電極昇降用
電動機13が指令速度で正転または逆転することにより
、可動電極4が上昇制御または下降制御されることにな
る。That is, when the voltage deviation is positive, a moving speed command value in the upward direction is obtained, and when the voltage deviation is negative, a moving speed command value in the downward direction is obtained, and this is output to the speed controller 21. Furthermore, the speed controller 21 calculates the deviation between the moving speed command value from the up/down switching circuit 19 and the detected speed from the speed detector 20, and performs proportional integral calculation so that this deviation becomes zero. An operation output (control signal) is given to the electric motor 13 for lifting and lowering the electrode. Then, in accordance with the movement speed command value from the speed controller 21, the electrode elevating motor 13 rotates forward or reverse at the commanded speed, whereby the movable electrode 4 is controlled to rise or fall.
一方、可動電極4の位置が位置検出器22で検出され、
この検出位置は電圧検出器9からの検出電圧Vrおよび
電圧設定器10からの設定電圧Vdと共に、電極上昇限
界演算回路23に入力される。この場合、例えばポーリ
ング中に細い穴を掘ったときに上方でアークが発生した
り、あるいはポーリング後のスクラップ崩れで可動電極
4の側面にスクラップ2が接触するこ乏によってサイド
アーク現象が発生している時には、可動電極4を規定値
ΔL以上連続して上昇させても、当該上昇量に対応した
電圧分ΔVだけ電圧が上昇しないため、可動電極4の上
昇量ΔLに対する可動電極電圧の増加量ΔV1すなわち
電位傾度X−ΔV/ΔLが規定値以下となり、電極上昇
限界演算回路23から動作信号がタイマー回路24に対
して出力される。すると、タイマー回路24がこの動作
信号によって動作して、その動作信号が規定時間Tだけ
速度設定制御器18へ与えられることにより、その上昇
速度設定値がロックされる、すなわち大きさ零の上昇速
度設定値が上昇/下降切換回路19に入力される。従っ
て、サイドアーク現象に起因するスクラップ2が溶ける
のに要するこの規定時間Tの間は、電極昇降用電動機1
3の上昇運転が停止することによって可動電極4の上昇
も停止し、上昇限界を超えた可動電極4の上昇制御が阻
止されるため、アーク切れが発生することはない。On the other hand, the position of the movable electrode 4 is detected by the position detector 22,
This detected position is input to the electrode rise limit calculation circuit 23 together with the detected voltage Vr from the voltage detector 9 and the set voltage Vd from the voltage setter 10. In this case, for example, when a narrow hole is dug during poling, an arc is generated above, or a side arc phenomenon occurs due to the scrap 2 not coming into contact with the side surface of the movable electrode 4 due to scrap crumbling after poling. When the movable electrode 4 is raised continuously by the specified value ΔL or more, the voltage does not increase by the voltage ΔV corresponding to the increase amount, so the increase amount ΔV1 of the movable electrode voltage with respect to the increase amount ΔL of the movable electrode 4 That is, the potential gradient X-ΔV/ΔL becomes less than the specified value, and the electrode rise limit calculation circuit 23 outputs an operation signal to the timer circuit 24. Then, the timer circuit 24 is operated by this operating signal, and the operating signal is applied to the speed setting controller 18 for a specified time T, thereby locking the rising speed setting value, that is, the rising speed with zero magnitude. The set value is input to the rise/fall switching circuit 19. Therefore, during this specified time T required for the scrap 2 caused by the side arc phenomenon to melt, the electrode lifting motor 1
By stopping the lifting operation of No. 3, the lifting of the movable electrode 4 is also stopped, and the lifting control of the movable electrode 4 that exceeds the lifting limit is prevented, so arc breakage does not occur.
また、サイドアーク現象に起因するスクラップ2が溶は
切ってサイドアーク現象がなくなった時点では、可動電
極4を規定値ΔL以上連続して上昇させれば、当該上昇
量に対応した電圧分ΔVだけ電圧が上昇するため、電位
傾度X−ΔV/ΔLが規定値以上となり、電極上昇限界
演算回路23からは動作信号が出力されない。“従って
、本来のように電圧偏差に対応した大きさの速度設定値
に応じた移動速度指令値に基づいて、可動電極4の昇降
制御が行なわれることになる。In addition, when the scrap 2 caused by the side arc phenomenon is melted and the side arc phenomenon disappears, if the movable electrode 4 is continuously raised by more than the specified value ΔL, the voltage ΔV corresponding to the amount of increase is increased. Since the voltage increases, the potential gradient X-ΔV/ΔL exceeds the specified value, and the electrode rise limit calculation circuit 23 does not output an operation signal. ``Therefore, as usual, the movable electrode 4 is controlled to move up and down based on the movement speed command value that corresponds to the speed setting value that corresponds to the voltage deviation.
上述したように本実施例では、直流アーク炉1内のスク
ラップ2を溶解する可動電極4に印加される電圧Vrを
電圧検出器9で検出し、この検出電圧Vrと電圧設定器
10で設定された設定電圧Vdとの電圧偏差に応じて、
可動電極4の昇降制御を行なうに際して、可動電極4が
連続して規定値以上上昇したことを検知し、可動電極4
の上昇量ΔLに対応して増加した可動電極の電圧を検出
し、可動電極4の上昇量ΔLに対する可動電極電圧の増
加量ΔV1すなわち電位傾度X−ΔV/ΔLが規定値以
下である時に、可動電極4の上昇方向の作動を規定時間
Tだけ停止させるようにしたものである。As described above, in this embodiment, the voltage Vr applied to the movable electrode 4 for melting the scrap 2 in the DC arc furnace 1 is detected by the voltage detector 9, and the detected voltage Vr and the voltage set by the voltage setter 10 are set. Depending on the voltage deviation from the set voltage Vd,
When controlling the elevation of the movable electrode 4, it is detected that the movable electrode 4 has risen continuously by more than a specified value, and the movable electrode 4 is
The voltage of the movable electrode that has increased corresponding to the amount of increase ΔL of the movable electrode 4 is detected, and when the amount of increase ΔV1 of the movable electrode voltage with respect to the amount of increase ΔL of the movable electrode 4, that is, the potential gradient The operation of the electrode 4 in the upward direction is stopped for a specified time T.
従って、直流アーク炉1のポーリング時に、ポーリング
中に細い穴を掘ったときに上方でアークが発生したり、
あるいはポーリング後のスクラップ崩れで電極側面にス
クラップ2が接触することによるサイドアーク現象が発
生した場合に、可動電極4を上昇させ過ぎてアーク切れ
が発生するのを防止することができる。よって、可動電
極4の上昇→アーク切れの発生→再点弧という一連の動
作を繰返して行なうことが不要となるため、直流アーク
炉1の操業時間が伸びることがなく、生産性の向上およ
び原単位の向上を図ることが可能となると共に、可動電
極4を下降させて再点弧を行なうまでの間の投入電力の
不安定を解消して投入電力の安定化を図り、止電時間を
減少させることが可能となることにより、ポーリング時
においても極めて良好な制御を行なうことが可能となる
。Therefore, when poling the DC arc furnace 1, if a thin hole is dug during poling, an arc may occur above.
Alternatively, when a side arc phenomenon occurs due to the scrap 2 coming into contact with the side surface of the electrode due to scrap collapse after poling, it is possible to prevent arc breakage from occurring due to the movable electrode 4 being raised too high. Therefore, it is no longer necessary to repeat the series of operations of raising the movable electrode 4 → occurrence of arc breakage → re-ignition, so the operating time of the DC arc furnace 1 is not extended, improving productivity and saving energy. In addition to making it possible to improve the unit, it also stabilizes the input power by eliminating the instability of the input power until the movable electrode 4 is lowered and re-ignition is performed, reducing the power outage time. This makes it possible to perform extremely good control even during polling.
尚、上記実施例において、アーク電圧はその変動が激し
いので、電圧検出器9と減算器11との間に、ローパイ
フィルターを設けて検出電圧Vrを平均化したり、積分
回路または統計処理回路を設けて検出電圧Vrを平均化
処理するようにしてもよい。In the above embodiment, since the arc voltage fluctuates rapidly, a low pie filter is provided between the voltage detector 9 and the subtractor 11 to average the detected voltage Vr, or an integrating circuit or a statistical processing circuit is installed. Alternatively, the detection voltage Vr may be averaged.
(発明の効果)
以上説明したように本発明によれば、可動電極が連続し
て規定値以上上昇したことを検知し、可動電極の上昇量
に対応して増加した可動電極の電圧を検出し、可動電極
の上昇量に対する可動電極電圧の増加量が規定値以下で
ある時に、可動電極の上昇方向の作動を規定時間停止さ
せるようにしたので、ポーリング時におけるサイドアー
ク現象によるアーク切れの発生を無くして、生産性の向
上、原単位の向上、ならびに投入電力の安定化を図るこ
とが可能な直流アーク炉の電極昇降制御方法が提供でき
る。(Effects of the Invention) As explained above, according to the present invention, it is possible to detect that the movable electrode has increased continuously by more than a specified value, and to detect the voltage of the movable electrode that has increased in accordance with the amount of rise of the movable electrode. , when the amount of increase in the movable electrode voltage relative to the amount of rise of the movable electrode is less than a specified value, the movement of the movable electrode in the upward direction is stopped for a specified period of time, thereby preventing the occurrence of arc breakage due to the side arc phenomenon during polling. It is possible to provide a method for controlling the electrode elevation of a DC arc furnace, which can improve productivity, improve unit consumption, and stabilize input power by eliminating the above.
第1図は本発明を適用した直流アーク炉の電極昇降制御
システムの一実施例を示す全体構成図、第2図は同実施
例における見掛は電位傾度を説明するための図、第3図
は従来の直流アーク炉の電極昇降制御システムを示す構
成図である。
1・・・直流アーク炉、2・・・スクラップ、4・・・
可動電極、5・・・炉用変圧器、6・・・サイリスタ変
換器、7・・・平滑リアクトル、8・・・炉底電極、9
・・・電圧検出器、10・・・電圧設定器、11・・・
減算器、18・・・速度設定制御器、19・・・上昇/
下降切換回路、20・・・速度検出器、21・・・速度
制御器、22・・・位置検出器、23・・・電極上昇上
限演算回路、24・・・タイマー回路。
第2図Fig. 1 is an overall configuration diagram showing an embodiment of an electrode elevation control system for a DC arc furnace to which the present invention is applied, Fig. 2 is a diagram for explaining the apparent potential gradient in the embodiment, and Fig. 3 1 is a configuration diagram showing a conventional electrode lifting/lowering control system for a DC arc furnace. 1... DC arc furnace, 2... Scrap, 4...
Movable electrode, 5... Furnace transformer, 6... Thyristor converter, 7... Smoothing reactor, 8... Hearth bottom electrode, 9
... Voltage detector, 10... Voltage setting device, 11...
Subtractor, 18...Speed setting controller, 19...Rise/
Descending switching circuit, 20... Speed detector, 21... Speed controller, 22... Position detector, 23... Electrode rise upper limit calculation circuit, 24... Timer circuit. Figure 2
Claims (1)
れる電圧を検出し、この検出電圧と予め定められた設定
電圧との電圧偏差に応じて、前記可動電極の昇降制御を
行なう直流アーク炉の電極昇降制御方法において、 前記可動電極が連続して規定値以上上昇したことを検知
し、 前記可動電極の上昇量に対応して増加した可動電極の電
圧を検出し、 前記可動電極の上昇量に対する可動電極電圧の増加量が
規定値以下である時に、前記可動電極の上昇方向の作動
を規定時間停止させるようにしたことを特徴とする直流
アーク炉の電極昇降制御方法。[Claims] A voltage applied to a movable electrode that melts a material to be melted in a DC arc furnace is detected, and the voltage applied to the movable electrode is determined according to the voltage deviation between the detected voltage and a predetermined set voltage. In a method for controlling electrode elevation of a DC arc furnace that performs elevation control, detecting that the movable electrode has continuously risen above a specified value, and detecting the voltage of the movable electrode that has increased in accordance with the amount of rise of the movable electrode. , Electrode elevation control for a DC arc furnace, characterized in that when the amount of increase in the movable electrode voltage relative to the amount of elevation of the movable electrode is below a specified value, the operation of the movable electrode in the upward direction is stopped for a specified period of time. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63205807A JP2769326B2 (en) | 1988-08-19 | 1988-08-19 | Control method for raising and lowering electrodes of DC arc furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63205807A JP2769326B2 (en) | 1988-08-19 | 1988-08-19 | Control method for raising and lowering electrodes of DC arc furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0257888A true JPH0257888A (en) | 1990-02-27 |
JP2769326B2 JP2769326B2 (en) | 1998-06-25 |
Family
ID=16513017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63205807A Expired - Lifetime JP2769326B2 (en) | 1988-08-19 | 1988-08-19 | Control method for raising and lowering electrodes of DC arc furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2769326B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5403727A (en) * | 1990-11-15 | 1995-04-04 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Process for preparing neotrehalose and its uses |
JP2003068445A (en) * | 2001-08-28 | 2003-03-07 | Hitachi Zosen Corp | Electrode elevation control equipment in plasma melting furnace |
-
1988
- 1988-08-19 JP JP63205807A patent/JP2769326B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5403727A (en) * | 1990-11-15 | 1995-04-04 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Process for preparing neotrehalose and its uses |
US5714476A (en) * | 1990-11-15 | 1998-02-03 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Process for preparing compositions containing neotrehalose |
JP2003068445A (en) * | 2001-08-28 | 2003-03-07 | Hitachi Zosen Corp | Electrode elevation control equipment in plasma melting furnace |
Also Published As
Publication number | Publication date |
---|---|
JP2769326B2 (en) | 1998-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4607373A (en) | Control system for a DC arc furnace | |
JPH0257888A (en) | Electrode elevation control method for dc arc furnace | |
JP2769327B2 (en) | Control method for raising and lowering electrodes of DC arc furnace | |
JPH0254892A (en) | Voltage control method of dc arc furnace | |
JPH0254890A (en) | Position control method of movable electrode in dc arc furnace | |
JPH0261489A (en) | Control of electric power for dc arc furnace | |
JPH0261988A (en) | Power control method for dc arc furnace | |
JP2665296B2 (en) | DC arc furnace voltage controller | |
JPH0257887A (en) | Electrode position control method for dc arc furnace | |
JP2001004281A (en) | Controller for electrode lifting device for arc furnace | |
JP6910741B2 (en) | Electrode lifting device for arc furnace | |
JP2641914B2 (en) | Ignition circuit control method for DC arc furnace | |
JPH04300056A (en) | Plasma torch for heating molten steel in tandish | |
KR100479832B1 (en) | Electrode feed rate control method for Electro-Slag Remelting process | |
JP2641913B2 (en) | Operation method of DC arc furnace | |
JPH02115684A (en) | Controlling method for arc electrode position of dc arc furnace | |
JP2683374B2 (en) | How to prevent arc breakage in a DC arc furnace | |
JP2003083680A (en) | Electrode lifting apparatus for arc furnace | |
JP2002340320A (en) | Electrode elevation control method and device thereof in plasma type melting furnace | |
JPS61143994A (en) | Initial operation monitoring for refining arc furnace | |
JPH07110400B2 (en) | Plasma heating method and apparatus for molten steel in tundish | |
JPH06176866A (en) | Control device for electrode of melting furnace | |
JP2000048949A (en) | Electrode control system for arc furnace | |
JP2003133054A (en) | Electrode elevation control system for a.c. arc furnace, a.c. arc furnace and operation method of a.c. arc furnace | |
JPH06223965A (en) | Arc furnace electrode control device |