JP2641913B2 - Operation method of DC arc furnace - Google Patents

Operation method of DC arc furnace

Info

Publication number
JP2641913B2
JP2641913B2 JP63205802A JP20580288A JP2641913B2 JP 2641913 B2 JP2641913 B2 JP 2641913B2 JP 63205802 A JP63205802 A JP 63205802A JP 20580288 A JP20580288 A JP 20580288A JP 2641913 B2 JP2641913 B2 JP 2641913B2
Authority
JP
Japan
Prior art keywords
movable electrode
electrode
molten steel
arc
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63205802A
Other languages
Japanese (ja)
Other versions
JPH0254889A (en
Inventor
範夫 青
洋 清水
昭一 高橋
敏道 牧
金造 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
JFE Engineering Corp
Original Assignee
Fuji Electric Co Ltd
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Nippon Kokan Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63205802A priority Critical patent/JP2641913B2/en
Publication of JPH0254889A publication Critical patent/JPH0254889A/en
Application granted granted Critical
Publication of JP2641913B2 publication Critical patent/JP2641913B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Discharge Heating (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、直流アーク炉の可動電極(アーク電極とも
呼ぶ)の位置制御を行う直流アーク炉の操業方法に係わ
り、特に溶融金属の昇温効率を向上させる直流アーク炉
の操業方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method of operating a DC arc furnace for controlling the position of a movable electrode (also called an arc electrode) of a DC arc furnace, and in particular, to increasing the temperature of a molten metal. The present invention relates to a method of operating a DC arc furnace for improving efficiency.

〔従来の技術〕[Conventional technology]

一般に、溶解原料である鉄屑等の固体金属(以下、ス
クラップと指称する)を溶解する場合、第4図(a)の
如くアーク炉1内にスクラップ2を装入した後可動電極
3を昇降制御しながら可動電極3と炉底電極4間に所定
の直流電圧を印加して可動電極先端からアークを発生さ
せてスクラップ2を溶解していく。そして、一回目装入
したスクラップ2が第4図(b)の如く充分に溶解する
と再度アーク炉1内にスクラップ2を装入する追装工程
に入り、所定量の溶融金属(以下,溶鋼と指称する)5
を確保する迄スクラップ装入工程(初装工程)から前記
スクラップの追装工程を繰り返し、所定量の溶鋼を得る
べき最後の装入スクラップ2が完全に溶解すると第4図
(c)の如く溶け落ちの状態となる。しかる後、第4図
(b)の如く溶鋼5の成分調整を行うために溶鋼5の昇
温制御を行う精錬工程に入る。この精錬工程を終えると
溶鋼5の出鋼を行って操業を終了する。
Generally, when melting a solid metal such as iron scrap as a raw material for melting (hereinafter, referred to as scrap), the movable electrode 3 is moved up and down after charging the scrap 2 into the arc furnace 1 as shown in FIG. While controlling, a predetermined DC voltage is applied between the movable electrode 3 and the furnace bottom electrode 4 to generate an arc from the tip of the movable electrode, thereby melting the scrap 2. Then, when the scrap 2 charged for the first time is sufficiently melted as shown in FIG. 4 (b), a reloading step of charging the scrap 2 into the arc furnace 1 again is performed, and a predetermined amount of molten metal (hereinafter referred to as molten steel). 5)
The scrap loading step (initial loading step) and the scrap reloading step are repeated until a predetermined amount of molten steel is obtained. When the last loaded scrap 2 for obtaining a predetermined amount of molten steel is completely melted, the scrap is melted as shown in FIG. 4 (c). It falls. Thereafter, as shown in FIG. 4 (b), a refining process for controlling the temperature rise of the molten steel 5 is performed to adjust the components of the molten steel 5. When this refining process is completed, tapping of the molten steel 5 is performed and the operation is completed.

中,6は炉蓋、7は炉壁水冷パネル、8はスラグであ
る。
Reference numerals 6 and 7 denote a furnace lid, 7 a furnace wall water cooling panel, and 8 a slag.

しかして、従来、溶け落ち工程および精錬工程等で溶
鋼5の昇温を行う場合、交流アーク炉では予め電圧およ
び電流を設定し、両電流3,4間の発生電圧およびアーク
電流が前記設定電圧および設定電流になるように可動電
極3を昇降制御しながら可動電極3からショートアーク
を発生して溶鋼上のスラグ8の厚みを増やし、可動電極
3先端からのアークをスラグ8内に突っ込むようにして
スラグ8を泡立てる,いわゆるサブマージ操業を行って
いる。従って、この交流アーク炉ではスラグ厚さと可動
電極3のアーク長との関係から上記電圧および電流が設
定され、専らアーク電圧一定制御を行う方法である。
Conventionally, when raising the temperature of molten steel 5 in the burn-through step and the refining step, etc., in an AC arc furnace, the voltage and current are set in advance, and the generated voltage and arc current between both currents 3 and 4 are set to the set voltage. A short arc is generated from the movable electrode 3 while raising and lowering the movable electrode 3 so as to reach the set current, the thickness of the slag 8 on the molten steel is increased, and the arc from the tip of the movable electrode 3 is inserted into the slag 8. So-called submerge operation to foam slag 8 is performed. Therefore, in this AC arc furnace, the above voltage and current are set from the relationship between the slag thickness and the arc length of the movable electrode 3, and this is a method for exclusively controlling the arc voltage constant.

ところで、直流アーク炉において可動電極位置と電圧
との関係を調べた結果、数10KA以上の大電流アークで
は、常に第5図に示すような特性パターンとなることが
見い出された。同図において横軸は電極位置lg、縦軸は
両電極間発生電圧vである。そこで、以上のような特性
パターンについて種々実験検討を重ねた結果、電極位置
lgと溶鋼面5a,クラグ面8aとは第6図のような位置関係
にあることが分った。なお、第5図および第6図の〜
はそれぞれ対応関係にある。そのうち、−間は可
動電極3のアークジェットによって急速に溶鋼面5aがへ
こみ、その時間オーダは1秒程度なる。このときの電極
上昇距離は50mm程度となる。
By the way, as a result of examining the relationship between the position of the movable electrode and the voltage in the DC arc furnace, it was found that the characteristic pattern shown in FIG. In the figure, the horizontal axis represents the electrode position lg, and the vertical axis represents the voltage v generated between both electrodes. Therefore, as a result of repeated experimental studies on the above characteristic patterns, the electrode position
It was found that lg, the molten steel surface 5a, and the clag surface 8a had a positional relationship as shown in FIG. 5 and 6.
Are in correspondence. Among them, between −, the molten steel surface 5a is rapidly dented by the arc jet of the movable electrode 3, and the time order is about 1 second. The electrode lift distance at this time is about 50 mm.

一方、−間では、アークジェットによる溶鋼5の
へこみのために可動電極3を引上げると、この電極上昇
と溶鋼面5aのへこみの減少とが相殺されて可動電極3を
引き上げてもアーク長が伸びず、かつ、溶鋼へこみが小
さくなるために発生電圧が高くならず専ら溶鋼へこみの
変動で電圧変動だけが生ずる現象となる。そこで、この
−間において溶鋼5,可動電極位置lgおよびアーク等
の関係を考慮しつつ昇温熱効率やスラグメタル反応等に
ついて検討すると、〜間の電圧変化域での電極位置
制御よりも−間,特に近傍での電極位置制御の方
が良好であることが分った。なお、−間では溶鋼面
5aが殆んど変化せず、アーク長に応じた電圧が発生す
る。
On the other hand, between-, when the movable electrode 3 is pulled up due to the dent of the molten steel 5 by the arc jet, the rise of the electrode and the decrease in the dent of the molten steel surface 5a are offset, and the arc length is increased even if the movable electrode 3 is pulled up. Since the indentation does not increase and the dent of the molten steel becomes small, the generated voltage does not increase, and only the voltage fluctuation is caused by the fluctuation of the dent of the molten steel. In consideration of the relationship between the molten steel 5, the movable electrode position lg, the arc, and the like, the heat-up heat efficiency and the slag metal reaction, etc. are examined during this period. In particular, it has been found that the electrode position control in the vicinity is better. It should be noted that between-is the molten steel surface
5a hardly changes, and a voltage corresponding to the arc length is generated.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従って、大電流アークを用いた直流アーク炉において
は、以上のような特性パターンを有するに拘らず、従来
の交流アーク炉のようにスラグ厚みとアーク長とから電
圧および電流を設定し、これらの設定値に基づいてアー
ク電圧一定制御を行うものでは、上述したように−
間でのアークジェットによる溶鋼5のへこみ部分では可
動電極位置を変化させても電圧変化がないので全く制御
不能状態となり、最適な状態で溶鋼5の昇温を高効率に
制御できない問題がある。また、の状態ではアークか
らの放射熱が炉壁などに向うため、溶鋼の昇温度効率が
の状態に比べて低いという問題がある。
Therefore, in a DC arc furnace using a large current arc, voltage and current are set from the slag thickness and the arc length as in a conventional AC arc furnace, regardless of having the above characteristic patterns, and these are set. When the constant arc voltage control is performed based on the set value, as described above,
There is a problem that the voltage is not changed even if the position of the movable electrode is changed at the dent portion of the molten steel 5 due to the arc jet between them, so that the state becomes completely uncontrollable, and the temperature rise of the molten steel 5 cannot be efficiently controlled in an optimum state. In addition, in the state, the radiant heat from the arc is directed to the furnace wall and the like, so that there is a problem that the temperature rising efficiency of the molten steel is lower than in the state.

本発明は以上のような不具合を改善するためになされ
たもので、直流アーク炉の溶鋼昇温,精錬工程において
溶鋼の昇音効率の向上を図って精錬電力の低減化および
精錬時間の短縮化を図り、炉壁への熱損失の低減を図る
と共に溶鋼およびスラグの撹拌向上により所要とする温
度および成分の溶鋼を得る直流アーク炉の操業方法を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and aims to reduce the refining power and shorten the refining time by improving the efficiency of raising the sound of molten steel in the heating and refining process of a molten steel in a DC arc furnace. Accordingly, it is an object of the present invention to provide a method of operating a DC arc furnace in which heat loss to a furnace wall is reduced, and molten steel having a required temperature and composition is obtained by improving stirring of molten steel and slag.

〔課題を解決するための手段および作用〕[Means and actions for solving the problem]

本発明による直流アーク炉の操業方法は上記目的を達
成するために、可動電極が溶鋼面に接する点を基準点と
して、予め可動電極の位置と可動電極の電位と関係を求
め、前記可動電極の上昇に対して可動電極の電位が急激
に上昇した後一時的に変化が微少になる点をA点とし、
その後可動電極の上昇に伴って再び前記可動電極の電位
が上昇し始める点をB点とするとき、スクラップの溶解
過程では可動電極電位が前記B点に対応する可動電極電
位以上の設定電位になるように可動電極位置を制御し、
一方、溶鋼の昇温,精錬過程等においては、可動電極位
置が前記A点とB点の中間の設定位置になるように前記
可動電極位置を制御することにより、溶鋼の昇温を高
め、かつ、スラグ金属反応を最適な状態に制御するもの
である。
The operation method of the DC arc furnace according to the present invention, in order to achieve the above object, with a point where the movable electrode is in contact with the molten steel surface as a reference point, determine in advance the relationship between the position of the movable electrode and the potential of the movable electrode, Point A is a point at which the potential of the movable electrode suddenly rises with respect to the rise and then the change is temporarily small.
Thereafter, when the point at which the potential of the movable electrode starts to rise again with the rise of the movable electrode is point B, the potential of the movable electrode becomes a set potential equal to or higher than the potential of the movable electrode corresponding to the point B in the process of melting the scrap. Control the position of the movable electrode
On the other hand, in the process of raising the temperature of the molten steel, in the refining process, and the like, by controlling the position of the movable electrode so that the position of the movable electrode is at the intermediate position between the points A and B, the temperature rise of the molten steel is increased, and , To control the slag metal reaction to an optimal state.

〔実施例〕〔Example〕

以下、本発明の一実施例について図面を参照して説明
する。第1図は本発明方法を適用した直流アーク炉の電
極昇降制御システムの全体構成を示す図であって、特に
直流アーク炉については第4図と同一部分には同一符号
を付してその詳しい説明は省略する。先ず、直流アーク
炉への電圧印加手段は、交流電圧を所定の電圧に変成す
る炉用変圧器11、この炉用変圧器11によって変成された
交流電圧を直流電圧に変換するサイリスタ交直変換器12
とを有し、このサイリスタ交直変換器12によって変換さ
れた直流電圧の負極側は平滑リアクトル13を介して可動
電極3に接続され、一方、正極側は炉底電極4に接続さ
れている。そして、この可動電極3と炉底電極4との間
に所定のアーク電流(例えば40KA)を流すように電圧を
印加し、常に所望とする可動電極3を位置制御する構成
となっている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the overall configuration of an electrode lifting and lowering control system of a DC arc furnace to which the method of the present invention is applied. In the DC arc furnace, in particular, the same parts as those in FIG. Description is omitted. First, means for applying voltage to the DC arc furnace includes a furnace transformer 11 for transforming an AC voltage into a predetermined voltage, and a thyristor AC / DC converter 12 for transforming the AC voltage transformed by the furnace transformer 11 into a DC voltage.
The negative side of the DC voltage converted by the thyristor AC / DC converter 12 is connected to the movable electrode 3 via the smoothing reactor 13, while the positive side is connected to the furnace bottom electrode 4. Then, a voltage is applied so that a predetermined arc current (for example, 40 KA) flows between the movable electrode 3 and the furnace bottom electrode 4, and the position of the desired movable electrode 3 is always controlled.

この可動電極3の位置制御,とりわけスクラップ2の
溶解時における電極位置制御手段は、両電極3,4間の電
圧を検出する発生電圧検出器21と、予め所定の電圧を設
定する電圧設定器22と、この電圧設定器22の設定電圧と
発生電圧検出器21からの発生電圧との偏差を演算する減
算器23と、スクラップ2の溶解時,つまり初装から溶け
落ち工程のときに図示実線の如く閉成され、溶鋼昇温,
精錬工程時に図示点線位置に閉成されるスイッチ24と、
このスイッチ24を経由して前記減算器23から入力される
電圧偏差を零とする様に比例・積分演算を行って速度設
定値(絶対値)を得る速度設定値制御器25等で構成さ
れ、さらに上昇・下降切換回路26、速度制御器27、この
速度制御器27の出力で駆動制御される電極昇降制御用電
動機28等が備えられている。
The position control of the movable electrode 3, particularly the electrode position control means when the scrap 2 is melted, includes a generated voltage detector 21 for detecting a voltage between the electrodes 3 and 4, and a voltage setter 22 for setting a predetermined voltage in advance. And a subtractor 23 for calculating a deviation between the set voltage of the voltage setting device 22 and the generated voltage from the generated voltage detector 21. A solid line shown in the drawing when the scrap 2 is melted, that is, when the scrapping process is performed from the initial load. It is closed as follows,
A switch 24 that is closed to the position shown by the dotted line during the refining process,
A speed set value controller 25 for performing a proportional / integral operation to obtain a speed set value (absolute value) such that a voltage deviation input from the subtractor 23 via the switch 24 becomes zero, and the like; Further, an up / down switching circuit 26, a speed controller 27, an electrode lifting / lowering control motor 28 driven and controlled by an output of the speed controller 27, and the like are provided.

前記上昇・下降切換回路26は、速度設定制御器25から
の速度設定値が入力され、前記電圧偏差の正負極性に応
じて速度設定値に正または負の極性を付加して上昇また
は下降移動速度指令値を出力する機能をもっている。
The up / down switching circuit 26 receives the speed set value from the speed setting controller 25, and adds a positive or negative polarity to the speed set value according to the positive / negative polarity of the voltage deviation to raise or lower the moving speed. It has a function to output command values.

この電動機28は速度制御器27の出力に応じて正転また
は逆転しながらウインチ31を回転させて一端を固定端と
するワイヤ32の他端を巻取りまたは巻戻すことにより、
滑車33を介してマスト34を上下動させ水平アーム34を介
して可動電極3を昇降制御する構成となっている。
The electric motor 28 rotates the winch 31 while rotating forward or backward according to the output of the speed controller 27 to wind or rewind the other end of the wire 32 having one end as a fixed end.
The mast 34 is moved up and down via a pulley 33 and the movable electrode 3 is controlled to move up and down via a horizontal arm 34.

次に、溶鋼昇温,精錬工程での可動電極3の電極位置
制御手段は、可動電極位置を検出する電極位置センサ41
と、この電極位置センサ41から送られてくる可動電極3
の溶鋼接触位置検出値を取込んで記憶する溶鋼接触位置
検知回路42と、予めアーク電流に基づいて可動電極位置
と可動電極3の電位との関係が求められ、前記溶鋼接触
位置検知値に基づいて最適電極上昇位置を決定する電極
上昇位置演算手段43と、この演算手段43で得られた最適
電極上昇位置と電極位置センサ21からの現在電極位置と
の偏差を求める減算器44等で構成され、この減算器44で
得られた偏差信号がスイッチ24を介して前記速度設定制
御器26へ供給する構成となっている。
Next, the electrode position control means of the movable electrode 3 in the molten steel temperature raising and refining process includes an electrode position sensor 41 for detecting the movable electrode position.
And the movable electrode 3 sent from the electrode position sensor 41
A molten steel contact position detection circuit 42 which takes in and stores the molten steel contact position detected value of the above, and a relationship between the movable electrode position and the potential of the movable electrode 3 is previously obtained based on the arc current, and based on the molten steel contact position detected value. Electrode raising position calculating means 43 for determining the optimum electrode raising position by using a subtractor 44 for calculating a deviation between the optimum electrode raising position obtained by the calculating means 43 and the current electrode position from the electrode position sensor 21. The deviation signal obtained by the subtractor 44 is supplied to the speed setting controller 26 via the switch 24.

次に、以上のように構成された電極昇降制御システム
の動作について説明する。アーク炉1にスクラップを装
入し炉蓋6を閉止した後、炉蓋6を通して可動電極3を
挿入し、この可動電極3と炉底電極4間に所定の電圧を
印加して可動電極先端からアークを発生しながらスクラ
ップを順次溶解していく。このスクラップの溶解は、直
流アーク炉の操業工程中,特にスクラップ装入直後の点
孤工程、ボーリング工程、安定期工程、棚落ち工程、ス
クラップを再度装入する追装工程等で行われる。
Next, the operation of the electrode lifting / lowering control system configured as described above will be described. After the scrap is charged into the arc furnace 1 and the furnace lid 6 is closed, the movable electrode 3 is inserted through the furnace lid 6, a predetermined voltage is applied between the movable electrode 3 and the furnace bottom electrode 4, and the movable electrode 3 is moved from the tip of the movable electrode. Scraps are sequentially melted while generating an arc. The melting of the scrap is performed during the operation process of the DC arc furnace, in particular, a start-up process, a boring process, a stabilization process, a shelf drop process, a reloading process for reloading the scrap, etc. immediately after charging the scrap.

しかして、このスクラップの溶解時には自動または手
動にてスイッチ24を図示実線側に閉成し、かつ、第2図
に示す特性パターン(第5図の同様なパターン)のうち
B−D間の特性を前提としつつ可動電極3を昇降制御す
る。
When the scrap is melted, the switch 24 is automatically or manually closed to the solid line side in the drawing, and the characteristic between B and D in the characteristic pattern (similar pattern in FIG. 5) shown in FIG. The movable electrode 3 is controlled to move up and down while assuming the following.

具体的には、可動電極3のアーク長によって変化する
両電極3,4間の発生電圧を発生電圧検出器21で検出した
後、この発生電圧と電圧設定器22の設定電圧との偏差信
号をスイッチ24を通して速度設定制御器25に供給する
と、この速度設定制御器25ではその偏差信号が零となる
様に比例・積分演算を行って速度設定値を得、これを上
昇・下降切換回路26に供給する。ここで、上昇・下降切
換回路26は減算器23から送られて来る偏差信号の極性を
付加して速度設定値を移動速度指令値として出力する。
この移動速度指令値を受けて速度制御器27は電極昇降制
御用電動機28を所要とする方向へ回転駆動すると、この
電動機28の回転方向にしたがって可動電極3は所要とす
る方向へ昇降制御される。このスクラップ溶解時は可動
電極3を溶鋼面から所定距離,つまり第2図のB−D間
で行うので、アーク長に応じて電圧が変化するので、こ
の電圧を一定に制御するように可動電極3を昇降制御す
ることになる。
Specifically, after a generated voltage between the two electrodes 3 and 4 that changes according to the arc length of the movable electrode 3 is detected by the generated voltage detector 21, a deviation signal between the generated voltage and the set voltage of the voltage setting unit 22 is detected. When the speed is supplied to the speed setting controller 25 through the switch 24, the speed setting controller 25 performs a proportional / integral operation so that the deviation signal becomes zero to obtain a speed set value. Supply. Here, the up / down switching circuit 26 adds the polarity of the deviation signal sent from the subtractor 23 and outputs a speed set value as a moving speed command value.
Upon receiving the moving speed command value, the speed controller 27 drives the electrode up / down control motor 28 to rotate in a required direction, and the movable electrode 3 is controlled to move up and down in the required direction according to the rotation direction of the motor 28. . When the scrap is melted, the movable electrode 3 is moved a predetermined distance from the molten steel surface, that is, between B and D in FIG. 2, so that the voltage changes according to the arc length. 3 is controlled to move up and down.

次に、溶鋼昇温,精錬工程においては、自動または手
動にてスイッチ24を図示点線側に閉成して可動電極3の
昇降制御を行う。この制御においては電極位置センサ41
から送られてくる可動電極3の溶鋼接触位置検出値l0
溶鋼接触位置検知回路42で取込んで記憶した後、その溶
鋼接触位置検出値l0を電極上昇位置演算手段43に供給す
る。この電極上昇位置演算手段43では予め所望とするア
ーク電流f(I)に基づき第2図のような特性パター
ン,つまり可動電極3の位置と可動電極3の電位の関係
から最適電極上昇値△lが定められているので、溶鋼接
触位置検知回路42から溶鋼接触位置検出値l0を受けると
その検出値l0に最適電極上昇値△lを加算した値を最適
電極設定位置l1として出力し減算器44に供給する。この
減算器44では電極設定位置l1と電極位置センサ41からの
可動電極3の現在位置との偏差信号を求め、前記速度設
定制御器25に供給する。従って、この速度設定器25の出
力に基づいて速度設定器27から操作出力を電動機28に供
給し、可動電極3を第2図に示す電極設定位置l1,つま
りA−B間の特にA点近傍に設定する。この電極位置は
第3図に示すように可動電極3からのジェットアークが
スラグ8を通って溶鋼2にへこみを作る位置関係にあ
り、このアーク側部からスラグ8によく熱が通り、スラ
グメタルの反応を良好なものとする。
Next, in the molten steel temperature raising and refining process, the switch 24 is automatically or manually closed to the dotted line side in the drawing to control the raising and lowering of the movable electrode 3. In this control, the electrode position sensor 41
After the molten steel contact position detection value l 0 of the movable electrode 3 sent from the controller is received and stored in the molten steel contact position detection circuit 42, the molten steel contact position detection value l 0 is supplied to the electrode ascending position calculating means 43. The electrode elevation position calculating means 43 determines the optimum electrode elevation value △ l based on a desired arc current f (I) based on a characteristic pattern as shown in FIG. 2, that is, the relationship between the position of the movable electrode 3 and the potential of the movable electrode 3. because are determined, receives molten steel contacting position detection value l 0 from the molten steel contacting position detecting circuit 42 when outputting a value obtained by adding the optimal electrode rising value △ l in the detected value l 0 as the optimum electrode setting position l 1 This is supplied to the subtractor 44. A deviation signal between the current position of the movable electrode 3 from the subtracter At 44 electrode set position l 1 and the electrode position sensor 41, and supplies the speed setting controller 25. Therefore, based on the output of the speed setting device 25, an operation output is supplied from the speed setting device 27 to the electric motor 28, and the movable electrode 3 is moved to the electrode setting position l 1 shown in FIG. Set near. As shown in FIG. 3, the positions of the electrodes are such that the jet arc from the movable electrode 3 passes through the slag 8 to form a dent in the molten steel 2, and heat flows from the side of the arc to the slag 8, and the slag metal Of the reaction is good.

従って、以上のような実施例の構成によれば、溶鋼昇
温,精錬工程時に可動電極3の溶鋼接触位置およびアー
ク電流によって定まる電極上昇位置とに基づいて可動電
極を所望とする位置に上昇制御するので、確実に溶鋼の
昇温効率を高めることができ、これによって精錬工程で
の電力原単位を向上でき、また精錬時間を短縮できる。
また、スラグフォーミングのための酸素,炭粉量の低減
化を図ることができ、さらに第3図で示すように可動電
極3のアークジェットによって適切に撹拌作用を行うこ
とが可能となり、よって溶鋼の温度および成分を均一化
することができ、均一製品の溶鋼を得ることができる。
Therefore, according to the configuration of the embodiment described above, the movable electrode is raised to a desired position on the basis of the molten steel contact position of the movable electrode 3 and the electrode rising position determined by the arc current during the heating and refining steps of the molten steel. Therefore, the temperature raising efficiency of the molten steel can be reliably increased, whereby the power consumption in the refining process can be improved and the refining time can be shortened.
In addition, it is possible to reduce the amount of oxygen and coal powder for slag forming, and it is possible to perform an appropriate stirring action by the arc jet of the movable electrode 3 as shown in FIG. The temperature and components can be made uniform, and a molten steel of uniform product can be obtained.

〔発明の効果〕〔The invention's effect〕

以上詳記したように本発明によれば、溶鋼昇温,精錬
時に電圧一定制御を排除して可動電極の位置を所望とす
る最適位置に設定することにより、溶鋼の昇温効率を大
幅に向上でき、精錬電力の低減化および精錬時間の短縮
化が図れ、溶鋼およびスラグの撹拌向上により所要とす
る温度および成分の溶鋼を得ることができる。
As described above in detail, according to the present invention, the heating efficiency of molten steel is greatly improved by eliminating the constant voltage control during the heating and refining of molten steel and setting the position of the movable electrode to a desired optimum position. As a result, the refining power and the refining time can be reduced, and the required temperature and composition of the molten steel can be obtained by improving the stirring of the molten steel and the slag.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第3図は本発明に係わる直流アーク炉の操
業方法の一実施例を説明するために示したもので、第1
図は本発明方法を適用した電極昇降制御システムの構成
図、第2図は溶鋼昇温,精錬時の最適電極設定位置を説
明する図、第3図は可動電極のアークと溶鋼およびスラ
グとの位置関係を示す図、第4図ないし第6図は従来方
法を説明するための図であって、第4図は直流アーク炉
の一般的な操業工程を説明する図、第5図はあるアーク
電流のときの電極位置と発生電圧との特性パターン図、
第6図は第5図の各電極位置と溶鋼位置およびスラグ位
置との関係図である。 1……アーク炉、3……可動電極、4……炉底電極、5
……溶鋼、8……スラグ、21……発生電圧検出器、22…
…電圧設定器、24……スイッチ、25……速度設定制御
器、26……上昇・下降切換回路、27……速度制御器、28
……電極昇降制御用電動機、41……電極位置センサ、42
……溶鋼接触位置検知回路、43……電極上昇位置演算手
段、44……減算器。
FIGS. 1 to 3 show one embodiment of a method of operating a DC arc furnace according to the present invention.
FIG. 2 is a diagram showing the configuration of an electrode raising / lowering control system to which the method of the present invention is applied. FIG. 2 is a diagram for explaining an optimum electrode setting position at the time of raising and refining molten steel. FIG. 4 to 6 are views for explaining a conventional method, FIG. 4 is a view for explaining a general operation process of a DC arc furnace, and FIG. 5 is an arc. Characteristic pattern diagram of electrode position and generated voltage at the time of current,
FIG. 6 is a diagram showing the relationship between each electrode position in FIG. 5, the molten steel position and the slag position. 1 ... arc furnace, 3 ... movable electrode, 4 ... furnace bottom electrode, 5
…… Molten steel, 8 …… Slag, 21 …… Generated voltage detector, 22…
... Voltage setting unit, 24 ... Switch, 25 ... Speed setting controller, 26 ... Up / down switching circuit, 27 ... Speed controller, 28
…… Electric lift control motor, 41 …… Electrode position sensor, 42
... Molten steel contact position detection circuit, 43... Electrode rising position calculation means, 44.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 昭一 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (72)発明者 牧 敏道 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (72)発明者 岡崎 金造 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 昭49−121238(JP,A) 特開 昭52−150311(JP,A) 特開 昭62−8496(JP,A) ────────────────────────────────────────────────── ─── Continuing on the front page (72) Shoichi Takahashi 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Toshimichi Maki 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan (72) Inventor Kinzo Okazaki 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (56) References JP-A-49-121238 (JP, A) JP-A-52- 150311 (JP, A) JP-A-62-8496 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】可動電極を昇降制御しながら固体金属を溶
解する直流アーク炉において、 前記可動電極が溶融金属面に接する点を基準点として、
予め可動電極の位置と可動電極の電位との関係を求め、
前記可動電極の上昇に対して可動電極の電位が急激に上
昇した後一時的に変化が微少になる点をA点とし、その
後可動電極の上昇に伴って再び前記可動電極の電位が上
昇し始める点をB点とするとき、 前記固体金属の溶解過程では可動電極電位が前記B点に
対応する可動電極電位以上の設定電位になるように可動
電極位置を操作し、 前記溶融金属の昇温,精錬過程では、可動電極位置が前
記A点とB点の中間の設定位置になるように前記可動電
極位置を制御することを特徴とする直流アーク炉の操業
方法。
1. A DC arc furnace for melting a solid metal while controlling the elevation of a movable electrode, wherein a point at which the movable electrode is in contact with a molten metal surface is defined as a reference point.
Find the relationship between the position of the movable electrode and the potential of the movable electrode in advance,
The point at which the potential of the movable electrode suddenly rises slightly with respect to the rise of the movable electrode and temporarily changes slightly is set as point A, and then the potential of the movable electrode starts rising again with the rise of the movable electrode. When the point is point B, in the process of dissolving the solid metal, the position of the movable electrode is operated so that the potential of the movable electrode is equal to or higher than the potential of the movable electrode corresponding to the point B. The method of operating a DC arc furnace, wherein in the refining process, the position of the movable electrode is controlled such that the position of the movable electrode is at a position intermediate between the points A and B.
JP63205802A 1988-08-19 1988-08-19 Operation method of DC arc furnace Expired - Lifetime JP2641913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63205802A JP2641913B2 (en) 1988-08-19 1988-08-19 Operation method of DC arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63205802A JP2641913B2 (en) 1988-08-19 1988-08-19 Operation method of DC arc furnace

Publications (2)

Publication Number Publication Date
JPH0254889A JPH0254889A (en) 1990-02-23
JP2641913B2 true JP2641913B2 (en) 1997-08-20

Family

ID=16512925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63205802A Expired - Lifetime JP2641913B2 (en) 1988-08-19 1988-08-19 Operation method of DC arc furnace

Country Status (1)

Country Link
JP (1) JP2641913B2 (en)

Also Published As

Publication number Publication date
JPH0254889A (en) 1990-02-23

Similar Documents

Publication Publication Date Title
US4607373A (en) Control system for a DC arc furnace
JP2015067875A (en) Lance equipment, refining furnace using the same, and lance positioning method
JP2641913B2 (en) Operation method of DC arc furnace
JP2683372B2 (en) DC arc furnace voltage control method
JP2903544B2 (en) Electrode control method in arc furnace
JP2769327B2 (en) Control method for raising and lowering electrodes of DC arc furnace
JP2690957B2 (en) Position control method of movable electrode in DC arc furnace
JP2769326B2 (en) Control method for raising and lowering electrodes of DC arc furnace
JP2769325B2 (en) Electrode position control method for DC arc furnace
JP6910741B2 (en) Electrode lifting device for arc furnace
JP4331284B2 (en) Short-circuit transfer arc welding method
JP2641914B2 (en) Ignition circuit control method for DC arc furnace
JP2962442B2 (en) DC arc furnace
JP2548551Y2 (en) Ignition control device for DC arc furnace
EP4052831B1 (en) Arc welding apparatus
JPH0636470Y2 (en) Automatic oxygen ignition device for arc furnace for steelmaking
JP3116491B2 (en) Arc furnace input power control device
JP2769328B2 (en) DC arc furnace power control method
JPH02263094A (en) Electrode rod lift control device for arc furnace
JP2665296B2 (en) DC arc furnace voltage controller
JP2006085936A (en) Electrode elevation control device
JP2539056B2 (en) Control device for DC arc furnace
JPH0331035Y2 (en)
JPH08176639A (en) Arc furnace steel making
JP2005262264A (en) Arc start method for consumable electrode gas shielded arc welding