JP2006085936A - Electrode elevation control device - Google Patents

Electrode elevation control device Download PDF

Info

Publication number
JP2006085936A
JP2006085936A JP2004267036A JP2004267036A JP2006085936A JP 2006085936 A JP2006085936 A JP 2006085936A JP 2004267036 A JP2004267036 A JP 2004267036A JP 2004267036 A JP2004267036 A JP 2004267036A JP 2006085936 A JP2006085936 A JP 2006085936A
Authority
JP
Japan
Prior art keywords
electrode
distance
scrap
arc
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004267036A
Other languages
Japanese (ja)
Inventor
Naoki Yoshida
直樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2004267036A priority Critical patent/JP2006085936A/en
Publication of JP2006085936A publication Critical patent/JP2006085936A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Discharge Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode elevation control device capable of preventing breakage or abnormal consumption of the electrode in a simple structure. <P>SOLUTION: The electrode elevation control device for a steel-making alternating-current arc furnace controlling elevation of electrodes 4a, 4b, 4c allocated to each phase by a speed control means having a prescribed arc impedance by supplying three-phase alternating current source; and generating arc between the electrodes of the respective phases and scraps 6 to melt the scraps 6; has a distance detecting means calculating a moving distance of the electrode position by using pulse signals from speed detectors 9a, 9b, 9c mounted on electrode elevation motors 8a, 8b, 8c, and finding the distance between the electrodes of the respective phases and the scraps. Indication of the speed or control parameter of a speed control means is made to change in compliance with the distance detected by the distance detecting means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、アークエネルギーによりスクラップを溶解する製鋼用交流アーク炉に用いられる電極昇降制御装置に関するものである。   The present invention relates to an electrode lifting control device used in an AC arc furnace for steel making that melts scrap with arc energy.

鉄スクラップをアーク放電により溶融させるアーク炉においては、効率良く溶解が行われるように投入電力を一定に保つことが望まれる。このため、アーク電圧とアーク電流の比が一定となるように電極昇降制御装置を自動制御し、電極を自動的に昇降させるアークインピーダンス一定制御と呼ばれる制御方式が採用されている。   In an arc furnace in which iron scrap is melted by arc discharge, it is desirable to keep the input power constant so that melting can be performed efficiently. For this reason, a control method called arc impedance constant control is adopted in which the electrode elevation control device is automatically controlled so that the ratio between the arc voltage and the arc current is constant, and the electrode is automatically raised and lowered.

通常の交流アーク炉においては、三相交流電源を炉用変圧器によりアーク炉操業に必要な電圧に降圧し、炉用変圧器に接続された二次導体を介して電極へ電源を供給する。この電極は、電極昇降制御装置により制御され、炉体に装入されたスクラップとの間にスクラップを溶解するのに必要なアークエネルギーを発生させる。ここで、電極昇降制御装置は、上述のように電極とスクラップ間のアークインピーダンスを一定にするよう電極の昇降制御を行うが、その昇降速度は、炉用変圧器の2次側の電流フィードバック信号及び電圧フィードバック信号と設定タップ電圧及び設定電流の比較演算により決定され、偏差が大きい場合には、高速で昇降制御を行い、偏差が小さい場合には、低速で昇降制御を行う。   In a normal AC arc furnace, a three-phase AC power supply is stepped down to a voltage required for arc furnace operation by a furnace transformer, and power is supplied to the electrodes through a secondary conductor connected to the furnace transformer. This electrode is controlled by an electrode lifting / lowering control device, and generates arc energy necessary for melting the scrap with the scrap charged in the furnace body. Here, the electrode lift control device performs the lift control of the electrode so as to make the arc impedance between the electrode and the scrap constant as described above. The lift speed is determined by the current feedback signal on the secondary side of the furnace transformer. When the deviation is large, the vertical movement control is performed at a high speed, and when the deviation is small, the vertical movement control is performed at a low speed.

このようなアークインピーダンス一定制御は、操業の各段階において安定した制御が可能とは限らず、アークが不安定な状態で電極を昇降させたとき、電極の過度の引き下げで過電流となる場合があった。この対策としてアークの不安定性を電極の昇降動作の頻度で把握し、この頻度が大きくなったとき電極の昇降動作の応答を鈍くするなどの提案が為されている(例えば、特許文献1参照。)。
特開平10−335058号公報(第3−4頁、図1)
Such constant control of arc impedance does not always enable stable control at each stage of operation, and when the electrode is moved up and down while the arc is unstable, there may be an overcurrent due to excessive pulling down of the electrode. there were. As countermeasures, proposals have been made such that the instability of the arc is grasped by the frequency of the lifting / lowering operation of the electrode, and the response of the lifting / lowering operation of the electrode is made dull when this frequency increases (for example, see Patent Document 1). ).
Japanese Patent Laid-Open No. 10-335058 (page 3-4, FIG. 1)

特許文献1で提案された手法では、電極とスクラップ間の距離に関係なく、電極の昇降速度を決めてしまうため、電極がスクラップに近い状態で急激な外乱があったとき、高速で電極を下降させ、電極がスクラップに突っ込み過ぎて、電極を折損させてしまう、或いは異常消耗させてしまうという問題点があった。この問題は電極の自重が大きいことにも起因している。   The method proposed in Patent Document 1 determines the lifting speed of the electrode regardless of the distance between the electrode and the scrap. Therefore, when there is a sudden disturbance when the electrode is close to the scrap, the electrode is lowered at a high speed. However, there is a problem in that the electrode is excessively pushed into the scrap, and the electrode is broken or abnormally consumed. This problem is also caused by the large weight of the electrode.

そこで本発明は、簡易な構成で、電極の折損や異常消耗の防止を図る事が可能な電極昇降制御装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an electrode lifting / lowering control device capable of preventing electrode breakage and abnormal wear with a simple configuration.

上記目的を達成するために、本発明の電極昇降制御装置は、3相交流電源を供給し、各相に設けた電極をアークインピーダンス一定の速度制御手段により昇降制御し、各相の電極とスクラップ間にアークを発生させ、スクラップを溶解する製鋼用交流アーク炉の電極昇降制御装置において、電極昇降モータに取り付けられた速度検出器のパルス信号を使用して電極位置の移動距離を演算し、前記各相の電極と前記スクラップ間の距離を求める距離検出手段を具備し、前記距離検出手段によって検出された距離に応じて前記速度制御手段における速度指令または制御パラメータを変化させるようにしたことを特徴としている。   In order to achieve the above object, an electrode lifting control device of the present invention supplies a three-phase AC power source, and controls the lifting and lowering of electrodes provided in each phase by means of speed control means having a constant arc impedance. In the electrode raising / lowering control apparatus for an AC arc furnace for steelmaking that generates an arc in between and melts the scrap, the moving distance of the electrode position is calculated using the pulse signal of the speed detector attached to the electrode raising / lowering motor, A distance detection means for obtaining a distance between the electrode of each phase and the scrap is provided, and a speed command or a control parameter in the speed control means is changed according to the distance detected by the distance detection means. It is said.

本発明によれば、電極がスクラップに接近している状態では、昇降動作を鈍化させる事ができるため、簡易な構成で、電極の折損や異常消耗の防止を図る事が可能な電極昇降制御装置を提供することができる。   According to the present invention, since the lifting operation can be slowed when the electrode is close to the scrap, the electrode lifting control device capable of preventing electrode breakage and abnormal consumption with a simple configuration. Can be provided.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、本発明の実施例1に係る電極昇降制御装置を図1乃至図3を参照して説明する。   Hereinafter, an electrode lifting control apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 3.

図1は、本発明の電極昇降制御装置のブロック構成図である。   FIG. 1 is a block configuration diagram of an electrode elevation control apparatus according to the present invention.

3相交流電源1が、炉用変圧器2によりアーク炉操業に必要な電圧に降圧され、炉用変圧器2の2次側に接続された2次導体3a、3b及び3cを介して電極4a、4b及び4cに交流電力が供給されている。電極4a、4b及び4cと、炉体5に装入されたスクラップ6との間にスクラップ6を溶解するのに必要なアークエネルギーを発生させ、製鋼用アーク炉の運転を行う。アーク電圧とアーク電流の比をほぼ一定に制御し、安定した運転を行うため、電極昇降制御装置7により、電極4a、4b及び4cを上下に駆動する電極昇降モータ8a、8b及び8cが電極4a、4b及び4c夫々に対して設けられている。電極昇降モータ8a、8b及び8cには、回転数に比例したパルスを出力する速度検出器9a、9b及び9cが夫々取り付けられ、電極昇降制御装置7にパルスP1、P2及びP3を夫々供給している。また、アークインピーダンスを一定に制御するためのフィードバック用として、電流検出器10及び電圧検出器11が炉用変圧器2の2次側に設けられ、電極昇降制御装置7に3相の電流信号Iu、Iv及びIw、また3相の電圧信号Eu、Ev及びEwを夫々供給している。以下、電極昇降制御装置7の内部構成及びその動作について説明する。   A three-phase AC power source 1 is stepped down to a voltage required for arc furnace operation by a furnace transformer 2 and is connected to an electrode 4a via secondary conductors 3a, 3b and 3c connected to the secondary side of the furnace transformer 2. AC power is supplied to 4b and 4c. The arc energy required for melting the scrap 6 is generated between the electrodes 4a, 4b and 4c and the scrap 6 charged in the furnace body 5, and the arc furnace for steelmaking is operated. In order to control the ratio of the arc voltage and the arc current to be substantially constant and perform stable operation, the electrode elevating control device 7 causes the electrode elevating motors 8a, 8b and 8c to drive the electrodes 4a, 4b and 4c up and down. 4b and 4c are provided. The electrode elevating motors 8a, 8b and 8c are respectively equipped with speed detectors 9a, 9b and 9c for outputting a pulse proportional to the number of revolutions, and supply the pulses P1, P2 and P3 to the electrode elevating control device 7, respectively. Yes. In addition, a current detector 10 and a voltage detector 11 are provided on the secondary side of the furnace transformer 2 for feedback for controlling the arc impedance constant, and a three-phase current signal Iu is supplied to the electrode lifting control device 7. , Iv and Iw, and three-phase voltage signals Eu, Ev and Ew, respectively. Hereinafter, the internal configuration and operation of the electrode elevation control device 7 will be described.

電極昇降速度基準演算回路71は上述の3相の電流信号Iu、Iv及びIw、3相の電圧信号Eu、Ev及びEwを受け、これ等のフィードバック信号と設定電流基準及び設定タップ電圧とを比較演算して、速度指令を作り、この速度指令を電極昇降モータ制御装置72に与える。この比較演算は、設定電流基準を設定タップ電圧と電圧信号Eu、Ev及びEwの比で補正した各相電流基準と電流信号Iu、Iv及びIwを夫々比較し、この偏差に応じて速度指令の極性と大きさを決めるようにする。電極モータ昇降制御装置72はこの速度指令と速度検出器9a、9b及び9cの出力パルスから得られるフィードバック速度を比較し、その偏差に見合う駆動出力V1、V2及びV3を電極昇降モータ8a、8b及び8cに与える。以上のようにアークインピーダンス一定制御を行うための電極昇降の速度制御系は構成されている。   The electrode lifting speed reference calculation circuit 71 receives the above-described three-phase current signals Iu, Iv and Iw, and the three-phase voltage signals Eu, Ev and Ew, and compares these feedback signals with the set current reference and set tap voltage. The speed command is generated by calculation, and this speed command is given to the electrode lifting motor controller 72. This comparison operation compares each phase current reference obtained by correcting the set current reference with the ratio of the set tap voltage and the voltage signals Eu, Ev, and Ew with the current signals Iu, Iv, and Iw, and the speed command is determined according to the deviation. Try to determine polarity and size. The electrode motor lift control device 72 compares this speed command with the feedback speed obtained from the output pulses of the speed detectors 9a, 9b and 9c, and outputs drive outputs V1, V2 and V3 corresponding to the deviations to the electrode lift motors 8a, 8b and Give to 8c. As described above, a speed control system for raising and lowering the electrode for performing constant arc impedance control is configured.

また、電極位置演算回路73は、後述する方法でスクラップ6と電極4a、4b及び4c間の夫々の距離L1y、L2y及びL3yを演算して電極昇降速度基準演算回路71に与える。電極昇降速度基準演算回路71はこの距離L1y、L2y及びL3yの値に応じて速度指令を変化させる。例えば、L1y、L2y及びL3yが所定値以下となったとき、上記速度指令を低下させるようにする。尚、上記のような自動制御を行わなくても、スクラップ6と電極4a、4b及び4c間の夫々の距離L1y、L2y及びL3yを図示しない表示装置に表示するなど何らかの方法で確認可能であれば、手動により電極昇降を制御することも可能である。   The electrode position calculation circuit 73 calculates the distances L1y, L2y, and L3y between the scrap 6 and the electrodes 4a, 4b, and 4c by a method that will be described later, and supplies the distances to the electrode lifting speed reference calculation circuit 71. The electrode lifting / lowering speed reference calculation circuit 71 changes the speed command according to the values of the distances L1y, L2y, and L3y. For example, when L1y, L2y, and L3y are below a predetermined value, the speed command is lowered. If the distance L1y, L2y, and L3y between the scrap 6 and the electrodes 4a, 4b, and 4c is displayed on a display device (not shown) without any automatic control as described above, it can be confirmed by some method. It is also possible to manually control the electrode elevation.

図2は電極昇降速度基準演算回路71の内部構成の一例を示すブロック構成図である。   FIG. 2 is a block configuration diagram showing an example of the internal configuration of the electrode elevation speed reference arithmetic circuit 71.

上述の通り、アークインピーダンス一定制御回路74に3相の電流信号Iu、Iv及びIw、3相の電圧信号Eu、Ev及びEw、設定電流基準及び設定タップ電圧が入力され、アークインピーダンスを一定にするように速度指令を演算する。一方、電極位置演算回路83で求められたスクラップ6と電極4a、4b及び4c間の距離L1y、L2y及びL3yと各相の電極下限位置とを比較器75で比較し、距離L1y、L2y及びL3yが対応する各相の電極下限位置以下であれば、速度指令低下回路76を動作させ、前述のアークインピーダンス一定制御回路74で求められた速度指令を補正する。この補正は速度指令を低下させるように図示されているが、速度指令に一定のリミットを設けるようにしても良い。 As described above, the three-phase current signals Iu, Iv and Iw, the three-phase voltage signals Eu, Ev and Ew, the set current reference and the set tap voltage are input to the arc impedance constant control circuit 74 to make the arc impedance constant. The speed command is calculated as follows. On the other hand, the distances L1y, L2y and L3y between the scrap 6 obtained by the electrode position calculation circuit 83 and the electrodes 4a, 4b and 4c and the electrode lower limit position of each phase are compared by the comparator 75, and the distances L1y, L2y and L3y are compared. Is below the electrode lower limit position of each corresponding phase, the speed command lowering circuit 76 is operated to correct the speed command obtained by the arc impedance constant control circuit 74 described above. Although this correction is illustrated to reduce the speed command, a fixed limit may be provided for the speed command.

次に、図3及び図4を参照して電極位置演算回路73の動作について説明する。図3は、電極位置の関係を示す説明図、また図4は電極位置演算回路の動作を示すフローチャートである。図3に示すように、電極4a、4b及び4cがスクラップ6と接触したときの電極上限位置から電極上部までの距離を夫々L1M、L2M及びL3Mとし、動作状態における電極4a、4b及び4cの上部と電極上限位置からの距離を夫々L1x、L2x及びL3x、電極とスクラップ6との距離をL1y、L2y及びL3yとする。以下図4に基づき電極位置演算回路73の動作を説明する。   Next, the operation of the electrode position calculation circuit 73 will be described with reference to FIGS. FIG. 3 is an explanatory diagram showing the relationship between the electrode positions, and FIG. 4 is a flowchart showing the operation of the electrode position calculation circuit. As shown in FIG. 3, the distances from the electrode upper limit position to the upper part of the electrode when the electrodes 4a, 4b and 4c are in contact with the scrap 6 are L1M, L2M and L3M, respectively, and the upper part of the electrodes 4a, 4b and 4c in the operating state. And L1x, L2x and L3x, and the distance between the electrode and scrap 6 are L1y, L2y and L3y, respectively. Hereinafter, the operation of the electrode position calculation circuit 73 will be described with reference to FIG.

まず、電極を上限位置まで移動させ(ST1)、この状態においてL1x、L2x及びL3xをゼロ、また速度検出器からのパルスカウント値P1、P2及びP3をゼロに初期化する(ST2)。そして電極を降下させると同時にパルスの積算を行い(ST3)、この積算値にパルスレートαを乗算して電極上限位置からの電極移動距離を算出する(ST4)。   First, the electrode is moved to the upper limit position (ST1), and in this state, L1x, L2x and L3x are initialized to zero, and the pulse count values P1, P2 and P3 from the speed detector are initialized to zero (ST2). At the same time as the electrode is lowered, the pulses are integrated (ST3), and the integrated value is multiplied by the pulse rate α to calculate the electrode movement distance from the electrode upper limit position (ST4).

更に電極を下降させ、スクラップタッチを検出したとき(ST5)、各電極上部の電極上限位置からの移動距離L1x、L2x及びL3xを夫々電極上限位置からスクラップタッチ位置までの距離L1M、L2M及びL3Mとする(ST6)。尚、スクラップタッチの検出は各電極の相電流が所定の電流値以上となるか、相電圧が所定の電圧値以下となるかにより判定することができる。このようにして電極上限位置からスクラップタッチ位置までの距離L1M、L2M及びL3Mが決定された後は、L1M、L2M及びL3Mと現在電極位置L1x、L2x及びL3xとの差を夫々求め、現在電極位置からスクラップタッチ位置までの距離L1y、L2y及びL3yを夫々演算する(ST7)。   When the electrode is further lowered and a scrap touch is detected (ST5), the movement distances L1x, L2x and L3x from the electrode upper limit position on each electrode are set as the distances L1M, L2M and L3M from the electrode upper limit position to the scrap touch position, respectively. (ST6). The detection of scrap touch can be made based on whether the phase current of each electrode is equal to or higher than a predetermined current value or whether the phase voltage is equal to or lower than a predetermined voltage value. After the distances L1M, L2M, and L3M from the electrode upper limit position to the scrap touch position are determined in this way, differences between L1M, L2M, and L3M and the current electrode positions L1x, L2x, and L3x are obtained, respectively, and the current electrode position is determined. The distances L1y, L2y and L3y from to the scrap touch position are respectively calculated (ST7).

以上のようにして、初期状態だけ電極上限位置まで電極を上昇させ、スクラップタッチを再び行なわなければ、ステップST1及びステップST5の判断でNOとなるため、ステップST2とステップST6の設定動作はジャンプされるので、現在電極位置からスクラップタッチ位置までの距離L1y、L2y、L3yを連続して出力することが可能となる。尚、上記演算は、運転状態が正常である限り継続して行われる。   As described above, if the electrode is raised to the electrode upper limit position only in the initial state and the scrap touch is not performed again, the determination in step ST1 and step ST5 is NO, so the setting operation in step ST2 and step ST6 is jumped. Therefore, the distances L1y, L2y, and L3y from the current electrode position to the scrap touch position can be continuously output. The above calculation is continuously performed as long as the operation state is normal.

このようにして、距離L1y、L2y及びL3yの値に応じて電極昇降速度基準演算回路71が電極モータ制御装置72に与える速度指令を変化させることにより電極の折損などを防止することが可能となる。   In this way, it is possible to prevent breakage of the electrodes and the like by changing the speed command given to the electrode motor control device 72 by the electrode lifting speed reference arithmetic circuit 71 in accordance with the values of the distances L1y, L2y and L3y. .

尚、図2に示したように電極昇降速度基準演算回路71が電極モータ制御装置72に与える速度指令を変化させるのではなく、電極モータ制御装置72の速度制御系の増幅器のゲインを調整するなど速度制御系のパラメータを変更して電極の動作を鈍化させるようにしても良い。   As shown in FIG. 2, the speed command given to the electrode motor control device 72 by the electrode lifting speed reference arithmetic circuit 71 is not changed, but the gain of the amplifier of the speed control system of the electrode motor control device 72 is adjusted. The operation of the electrode may be slowed down by changing the parameters of the speed control system.

以下、本発明の実施例2に係る電極昇降制御装置を図5乃至図7を参照して説明する。   Hereinafter, an electrode lifting control apparatus according to Embodiment 2 of the present invention will be described with reference to FIGS.

図5は本発明の実施例2に係る電極昇降制御装置の電極位置演算回路の動作を示すフローチャートである。この実施例2の各部について、図4の実施例1に係る電極昇降制御装置の電極位置演算回路の動作を示すフローチャートの各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が、実施例1と異なる点は、ステップST7の後に湯面低下補正演算を行うステップST8を設けるようにした点である。   FIG. 5 is a flowchart showing the operation of the electrode position calculation circuit of the electrode lifting control apparatus according to Embodiment 2 of the present invention. Regarding the respective parts of the second embodiment, the same parts as those in the flowchart showing the operation of the electrode position calculation circuit of the electrode lifting control device according to the first embodiment of FIG. The difference between the second embodiment and the first embodiment is that a step ST8 for performing a molten metal surface level lowering correction calculation is provided after step ST7.

製鋼用アーク炉を運転すると、スクラップ6は次第に溶解され、その溶解湯面は運転継続時間に応じて低下していく。このためこの湯面低下分を補正することにより電極4a、4b及び4cとスクラップ6間の距離をより正確に把握可能となり全体の制御精度を向上させることができる。   When the steelmaking arc furnace is operated, the scrap 6 is gradually melted, and the molten metal surface is lowered according to the operation duration time. For this reason, by correcting the amount of decrease in the molten metal surface, the distance between the electrodes 4a, 4b and 4c and the scrap 6 can be grasped more accurately, and the overall control accuracy can be improved.

図6は、湯面低下補正演算を行うステップST8の一例を示すフローチャートである。   FIG. 6 is a flowchart showing an example of step ST8 for performing the molten metal level lowering correction calculation.

ステップST81においてアーク電流Iu、Iv及びIwが所定の範囲内に制御され、アークが定常状態であるかどうか判定する。この判定がYESであれば、この時の電極の位置は、前回の位置に比べ、湯面の低下分だけ下降したものと判断し、ステップ82で、
L1M=L1M(前回)+(L1y(前回)−L1y)、L2M=L2M(前回)+(L2y(前回)−L2y)、L3M=L3M(前回)+(L3y(前回)−L3y)と夫々電極上限位置からの距離を補正する。
In step ST81, the arc currents Iu, Iv and Iw are controlled within a predetermined range, and it is determined whether or not the arc is in a steady state. If this determination is YES, it is determined that the position of the electrode at this time is lower than the previous position by a decrease in the molten metal surface, and in step 82,
L1M = L1M (previous) + (L1y (previous) −L1y), L2M = L2M (previous) + (L2y (previous) −L2y), L3M = L3M (previous) + (L3y (previous) −L3y) Correct the distance from the upper limit position.

尚この補正は電極上限位置からの距離が増加するのが正常であるので、電極上限位置からの距離が減少するような結果となったときはその補正は無視するようなフィルタ機能を設けるようにしても良い。   Since it is normal for this correction to increase the distance from the electrode upper limit position, a filter function is provided so that the correction is ignored when the distance from the electrode upper limit position decreases. May be.

図7は、湯面低下補正演算を行うステップST8の他の例を示すフローチャートである。   FIG. 7 is a flowchart showing another example of step ST8 in which the molten metal level lowering correction calculation is performed.

ステップST83において、製鋼用アーク炉の電極昇降制御装置の運転時間Trを計測する。この計測された運転時間Trに従って、電極上限位置からの距離を、L1M=L1M(前回)+f(Tr)、L2M=L2M(前回)+f(Tr)、L3M=L3M(前回)+f(Tr)と夫々補正する。ここでf(Tr)は、アーク炉の炉体容量、スクラップの材質、形状、装入量、設定電流などから予め時間関数テーブルとして準備されたものを用いる。 In step ST83, the operation time Tr of the electrode raising / lowering control apparatus of the steelmaking arc furnace is measured. According to the measured operation time Tr, the distance from the electrode upper limit position is expressed as L1M = L1M (previous) + f (Tr), L2M = L2M (previous) + f (Tr), L3M = L3M (previous) + f (Tr) Correct each one. Here, f (Tr) is prepared in advance as a time function table based on the furnace capacity of the arc furnace, scrap material, shape, charging amount, set current, and the like.

本発明の電極昇降制御装置のブロック構成図。The block block diagram of the electrode raising / lowering control apparatus of this invention. 本発明の電極昇降制御装置における電極昇降速度基準演算回路の一例を示すブロック構成図。The block block diagram which shows an example of the electrode raising / lowering speed reference | standard calculation circuit in the electrode raising / lowering control apparatus of this invention. 電極位置の関係を示す説明図。Explanatory drawing which shows the relationship of an electrode position. 本発明の実施例1に係る電極昇降制御装置の電極位置演算回路の動作を示すフローチャート。The flowchart which shows operation | movement of the electrode position calculating circuit of the electrode raising / lowering control apparatus which concerns on Example 1 of this invention. 本発明の実施例2に係る電極昇降制御装置の電極位置演算回路の動作を示すフローチャート。The flowchart which shows operation | movement of the electrode position calculating circuit of the electrode raising / lowering control apparatus which concerns on Example 2 of this invention. 湯面低下補正演算の一例を示すフローチャート。The flowchart which shows an example of a molten metal surface fall correction | amendment calculation. 湯面低下補正演算の他の例を示すフローチャート。The flowchart which shows the other example of a molten metal surface fall correction | amendment calculation.

符号の説明Explanation of symbols

1 3相交流電源
2 炉用変圧器
3a、3b、3c 二次側導体
4a、4b、4c 電極
5 炉体
6 スクラップ
7 電極昇降制御装置
71 電極昇降速度基準演算回路
72 電極昇降モータ制御装置
73 電極位置演算回路
74 アークインピーダンス一定制御回路
75 比較器
76 速度指令低下回路
8a、8b、8c 電極昇降モータ
9a、9b、9c 速度検出器
10 電流検出器
11 電圧検出器

DESCRIPTION OF SYMBOLS 1 3 phase alternating current power supply 2 Furnace transformer 3a, 3b, 3c Secondary side conductor 4a, 4b, 4c Electrode 5 Furnace body 6 Scrap 7 Electrode raising / lowering control apparatus 71 Electrode raising / lowering speed reference arithmetic circuit 72 Electrode raising / lowering motor control apparatus 73 Electrode Position calculation circuit 74 Arc impedance constant control circuit 75 Comparator 76 Speed command lowering circuits 8a, 8b, 8c Electrode lifting motors 9a, 9b, 9c Speed detector 10 Current detector 11 Voltage detector

Claims (6)

3相交流電源を供給し、各相に設けた電極をアークインピーダンス一定の速度制御手段により昇降制御し、各相の電極とスクラップ間にアークを発生させ、スクラップを溶解する製鋼用交流アーク炉の電極昇降制御装置において、
電極昇降モータに取り付けられた速度検出器のパルス信号を使用して電極位置の移動距離を演算し、前記各相の電極と前記スクラップ間の距離を求める距離検出手段を具備し、
前記距離検出手段によって検出された距離に応じて前記速度制御手段における速度指令または制御パラメータを変化させるようにしたことを特徴とする電極昇降制御装置。
An AC arc furnace for steelmaking that supplies three-phase AC power, controls the elevation of the electrodes provided in each phase by means of speed control with constant arc impedance, generates an arc between each phase electrode and scrap, and melts the scrap. In the electrode lifting control device,
A distance detection means for calculating a distance of movement of the electrode position using a pulse signal of a speed detector attached to the electrode lifting motor, and obtaining a distance between the electrode of each phase and the scrap,
An electrode lifting / lowering control apparatus, wherein a speed command or a control parameter in the speed control means is changed according to the distance detected by the distance detection means.
三相交流電源を供給し、各相に設けた電極をアークインピーダンス一定の速度制御手段により昇降制御し、各相の電極とスクラップ間にアークを発生させ、スクラップを溶解する製鋼用交流アーク炉の電極昇降制御装置において、
電極昇降モータに取り付けられた速度検出器のパルス信号を使用して電極位置の移動距離を演算し、前記各相の電極と前記スクラップ間の距離を求める距離検出手段と、
この距離を確認する距離確認手段と
を具備したことを特徴とする電極昇降制御装置。
An AC arc furnace for steelmaking that supplies three-phase AC power, controls the elevation of the electrodes provided in each phase by means of speed control with constant arc impedance, generates an arc between each phase electrode and scrap, and melts the scrap. In the electrode lifting control device,
A distance detecting means for calculating a moving distance of the electrode position using a pulse signal of a speed detector attached to the electrode lifting motor, and obtaining a distance between the electrode of each phase and the scrap;
An electrode lifting / lowering control device comprising distance confirmation means for confirming the distance.
前記距離検出手段によって検出された距離が所定値以下のとき、
前記速度制御手段は、前記電極昇降モータの速度が所定値を超えないようにすることを特徴とする請求項1に記載の電極昇降制御装置。
When the distance detected by the distance detection means is below a predetermined value,
2. The electrode lifting / lowering control apparatus according to claim 1, wherein the speed control means prevents the speed of the electrode lifting / lowering motor from exceeding a predetermined value.
前記距離検出手段は、スクラップの溶解が進行することによって発生する湯面低下を補正する補正手段を有することを特徴とする請求項1または請求項2に記載の電極昇降制御装置。   The electrode elevation control device according to claim 1, wherein the distance detection unit includes a correction unit that corrects a decrease in molten metal level caused by the progress of melting of scrap. 前記補正手段は、アーク電流が所定の範囲内にあるときの電極の移動量を補正量とすることを特徴とする請求項4に記載の電極昇降制御装置。   5. The electrode lifting / lowering control apparatus according to claim 4, wherein the correction means sets the movement amount of the electrode when the arc current is within a predetermined range as a correction amount. 前記補正手段は、アーク炉の炉体容量、スクラップの材質、形状、装入量及び設定アーク電流から定めた時間関数テーブルによることを特徴とする請求項4に記載の電極昇降制御装置。

5. The electrode lifting / lowering control apparatus according to claim 4, wherein the correction means is based on a time function table determined from a furnace capacity of an arc furnace, a scrap material, a shape, a charging amount, and a set arc current.

JP2004267036A 2004-09-14 2004-09-14 Electrode elevation control device Pending JP2006085936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004267036A JP2006085936A (en) 2004-09-14 2004-09-14 Electrode elevation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004267036A JP2006085936A (en) 2004-09-14 2004-09-14 Electrode elevation control device

Publications (1)

Publication Number Publication Date
JP2006085936A true JP2006085936A (en) 2006-03-30

Family

ID=36164258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004267036A Pending JP2006085936A (en) 2004-09-14 2004-09-14 Electrode elevation control device

Country Status (1)

Country Link
JP (1) JP2006085936A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020852A (en) * 2011-07-12 2013-01-31 Toshiba Mitsubishi-Electric Industrial System Corp Indication lamp control device of arc furnace
JP2017126417A (en) * 2016-01-12 2017-07-20 東芝三菱電機産業システム株式会社 Arc furnace electrode lifting device
JP2017216216A (en) * 2016-06-02 2017-12-07 東芝三菱電機産業システム株式会社 Electrode lifting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774993A (en) * 1980-10-27 1982-05-11 Ishikawajima Harima Heavy Ind Automatic controller for arc furnace
JPH0257889A (en) * 1988-08-19 1990-02-27 Nkk Corp Electrode elevation control method for dc arc furnace
JPH06260281A (en) * 1993-03-03 1994-09-16 Toshiba F Ee Syst Eng Kk Electrode breakage preventing control device for melting furnace
JPH0919709A (en) * 1995-07-07 1997-01-21 Toshiba Eng Co Ltd Device for controlling rolling
JP2003317930A (en) * 2002-04-23 2003-11-07 Ebara Corp Plasma type fusion furnace device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774993A (en) * 1980-10-27 1982-05-11 Ishikawajima Harima Heavy Ind Automatic controller for arc furnace
JPH0257889A (en) * 1988-08-19 1990-02-27 Nkk Corp Electrode elevation control method for dc arc furnace
JPH06260281A (en) * 1993-03-03 1994-09-16 Toshiba F Ee Syst Eng Kk Electrode breakage preventing control device for melting furnace
JPH0919709A (en) * 1995-07-07 1997-01-21 Toshiba Eng Co Ltd Device for controlling rolling
JP2003317930A (en) * 2002-04-23 2003-11-07 Ebara Corp Plasma type fusion furnace device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020852A (en) * 2011-07-12 2013-01-31 Toshiba Mitsubishi-Electric Industrial System Corp Indication lamp control device of arc furnace
JP2017126417A (en) * 2016-01-12 2017-07-20 東芝三菱電機産業システム株式会社 Arc furnace electrode lifting device
JP2017216216A (en) * 2016-06-02 2017-12-07 東芝三菱電機産業システム株式会社 Electrode lifting device

Similar Documents

Publication Publication Date Title
EP1745880A2 (en) Consumable electrode arc-welding machine
JP2006085936A (en) Electrode elevation control device
JP2011235348A (en) Method of controlling short-circuit current of mag welding
JP2011189396A (en) Non-consumable electrode arc welding control method
JP5862523B2 (en) Electrode lifting device
JP2006116546A (en) Method for controlling output of welding power source
US20150271879A1 (en) Device and method for the process-based power control of an electric arc furnace
JP5963623B2 (en) Arc furnace electrode lifting device
JP6910741B2 (en) Electrode lifting device for arc furnace
JP5343421B2 (en) Electrode lifting device for steelmaking arc furnace
JP5879499B2 (en) Arc welding control method and arc welding apparatus
JP5912976B2 (en) Electrode lifting control method and apparatus for arc furnace
JP2006252931A (en) Alternating current arc furnace control device
JP2001250673A (en) Electrode lifting control device for ac arc furnace
JP2003133054A (en) Electrode elevation control system for a.c. arc furnace, a.c. arc furnace and operation method of a.c. arc furnace
JP2000077180A (en) Electrode controll method for three-phase alternating current electric furnace
JP2665296B2 (en) DC arc furnace voltage controller
JP2001004281A (en) Controller for electrode lifting device for arc furnace
JP2526554B2 (en) Dissolution control method for AC arc furnace
JP2016107316A (en) Arc-welding device, power supply device for arc-welding and method for controlling power supply device for arc-welding
JPH09274987A (en) Power control method in melting furnace
JP2002208472A (en) Arc furnace device
JPH0232000Y2 (en)
KR101009884B1 (en) Apparatus and method for protechting electrode of electric arc furnace
JP2022125858A (en) Metal melting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601