JP4199563B2 - Electric melting furnace controller - Google Patents

Electric melting furnace controller Download PDF

Info

Publication number
JP4199563B2
JP4199563B2 JP2003051218A JP2003051218A JP4199563B2 JP 4199563 B2 JP4199563 B2 JP 4199563B2 JP 2003051218 A JP2003051218 A JP 2003051218A JP 2003051218 A JP2003051218 A JP 2003051218A JP 4199563 B2 JP4199563 B2 JP 4199563B2
Authority
JP
Japan
Prior art keywords
electrode
control
main electrode
control unit
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003051218A
Other languages
Japanese (ja)
Other versions
JP2004257703A (en
Inventor
吉司 松田
考太郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2003051218A priority Critical patent/JP4199563B2/en
Publication of JP2004257703A publication Critical patent/JP2004257703A/en
Application granted granted Critical
Publication of JP4199563B2 publication Critical patent/JP4199563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Incineration Of Waste (AREA)
  • Discharge Heating (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炉内に主電極と炉底電極とスタート電極とを備え、主電極と炉底電極間或いは主電極とスタート電極間に印加された高電圧によって発生する電流により炉底電極上にある被溶融物を溶融する電気式溶融炉に関し、より具体的には、各電極に対する運転制御を行う電気式溶融炉制御装置に関する。
【0002】
【従来の技術】
近年、ゴミ焼却施設において発生する焼却灰や煤塵を溶融して無害化し、リサイクル可能なスラグを生成する溶融炉の実用化が進んでいる。溶融炉は種々の方式のものが開発実用化されているが、炉内に主電極(黒鉛電極)と炉底電極とスタート電極(黒鉛電極)とを備え、主電極と炉底電極間或いは主電極とスタート電極間に印加された高電圧によって発生する電流により炉底電極上にある被溶融物を溶融する電気式溶融炉が実用化されてまだ数年程度である。
【0003】
上記電気式溶融炉では、主電極と炉底電極の間に直流電圧を印加し、プラズマアークを発生させて溶融スラグを加熱し、順次供給される灰等の被溶融物を溶融する。また、スラグ中を電流が流れるためジュール熱も利用でき効率的な溶融が行われる。溶融した灰等はスラグとなって連続オーバーフロー出滓後冷却され、コンベヤにより排出される。
【0004】
上記電気式溶融炉の運転は、定常運転時は主電極と炉底電極間を流れる電流値を一定に調整しながら、主電極と炉底電極の間隔を調整しながら設定した制御電圧値となるよう主電極の昇降制御を行う。
【0005】
しかし、定常運転時は被溶融物が溶融スラグとなっているが、運転開始時には被溶融物は必ずしも溶融状態でなく、また、その組成もガラス質のものや金属質のもの、つまり、導電性物質と非導電性物質が混在しており、更に、その混在の仕方も一様に混在している場合と、下層部に重い金属質の導電性物質が集中し、上層部に軽いガラス質の非導電性物質が集中している場合があり得る。従って、被溶融物の状態に応じて、運転開始時に定常運転時と同様に主電極と炉底電極間で電流が流れて、主電極の制御だけで定常運転に移行できる場合や、運転開始時に主電極と炉底電極間で電流が流れず、スタート電極を用いて被溶融物を上層部から徐々に溶融していき、最終的に、主電極と炉底電極間に電流が流れる状態に持っていき、定常運転に移行できる場合があり、被溶融物の状態に応じた複雑な立ち上げ制御が要求される。
【0006】
また、電極は黒鉛でできているため、プラズマアークの発生により徐々に磨耗していくので、短くなった電極の電極棒に新たな電極棒を自動で継ぎ足す電極自動継足制御が必要となる。
【0007】
尚、炉内に主電極と炉底電極とスタート電極とを備えた電気式溶融炉に関しては、本願出願人による下記の特許文献1〜3がある。
【0008】
【特許文献1】
特開平11−237018号公報
【特許文献2】
特開平09−156529号公報
【特許文献3】
特開平09−243267号公報
【0009】
【発明が解決しようとする課題】
上記の如く、電気式溶融炉の運転には、運転立ち上げ時の制御、定常運転時の制御、及び、電極自動継足制御が要求されるが、電気式溶融炉自体の基本的な構成は同じでも、使用される環境つまりゴミ焼却施設などの違いにより様々な製品仕様となるため、上記各制御は夫々別個独立した制御装置を用いて各別自動的に或いは手動操作によって行われていた経緯がある。また、数多くのプラントの電気式溶融炉で上記各制御の内容も画一化されていない現状があった。このため、ある程度熟練した操作員の経験に依存する場合もあった。このことは、上記電気式溶融炉が実用化されてまだ数年程度であるため、今までは、上記各制御を画一化して統合化するための十分な実地データがなかったという背景もある。
【0010】
ここで、本願発明者は、過去の電気式溶融炉の実用化経験に基づいて、上記各制御の画一化・統合化を図るべく本発明に至った。本発明は、上述の問題点に鑑みてなされたものであり、その目的は、上記問題点を解消し、操作員の経験に影響されない安定した電気式溶融炉の操業が可能な電気式溶融炉制御装置を提供することにある。
【0011】
【課題を解決するための手段】
この目的を達成するための本発明に係る電気式溶融炉制御装置の第一の特徴構成は、炉内に主電極と炉底電極とスタート電極とを備え、前記主電極と前記炉底電極間或いは前記主電極と前記スタート電極間に印加された高電圧によって発生する電流により前記炉底電極上にある被溶融物を溶融する電気式溶融炉において、前記主電極と前記スタート電極の前記炉内での電極位置を移動させる電極昇降制御手段、及び、前記各電極間に電圧を印加する電源装置との間で、制御データの送信または送受信を行い、前記各電極に対する運転制御を行う電気式溶融炉制御装置であって、起動時に、前記被溶融物の状態に応じて前記主電極と前記スタート電極の自動運転制御を行い、前記主電極の自動運転制御だけで前記被溶融物を溶融する定常運転にまで立ち上げる起動制御部と、定常運転時に、前記主電極と前記スタート電極に印加される電圧を制御すべく、前記主電極の前記炉内での電極位置の移動制御を前記電極昇降制御手段に対して行う電極昇降制御部と、を備え、前記起動制御部が、前記主電極と前記炉底電極間の第1の電圧印加によって、前記被溶融物の状態を前記定常運転に移行可能な溶融状態とする前記主電極の自動運転制御を開始し、制御開始後に前記主電極の下降を開始するとともに、前記主電極と前記炉底電極間を流れる第1電流値を判定し、前記第1電流値が所定の第1閾値より小さい場合に、前記主電極を所定の下降位置まで下降させる前記主電極の下降制御を行い、前記第1電流値が前記所定の第1閾値以上の場合に、前記主電極の下降を停止する制御を行い、前記主電極の自動運転制御において、前記第1電流値が前記所定の第1閾値より小さく、且つ、前記主電極が前記所定の下降位置まで下降している場合に、前記第1の電圧印加では前記被溶融物の状態を前記定常運転に移行可能な溶融状態とすることができないと判定して、前記第1の電圧印加に対して前記主電極と前記スタート電極間の第2の電圧印加を追加した前記主電極と前記スタート電極の自動運転制御に移行し、前記スタート電極の下降を開始するとともに、前記主電極と前記スタート電極間を流れる第2電流値を判定し、前記第1電流値と前記第2電流値を合計した第3電流値が所定の第3閾値以上になると、前記スタート電極の下降を停止する前記スタート電極の下降制御を行い、前記主電極と前記スタート電極の下降停止位置のままで、前記主電極と前記スタート電極間に電流を流して前記被溶融物を溶融する点にある。
【0012】
尚、上記各電極間に高電圧を印加して発生する電流には、高電圧印加によって発生するプラズマアークの放電電流、被溶融物の導電物質中を流れる電流の少なくとも何れかが一方が含まれ、通常その両方が含まれる。
【0013】
上記第一の特徴構成によれば、起動制御部が、起動時の立ち上げ制御において、被溶融物の状態に応じて主電極とスタート電極の自動運転制御を行うので、同じ制御アルゴリズムを同じく主電極とスタート電極を用いた立ち上げを行う種々の電気式溶融炉に画一的に使用でき、且つ、起動制御部と電極昇降制御部の両制御部を備えているので、被溶融物の初期状態に拘わらず、立ち上げ制御から定常運転時の主電極の電極昇降制御が統合して行える。つまり、立ち上げ制御から定常運転時の主電極の電極昇降制御が自動的に行えるか、或いは、操作員による確認操作が介在するとしても操作員の経験に影響されない安定した操業が可能となる。
【0014】
更に、起動時の被溶融物の状態が、主電極と炉底電極間に十分な電流を流し得ない状態、つまり、固形状態(非溶融状態)にある場合に、主電極とスタート電極の両電極の下降停止位置が概ね被溶融物と接触する位置のまま、両電極間の通電を行う。一般的には(例えば、通常のアーク溶接などでは)溶融促進をねらい、電力をかせごうと高電圧を得るために被溶融物とは一定間隔を設けて放電を行うが、本特徴構成では、主電極とスタート電極の下降停止位置のままで被溶融物の表面に沿ってプラズマアークを発生させることにより、被溶融物の表面から内部に向けて被溶融物を溶融することで、効率的且つ比較的高速な溶融が可能となり、早期に定常運転に移行できる。
【0015】
同第の特徴構成は、前記起動制御部は、前記主電極と前記スタート電極を所定の下降停止位置で停止させた状態で、前記主電極と前記スタート電極間に電流を流して前記被溶融物を溶融した後、前記スタート電極を所定の上昇停止位置に戻す際に、前記スタート電極の上昇を、間に所定の停止期間を挟みながら複数回に分けて実行する点にある。
【0016】
上記第の特徴構成によれば、スタート電極の上昇を段階的に行うことで、スタート電極を冷却しながら上昇させることができるので、スタート電極に近接する炉壁の損傷を抑制することができる。
【0017】
同第の特徴構成は、前記電極昇降制御部は、前記主電極の電極位置の移動制御を、PID制御で行うPID制御部と、ステップ制御で行うステップ制御部と、リニア制御で行うリニア制御部を備えている点にある。
【0018】
上記第の特徴構成によれば、複数の制御部を備えていることで、万が一主電極の電極昇降制御を実施中の制御部が故障しても、直ぐに他の制御部がバックアップして当該制御を継続することができ、電気式溶融炉の運転停止を回避できる。
【0019】
同第の特徴構成は、前記電極昇降制御部は、制御開始直後は、前記ステップ制御部または前記リニア制御部による制御を行う点にある。
【0020】
上記第の特徴構成によれば、制御開始直後は被溶融物の状態が安定しておらず、変動が大きいため、制御に比較的時間の要するPID制御に対し、応答性の良いステップ制御部またはリニア制御部を用いることで、大きな変動に対してより安定した制御が可能となる。
【0021】
同第の特徴構成は、前記主電極または前記スタート電極に電極棒を継ぎ足すために、少なくとも、予備の電極棒を搬送する搬送手段、前記予備の電極棒を前記主電極または前記スタート電極に自動で継ぎ足す電極自動継足装置、及び、前記電極昇降制御手段との間で、制御データの送信または送受信を行い、前記予備の電極棒の保管場所から前記予備の電極棒を取り出し、前記予備の電極棒を前記主電極または前記スタート電極に自動で継ぎ足すまでの制御を行う電極自動継足制御部を、更に備えている点にある。
【0022】
上記第の特徴構成によれば、同じ電気式溶融炉制御装置が電極自動継足制御部を備えることで、起動制御部による立ち上げ制御と、電極昇降制御部による定常運転時の主電極の昇降制御と、電極自動継足制御部による電極自動継足制御の各制御を、従来の電気式溶融炉では夫々個別に行っていたものを、相互に連携させた画一的な制御が容易にできるようになる。
【0023】
同第の特徴構成は、前記電極自動継足制御部による電極自動継足が終了した後、前記起動制御部による立ち上げ制御が自動的に開始される点にある。
【0024】
上記第の特徴構成によれば、電極自動継足中に停止させた電気式溶融炉の運転を自動的に再開させることが可能となる。
【0025】
【発明の実施の形態】
本発明に係る電気式溶融炉制御装置(以下、適宜「本発明装置」という。)の実施の形態につき、図面に基づいて説明する。
【0026】
先ず、本発明装置1の制御対象である電気式溶融炉30は、図2に示すように、炉壁天井部35aを貫通して炉内36に挿入される主電極31とスタート電極33が設けられ、夫々主電極31用の電極昇降装置23aとスタート電極33用の電極昇降装置23bによって各別に支持され、各電極の炉内36での先端位置を上下に移動可能な構成となっている。炉底部35bには炉底電極32が設けられ集電板34に接続されている。また、炉側壁部35cは被溶融物である灰の供給口37が設けられて、スクリューコンベア等の搬送手段によって炉内36に被溶融物が供給される。主電極31は主電極31を支持する支持アームを介して高電圧を発生する直流電源装置22aの負極に接続されている。スタート電極33はスタート電極33を支持する支持アームを介して直流電源装置22aの一方の正極に接続されている。炉底電極32は集電板34を介して直流電源装置22aの他方の正極に接続されている。直流電源装置22aには、高圧配電盤に設けられたVCB(真空遮断器)22bを経由して特高電圧が供給される。
【0027】
上記構成の電気式溶融炉30では、主電極31と炉底電極32間に直流高電圧を印加し、プラズマアークを発生させて炉底電極32上の溶融スラグ40を加熱し、順次供給される灰等の被溶融物を溶融する。また、スラグ中を電流が流れるためジュール熱も利用でき効率的な溶融が行われる。溶融した灰等はスラグとなって、炉側壁部35cに設けられた出滓口38から連続オーバーフロー出滓後冷却され、コンベヤにより排出される。
【0028】
図1に示すように、本発明装置1は、制御演算処理部2と、制御演算処理部2と電気式溶融炉30の電極昇降装置23a、23bの電極昇降装置制御盤23、直流電源装置22a、VCB22b等との間で制御用の入出力データの授受を行うためのI/Oインターフェース3と、各種データを表示する表示器4とを備えて構成され、一つの制御盤として、電気式溶融炉30の立ち上げ制御と定常運転時の主電極昇降制御と電極自動継足制御の3つの制御機能を発揮する。
【0029】
制御演算処理部2は汎用コンピュータで構成される中央演算処理部5と専用コントローラで構成されるPID制御部12からなり、更に、中央演算処理部5は、前記立ち上げ制御を専ら行う起動制御部6と、前記定常運転時の主電極昇降制御を専ら行う電極昇降制御部7と、前記電極自動継足制御を専ら行う電極自動継足制御部8と、制御監視用に用いる分散型制御システム(DCS)20とコンピュータネットワークの一種であるデータリンク21を介して入出力データの授受を行うためのDCSインターフェース9を備えている。尚、PID制御部12は、電極昇降制御部7の電極昇降制御をPID制御によって実行するPID制御機能を専用コントローラで実現したもので、電極昇降制御部7の一部を成す。また、中央演算処理部5の起動制御部6、PID制御部12を除く電極昇降制御部7、及び、電極自動継足制御部8は、中央演算処理部5を構成する汎用コンピュータによるプログラムの実行によりソフトウェア処理により実現される。更に、中央演算処理部5内の電極昇降制御部7は、電極昇降制御部7の電極昇降制御をソフトウェア処理によるステップ制御によって実行するステップ制御部10と、電極昇降制御部7の電極昇降制御をソフトウェア処理によるリニア制御によって実行するリニア制御部11を備えるとともに、ステップ制御部10、リニア制御部11、PID制御部12の何れの制御部によって電極昇降制御を行うかの管理や、各制御部間で制御が引き継がれた場合の管理等も行う。
【0030】
I/Oインターフェース3は、電極昇降装置制御盤23、直流電源装置22a、VCB22b、電極自動継足装置24aを直接制御する電極自動継足装置制御盤24、及び、電極置台装置25aを直接制御する電極置台装置制御盤25との間で、個別の通信線またはデータリンク等を介して制御用の入出力データの入出力を行う。
【0031】
本実施形態では、電極自動継足制御において新電極(予備の電極棒)を電極置台装置25aから、現在使用中の旧電極の上方まで搬送する炉頂クレーン26との制御用の入出力データの授受は、DCS20を経由して行う構成となっている。
【0032】
次に、本発明装置1の起動制御部6による電気式溶融炉30の立ち上げ制御の処理手順につき、図3〜図5のフローチャートを用いて説明する。以下の説明では、特に断らない限り各処理は起動制御部6によって実行される。
【0033】
操作員によるスタート指令(#0)をDCS20から受信すると、各機器状態(警報の有無等)の確認とそれに応じたアラーム表示等の前処理とタイミングタイマによる時間遅延処理を行い(#1)、VCB22bに対してVCB入指令を出力する(#2)。VCB22bはVCB入指令によりオンし、直流電源装置22aに特高電圧が供給される。引き続き、DCS20のVCB入状態入力を受信後、電極昇降装置制御盤23に対し、主電極下降指令を出力する(#3)。電極昇降装置制御盤23は主電極下降指令により主電極31用の電極昇降装置23aに対し下降制御を開始する。主電極31が下降するに従い、被溶融物の状態に応じた主電極31と炉底電極32間を流れる第1電流値Iの変化を検出すべく、直流電源装置22aから第1電流値I(データ)を受け取り(#4)、第1電流値Iが所定の第1閾値I1A以上かを判定する(#5:初期電流オーバー判定)。第1電流値Iが第1閾値I1Aより小さい場合は、電極昇降装置制御盤23から主電極ワイヤー緩みデータを受け取り(#6)、主電極ワイヤー緩みの有無を判定する(#7)。主電極ワイヤー緩み判定により、ワイヤー緩みが無い場合は、主電極31の下端が下まで下降しきっていないと判定し、ステップ#4及び#5に戻る。ここで、ステップ#7の判定で、ワイヤー緩みがある場合は、主電極31が下まで下降しているのでそれ以上は下降できず、しかも、第1電流値Iが第1閾値I1Aより小さいので、被溶融物が固形(非溶融)状態であると判断して、後述するスタート電極33を用いる第2パターンの立ち上げ制御(ステップ#20〜#46)に移行する。
【0034】
ステップ#5の初期電流オーバー判定で、第1電流値Iが第1閾値I1A以上である場合は、被溶融物がある程度導通状態(溶融状態)にあるので、主電極31と炉底電極32間に直流電圧を印加するだけでスタート電極33を用いずに立ち上げ制御を完了できる。(第1パターンの立ち上げ制御)
【0035】
第1パターンの立ち上げ制御では、第1電流値Iが第1閾値I1A以上になると主電極31の下降を停止すべく、電極昇降装置制御盤23に対し主電極下降停止指令を出力する(#8)。電極昇降装置制御盤23は主電極下降停止指令により電極昇降装置23aに対し主電極31の下降を停止させる。引き続き、メインアーク起動タイマによる時間遅延処理を行い(#9)、第1電流値Iが第1閾値I1Aより大きい第2閾値I1B以上になるまで、主電極31と炉底電極32間の直流電圧印加を主電極31の下降停止位置のままで継続させる(#10〜#12)。詳細には、直流電源装置22aから第1電流値I(データ)を受け取り(#10)、第1電流値Iが第2閾値I1B以上かを判定し(#11:第2初期電流オーバー判定)、第1電流値Iが第2閾値I1B以上になるまでステップ#10と#11を繰り返すとともに、並行して初期電流オーバータイマによる時間遅延処理を行う(#12)。尚、当該時間遅延処理の間も第2初期電流オーバー判定(#10、#11)を行い、第1電流値Iが第2閾値I1B以上であることを確実にする。
【0036】
第1電流値Iが第2閾値I1B以上になり、初期電流オーバータイマによる時間遅延処理も完了した後に、主電極31と炉底電極32間の電圧Vが定常運転を開始するのに適切な電圧値となるように、主電極31の下端位置を上昇させるべく、電極昇降装置制御盤23に対し主電極上昇指令を出力する(#13)。電極昇降装置制御盤23は主電極上昇指令により電極昇降装置23aに対し主電極31の上昇制御を開始する。
【0037】
主電極31と炉底電極32間の電圧値V(データ)を直流電源装置22aから受け取り(#14)、電圧値Vが所定の第1閾値電圧V1A以上かを判定し(#15)、VがV1A以上となるまで、ステップ#14と#15を繰り返すとともに、VがV1A以上となると、電極昇降装置制御盤23に対し、主電極上昇停止指令を出力する(#16)。第1電流値Iが所定電流値以上あるかの確認や、定常運転開始時の条件設定等の所定の後処理(#17)を経て定常運転に移行する。
【0038】
次に、第2パターンの立ち上げ制御について説明する。ステップ#7の判定で、ワイヤー緩みがある場合、スタート電極起動タイマによる時間遅延処理を行い(#20)、DCS20で操作員がスタート電極の使用を選択していることを条件に、電極昇降装置制御盤23に対し、スタート電極下降指令を出力する(#21)。電極昇降装置制御盤23はスタート電極下降指令によりスタート電極33用の電極昇降装置23bに対し下降制御を開始する。スタート電極33が下降し被溶融物の表面に近接するに従い、被溶融物の状態に応じた主電極31とスタート電極33間を流れる第2電流値Iの変化を検出すべく、直流電源装置22aから第1電流値Iと第2電流値Iの合計である第3電流値I(データ)を受け取り(#22)、第3電流値Iが所定の第3閾値I3A以上かを判定する(#23:第3初期電流オーバー判定)。第3電流値Iが第3閾値I3Aより小さい場合は、電極昇降装置制御盤23からスタート電極ワイヤー緩みデータを受け取り(#24)、スタート電極ワイヤー緩みの有無を判定する(#25)。スタート電極ワイヤー緩み判定により、ワイヤー緩みが無い場合は、スタート電極33の下端が下まで下降しきっていないと判定し、ステップ#22及び#23に戻る。
【0039】
ここで、第3電流値Iが第3閾値I3Aより小さく、しかもワイヤー緩みがある場合は、被溶融物の表面近傍に非導電性物質が集中し固形状態(非溶融状態)にあるため、一旦立ち上げ制御を中断し、被溶融物の表面近傍に導電性物質を供給する処置を施すべく、DCS20に対しアラームを発生する。
【0040】
ステップ#23の第3初期電流オーバー判定で、第3電流値Iが所定の第3閾値I3A以上である場合は、スタート電極33のその下降位置で主電極31とスタート電極33間で被溶融物の表面に沿ってプラズマアークを発生して被溶融物を溶融可能と判定して、スタート電極の下降を停止すべく、電極昇降装置制御盤23に対し、スタート電極下降停止指令を出力する(#26)。電極昇降装置制御盤23はスタート電極下降停止指令により電極昇降装置23bに対し下降を停止させる。主電極31とスタート電極33は、夫々の電極の停止位置を維持したまま、被溶融物の表面に沿って両電極間にプラズマアークを発生し続けて、プラズマアーク及びプラズマアークによる下方への熱伝導により被溶融物を表面から徐々に溶融する(#27〜#30)。詳細には、主電極31とスタート電極33間に高電圧が印加された状態で、タイミングタイマによる時間遅延処理を行い(#27)、直流電源装置22aから第1電流値I(データ)を受け取り(#28)、第1電流値Iが第2閾値I1B以上かを判定し(#29:第2初期電流オーバー判定)、第1電流値Iが第2閾値I1B以上になるまでステップ#28と#29を繰り返すとともに、並行して初期電流オーバータイマによる時間遅延処理を行う(#30)。尚、当該時間遅延処理(#30)の間も第2初期電流オーバー判定(#28、#29)を行い、第1電流値Iが第2閾値I1B以上であることを確実にする。これにより被溶融物は十分に定常運転に移行可能な状態になったので、第2パターンの立ち上げ制御を終了すべく終了工程(#31〜#46)に入る。
【0041】
第1電流値Iが第2閾値I1B以上になり、初期電流オーバータイマによる時間遅延処理も完了した後に、先ず、VCB22bに対してVCB切指令を出力する(#31)。VCB22bはVCB切指令によりオフし、直流電源装置22aへの特高電圧供給が遮断され、主電極31と炉底電極32間、及び、主電極31とスタート電極33間での高電圧の印加が解除される。
【0042】
次に、電極昇降装置制御盤23から主電極支腕位置データを受け取り(#32)、当該主電極支腕位置を記憶し(#33)、電極昇降装置制御盤23に対し、主電極上昇指令を出力する(#34)。電極昇降装置制御盤23は主電極上昇指令により主電極31用の電極昇降装置23aに対し上昇制御を開始する。
【0043】
主電極31の上昇中、電極昇降装置制御盤23から主電極支腕位置データを受け取り(#35)、ステップ#33で記憶した主電極支腕位置と現在の主電極支腕位置から上昇距離の判定を行いながら(#36)、所定距離を上昇する。主電極31が所定距離を上昇したと判定した後、電極昇降装置制御盤23に対し主電極上昇停止指令を出力する(#37)。電極昇降装置制御盤23は主電極上昇停止指令により電極昇降装置23aに対し主電極31の上昇を停止させる。
【0044】
引き続き、スタート電極の段階的な上昇制御(#38〜#46)を実行する。詳細には、電極昇降装置制御盤23に対し、スタート電極上昇指令を出力する(#38)。電極昇降装置制御盤23はスタート電極上昇指令によりスタート電極33用の電極昇降装置23bに対し上昇制御を開始する。タイミングタイマによる時間遅延処理を行い(#39)、電極昇降装置制御盤23に対し、スタート電極上昇停止指令を出力する(#40)。電極昇降装置制御盤23はスタート電極上昇停止指令により電極昇降装置23bに対し上昇を停止させる。更に、再度タイミングタイマによる時間遅延処理を行い(#41)、電極昇降装置制御盤23に対し、スタート電極上昇指令を出力する(#42)。電極昇降装置制御盤23は再びスタート電極上昇指令によりスタート電極33用の電極昇降装置23bに対し上昇制御を開始する。再々度タイミングタイマによる時間遅延処理を行い(#43)、電極昇降装置制御盤23に対し、再度スタート電極上昇停止指令を出力する(#44)。電極昇降装置制御盤23はスタート電極上昇停止指令により電極昇降装置23bに対し上昇を停止させる。電極昇降装置制御盤23からスタート電極支腕位置データを受け取り(#45)、スタート電極支腕位置が所定高さ以上であるかを判定し(#46)、所定高さに到達していない場合は、所定高さに到達するまで、ステップ#38〜#46の処理を繰り返し、第2パターンの立ち上げ制御を終了する。
【0045】
次に、本発明装置1の電極昇降制御部7による主電極31の電極昇降制御について説明する。
【0046】
電極昇降制御部7は、ステップ制御部10、リニア制御部11、PID制御部12の何れか一つの制御部を用いて、電極昇降装置制御盤23に対し種々の制御指令を出力し、主電極31用の電極昇降装置23aに対し昇降制御を行う。直流電源装置22aに対し、主電極31と炉底電極32間を流れる第1電流値Iが定電流となるよう定電流制御しながら、主電極31の昇降制御により、主電極31と炉底電極32間の距離を調整することで、両電極間に掛かるプラズマ電圧(V)の制御を行う。
【0047】
電極昇降制御部7に対する第1電流値I及び電圧値Vの各設定値は、DCS20から入力される。また、DCS20から電流・電圧の設定値を変更した場合、変化率設定により実設定値が徐々に変化するように構成されている。尚、変化率設定は、電極昇降制御の制御モード毎に切り替わる。制御モードには、ステップ制御部10によるステップ制御モード、リニア制御部11によるリニア制御モード、PID制御部12によるPID制御モード、更に、手動による手動モードの4制御モードがあり、制御モード毎に、電圧設定値と電流設定値に対する増加率と減少率が予め設定されテーブル化されている。
【0048】
次に、PID制御部12によるPID制御モードの電極昇降制御の概略を説明する。PID制御部12は、直流電源装置22aから受け取った電圧Vと電圧設定値に基づき、図6に示す処理手順で演算処理を行う。
【0049】
先ず、電圧Vと電圧設定値の偏差DVを求め、その偏差DVに対して、図7に示すギャップ演算特性に基づき、偏差DV’を出力するギャップ演算を行い、次に、その偏差DV’を補償する逆動作を誘引するPID演算を実行し、主電極昇降速度を出力する。そのPID出力に対し出力リミッタ処理を施し、所定の出力上限値及び出力下限値の範囲内で主電極昇降速度を出力する。尚、ギャップ演算のギャップ幅GW、PID演算の比例、積分、微分の各設定値、出力リミッタ処理の出力上限値及び出力下限値は、夫々設定値として設定されている。
【0050】
また、他の制御モードからPID制御モードに移行した場合は、移行前の出力からの動作となる。逆に、PID制御中にPID制御部12が故障した場合は、予めPID制御故障時の制御モードで設定された制御モード(ステップ制御モードまたはリニア制御モード)に自動的に移行する。
【0051】
次に、ステップ制御部10によるステップ制御モードの電極昇降制御の概略を説明する。ステップ制御部10は、直流電源装置22aから受け取った電圧Vと電圧設定値に基づき、図8に示す処理手順で演算処理を行う。
【0052】
先ず、電圧Vと電圧設定値の偏差DVを求め、その偏差DVが、図8に示す6つの領域の何れに該当するかを判定し、電極昇降装置制御盤23に対し、5通りの電極昇降制御を実行する。つまり、ΔV1、ΔV2、−ΔV1、−ΔV2の4つの偏差判定閾値を設定しておき(但し、ΔV2>ΔV1)、DV≧ΔV2の場合に第1下降動作を、ΔV2>DV≧ΔV1の場合に第2下降動作を、DV≦−ΔV2の場合に第1上昇動作を、−ΔV2<DV≦−ΔV1の場合に第2上昇動作を実行し、−ΔV1<DV<ΔV1の場合は何れの昇降動作も実行しない。
【0053】
第1下降動作と第1上昇動作、第2下降動作と第2上昇動作は、夫々電極の移動方向が逆であるだけで、各制御中の動作時間と停止時間の設定値は同じである。これに対し、第1下降動作と第2下降動作、第1上昇動作と第2上昇動作は、夫々電極の移動方向は同じであるが、各制御中の動作時間と停止時間の設定値が異なり、各第1動作の方が、大きな下降または上昇を行うように設定されている。
【0054】
従って、ステップ制御部10は、上記要領で第1下降動作、第2下降動作、第1上昇動作、または、第2上昇動作の何れかが選択された場合、各動作の動作時間と停止時間の設定値に基づき、主電極31用の電極昇降装置23aに対し、電極下降指令及び電極下降停止指令、または、電極上昇指令及び電極上昇停止指令を出力する。また、何れの動作も選択されなかった場合は、何れの昇降制御指令も出力しない。
【0055】
次に、リニア制御部11によるリニア制御モードの電極昇降制御の概略を説明する。リニア制御部11は、直流電源装置22aから受け取った電圧Vと電圧設定値に基づき、図9に示す処理手順で演算処理を行う。
【0056】
先ず、電圧Vと電圧設定値の偏差DVを求め、その偏差DVに対して、図7に示すギャップ演算特性に基づき、偏差DV’を出力するギャップ演算を行い、次に、その偏差DV’を補償する逆動作を誘引する比率演算(数1の比率演算式参照)を実行し、主電極昇降速度Rを出力する。
【0057】
【数1】
R=GA・DV’+BI
【0058】
その比率演算出力Rに対し出力リミッタ処理を施し、所定の出力上限値及び出力下限値の範囲内で主電極昇降速度を出力する。ここで、ギャップ演算のギャップ幅GW、比率演算式のゲインGAとバイアスBI、出力リミッタ処理の出力上限値及び出力下限値が、夫々設定値として設定されている。ギャップ演算のギャップ幅GWはPID制御モード時と同じ設定でも異なる設定の何れでもよい。
【0059】
電極昇降制御部7は、主電極31の電極昇降制御の開始時点で、予め設定されたステップ制御モードまたはリニア制御モードを選択して、対応するステップ制御部10、リニア制御部11を起動し、電圧変動が安定してきた時点で、実行中の制御モードからPID制御モードに移行するようにするのも好ましい。
【0060】
次に、本発明装置1の電極自動継足制御部8による主電極31の電極自動継足制御における処理手順の概略につき、図10のフローチャートを用いて説明する。尚、本実施形態では、複数の電気式溶融炉30に対して、電極自動継足に必要な電極自動継足装置24aと電極自動継足装置制御盤24、電極置台装置25aと電極置台装置制御盤25、及び、炉頂クレーン26を共用する場合の電極自動継足制御について説明する。但し、本実施形態では、本発明装置1は電気式溶融炉30毎に各別に設けられており、電極自動継足制御部8も制御対象である電気式溶融炉30(以下、適宜「自炉」と称す。)に対して電極自動継足制御を実行する。以下の説明では、特に断らない限り各工程における各処理は電極自動継足制御部8によって実行される。
【0061】
先ず、継足準備工程(#100)につき説明する。電極昇降装置制御盤23から主電極昇降装置位置データを受け取り、自炉の主電極31が電極自動継足可能か否かの判定をし、可能である場合にDCS20に対し、その旨のメッセージを出力する。DCS20からの操作員による継足準備開始指令を受け取ると、自炉を運転対象とする炉頂クレーン26に対し、電極自動継足制御のために選択された旨の選択指令を出力するとともに、関連する各装置23〜26から異常の有無を確認するための各状態データを取得し、更に、電極昇降装置制御盤23からスタート電極支腕位置データを受け取り、電極自動継足操作可能かを判定する。何れも異常が無ければ、電極自動継足装置制御盤24と炉頂クレーン26に対し、継足準備指令を出力する。電極自動継足装置制御盤24と炉頂クレーン26は、夫々継足準備指令を受け取ると所定の継足準備動作を実行し、終了するとその旨を電極自動継足制御部8に出力する。電極自動継足装置制御盤24と炉頂クレーン26の両方から継足準備動作終了データを受け取ると、その旨のメッセージをDCS20に対し出力する。
【0062】
次に、自動継足工程(#110)につき説明する。DCS20の継足準備動作終了メッセージに基づき、操作員がDCS20上で自動継足開始指令を発し、当該指令をDCS20から受け取ると、自動継足開始指令を各関連装置に発信する。自動継足工程(#110)では、先ず、電極払出工程(#111)が実行される。
【0063】
電極払出工程(#111)では、電極置台装置制御盤25が自動継足開始指令を受け取ると、電極置台装置25aが所定の電極払出動作を行い、新しい電極を取り出し可能な状態にする。電極置台装置制御盤25から電極取出可能データを受け取ると、電極自動継足装置制御盤24に対し、新電極準備指令を発信する。
【0064】
電極払出工程(#111)に引き続き、灰供給運転中の場合にこれを停止させる灰供給停止工程(#112)と新電極つかみ工程(#113)が並行して実行される。新電極つかみ工程(#113)では、電極自動継足装置制御盤24が新電極準備指令を受け取ると、電極自動継足装置24aが新電極をつかむ動作を行う。この動作において、同時に、旧電極の上端部の雌ねじ部に螺合する雄ねじ接合部材を新電極の先端部(下端部)の雌ねじ部に取り付ける。
【0065】
新電極つかみ工程(#113)に引き続き、クレーン中間点移動工程(#114)において、クレーン中間点移動指令が、炉頂クレーン26に対し出力され、炉頂クレーン26が当該指令を受け取り、クレーンを中間点まで移動させる。
【0066】
引き続き、電極動作停止工程(#115)を実行する。詳細には、炉頂クレーン26が中間点まで移動し、灰供給運転の停止を確認した後、VCB22bがオン状態である場合、つまり、直流電源装置22aに特高電圧が供給され各電極間に高電圧が印加されている場合に、電極昇降装置制御盤23に対し、電極自動昇降運転を停止させ、VCB22bをオフする指令を出力する。主電極31に対する高電圧の印加と昇降制御が解除された後、所定秒経過後、電極昇降装置制御盤23に対し、電極待機位置昇降指令を出力し、電極昇降装置制御盤23は当該指令を受け取り、主電極31を所定の待機位置まで上昇または下降させる。
【0067】
電極動作停止工程(#115)の開始時に、電極昇降制御部7が電極昇降装置制御盤23、直流電源装置22a、VCB22bに対し、主電極31の電極昇降制御を実行中であれば、電極自動継足制御部8の制御が、電極昇降制御部7の電極昇降制御に優先して実行され、電極昇降制御部7による電極昇降制御は中断される。
【0068】
電極動作停止工程(#115)に引き続き、クレーン継足点移動工程(#116)において、先ず、炉頂クレーン26の移動の障害となる、手すり通行ゲートを開放する指令をDCS20に出力するとともに、手すり通行ゲート開状態データをDCS20から受け取り、炉頂クレーン26に対し、クレーン継足点移動指令を出力する。炉頂クレーン26は当該指令を受け取り、クレーンを継足点へ移動する。引き続き、電極昇降装置制御盤23に対し、N2脱着装置開放指令を出力し、電極昇降装置23aのN2脱着装置開放の確認データを電極昇降装置制御盤23から受け取る。
【0069】
次に、炉頂クレーン26が継足点へ移動後、電極自動継足装置カバー下降工程(#117)において、電極自動継足装置制御盤24に対し、電極自動継足装置カバー下降指令を出力し、電極自動継足装置24aがカバー下降処理を実行する。
【0070】
引き続き、クレーン継足点移動工程(#116)において、電極昇降装置制御盤23から電極昇降装置23aのN2脱着装置開放の確認データを受け取り、クレーン巻下・主電極上昇工程(#118)において、電極自動継足装置24aによるカバー下降処理が終了した後、炉頂クレーン26に対し、クレーン巻下指令を出力し、炉頂クレーン26が巻き下げ動作を開始する。炉頂クレーン26から継足高さに到達したか、クレーン巻下が完了したかの確認を行った後、電極昇降装置制御盤23に対し、主電極上昇指令を出力する。電極昇降装置23aが主電極31の上昇を開始するとともに、電極自動継足装置制御盤24から旧電極上端位置検知データを受け取り、当該位置検知データに基づき、電極昇降装置制御盤23に対し、主電極上昇停止指令を出力し、主電極31は上昇を停止する。
【0071】
引き続き、電極継足工程(#119)において、電極昇降装置制御盤23に対し、電極継足指令を出力し、電極昇降装置制御盤23は当該指令により、旧電極に新電極を継ぎ足す継足動作を実行する。継足動作終了後、その旨の終了通知を受け取り、DCS20に継足動作終了メッセージを出力する。
【0072】
引き続き、電極掴み替え工程(#120)が実行される。電極継足工程(#119)終了時点では、旧電極は電極昇降装置23aの電極支持アームに支持され、新電極は電極自動継足装置24aに支持されている。そこで、新電極が電極自動継足装置24aに支持されている状態で、電極昇降装置制御盤23に対し、電極掴み替え指令を出力し、電極昇降装置23aが支持個所を旧電極から新電極に移動する。電極掴み替えが完了すると、電極自動継足装置制御盤24に対し、新電極放し指令を出力し、電極自動継足装置24aに対し、新電極の支持を解除させる。
【0073】
電極自動継足装置24aが新電極放し動作を終了すると、クレーン退避工程(#121)が実行され、炉頂クレーン26がクレーン巻上動作、中間点移動動作等を実行する。引き続き、後処理工程(#122)において、手すり通行デートを閉鎖する指令をDCS20に出力するとともに、手すり通行ゲート閉状態データをDCS20から受け取り、電極昇降装置制御盤23に対し、N2脱着装置装着指令を出力し、電極昇降装置23aのN2脱着装置装着の確認データを電極昇降装置制御盤23から受け取る。
【0074】
後処理工程(#122)の完了を確認すると、電極自動継足制御部8は、起動制御部6に対し、電気式溶融炉30の立ち上げ制御を指示する(#123)。起動制御部6による立ち上げ制御終了後に、電極昇降制御部7による定常運転に移行すると、灰供給装置に対し、灰供給運転開始指令を出力する(#124)。灰供給装置からの灰供給運転中である旨の確認データを受け取り、クレーン退避工程(#121)における炉頂クレーン26の退避動作の完了を確認すると、終了工程(#125)において、DCS20に対し、自動継足完了メッセージを出力するとともに、DSC20から操作員による自動継足完了確認指令を受け取って、炉頂クレーン26に対し、自動継足制御完了指示を出力し、主電極31の電極自動継足制御を終了する。
【0075】
上記の如く、本発明装置1が、起動制御部6と電極昇降制御部7と電極自動継足制御部8を統合して備えていることで、主電極31の電極自動継足制御において、電気式溶融炉30の立ち上げ制御と定常運転時の主電極31の自動昇降制御が自動的に円滑に実行させて、主電極31の電極自動継足制御を終了させることができる。
【0076】
以下に、別の実施形態につき説明する。
上記実施の形態では、本発明装置1は電気式溶融炉30毎に各別に設けられている構成を前提に説明したが、1台の本発明装置1が、複数の電気式溶融炉30を同時に制御する形態であっても構わない。
【0077】
また、本発明装置1の起動制御部6、電極昇降制御部7、電極自動継足制御部8の各制御部の具体的な動作・処理手順及び構成は、上記実施形態の動作・処理手順及び構成に限定されるものではなく、本発明の技術的範囲内において適宜変更可能である。
【0078】
例えば、電極昇降制御部7のPID制御部12を専用コントローラで構成せずに、ステップ制御部10及びリニア制御部11と同様にソフトウェア処理により実現しても構わない。更に、電極自動継足制御部8による電極自動継足制御はスタート電極33に対して実行しても構わない。
【0079】
【発明の効果】
以上、本発明によれば、操作員の経験に影響されない安定した電気式溶融炉の立ち上げ制御、定常運転時の主電極の自動昇降制御、更に、主電極の電極自動継足制御が可能となる。
【図面の簡単な説明】
【図1】本発明に係る電気式溶融炉制御装置の一実施の形態を示すブロック構成図
【図2】本発明に係る電気式溶融炉制御装置が制御対象とする電気式溶融炉の構成概念図
【図3】電気式溶融炉の立ち上げ制御の処理手順を示すフローチャート
【図4】電気式溶融炉の立ち上げ制御の処理手順を示すフローチャート
【図5】電気式溶融炉の立ち上げ制御の処理手順を示すフローチャート
【図6】PID制御部によるPID制御の処理手順を説明する工程図
【図7】ギャップ演算に用いる入出力特性を示す図
【図8】ステップ制御部によるステップ制御の処理手順を説明する説明図
【図9】リニア制御部によるリニア制御の処理手順を説明する工程図
【図10】電極自動継足制御の処理手順を示すフローチャート
【符号の説明】
1: 本発明に係る電気式溶融炉制御装置
2: 制御演算処理部
3: I/Oインターフェース
4: 表示器
5: 中央演算処理部
6: 起動制御部
7: 電極昇降制御部
8: 電極自動継足制御部
9: DCSインターフェース
10: ステップ制御部
11: リニア制御部
12: PID制御部
20: 分散型制御システム(DCS)
21: データリンク
22a:直流電源装置
22b:VCB(真空遮断器)
23: 電極昇降装置制御盤
23a:主電極用の電極昇降装置
23b:スタート電極用の電極昇降装置
24: 電極自動継足装置制御盤
24a:電極自動継足装置
25: 電極置台装置制御盤
25a:電極置台装置
26: 炉頂クレーン
30: 電気式溶融炉
31: 主電極
32: 炉底電極
33: スタート電極
34: 集電板
35a:炉壁天井部
35b:炉底部
35c:炉側壁部
36: 炉内
37: 灰供給口
38: 出滓口
40: 溶融スラグ
[0001]
BACKGROUND OF THE INVENTION
The present invention includes a main electrode, a furnace bottom electrode, and a start electrode in a furnace, and the current is generated on the furnace bottom electrode by a current generated by a high voltage applied between the main electrode and the furnace bottom electrode or between the main electrode and the start electrode. The present invention relates to an electric melting furnace that melts a material to be melted, and more specifically, relates to an electric melting furnace control device that performs operation control on each electrode.
[0002]
[Prior art]
In recent years, melting furnaces for melting incineration ash and dust generated in garbage incineration facilities to make them harmless and generating recyclable slag have been put into practical use. Various types of melting furnaces have been developed and put to practical use. The furnace is equipped with a main electrode (graphite electrode), a furnace bottom electrode, and a start electrode (graphite electrode), and between the main electrode and the furnace bottom electrode or the main electrode. It has only been several years since an electric melting furnace for melting a material to be melted on a furnace bottom electrode by a current generated by a high voltage applied between an electrode and a start electrode has been put into practical use.
[0003]
In the electric melting furnace, a DC voltage is applied between the main electrode and the furnace bottom electrode, a plasma arc is generated to heat the molten slag, and sequentially melted materials such as ash supplied. In addition, since current flows in the slag, Joule heat can be used and efficient melting is performed. Molten ash, etc. becomes slag, is cooled after continuous overflow, and is discharged by a conveyor.
[0004]
The operation of the electric melting furnace is a control voltage value that is set while adjusting the interval between the main electrode and the bottom electrode while adjusting the current value flowing between the main electrode and the bottom electrode during constant operation. The raising / lowering control of the main electrode is performed.
[0005]
However, the material to be melted is a molten slag during steady operation, but the material to be melted is not necessarily in a molten state at the start of operation, and its composition is glassy or metallic, that is, conductive. When there is a mixture of materials and non-conductive materials, and even when they are mixed uniformly, heavy metallic conductive materials are concentrated in the lower layer, and light glassy materials are concentrated in the upper layer. There may be a concentration of non-conductive materials. Therefore, depending on the state of the material to be melted, current flows between the main electrode and the furnace bottom electrode at the start of operation as in the steady operation, and it is possible to shift to the steady operation only by controlling the main electrode. The current does not flow between the main electrode and the furnace bottom electrode, and the starting material is used to gradually melt the material to be melted from the upper layer, and finally the current flows between the main electrode and the furnace bottom electrode. In some cases, it is possible to shift to steady operation, and complicated start-up control is required according to the state of the melt.
[0006]
In addition, since the electrode is made of graphite, it gradually wears out due to the generation of the plasma arc, so it is necessary to perform automatic electrode extension control that automatically adds a new electrode rod to the electrode rod of the shortened electrode. .
[0007]
In addition, regarding the electric melting furnace provided with the main electrode, the furnace bottom electrode, and the start electrode in the furnace, there exist the following patent documents 1-3 by the present applicant.
[0008]
[Patent Document 1]
JP-A-11-237018
[Patent Document 2]
JP 09-156529 A
[Patent Document 3]
JP 09-243267 A
[0009]
[Problems to be solved by the invention]
As described above, the operation of the electric melting furnace requires the control at the start of operation, the control at the steady operation, and the automatic electrode extension control, but the basic structure of the electric melting furnace itself is Even though they are the same, because they have various product specifications depending on the environment used, that is, the garbage incineration facility, etc., each of the above controls has been performed automatically or manually by using a separate and independent control device. There is. In addition, the contents of each control have not been standardized in the electric melting furnaces of many plants. For this reason, it may depend on the experience of a somewhat skilled operator. This is because the electric melting furnace has been put into practical use for only a few years, and so far there has been insufficient field data to unify and integrate the controls. .
[0010]
Here, the inventor of the present application has arrived at the present invention in order to unify and integrate the above-described controls based on past practical experience of electric melting furnaces. The present invention has been made in view of the above-described problems, and an object of the present invention is to solve the above-described problems and enable an electric melting furnace that can be stably operated without being affected by the experience of an operator. It is to provide a control device.
[0011]
[Means for Solving the Problems]
In order to achieve this object, a first characteristic configuration of the electric melting furnace control device according to the present invention includes a main electrode, a furnace bottom electrode, and a start electrode in the furnace, and the main electrode and the furnace bottom electrode are disposed between the main electrode and the furnace bottom electrode. Alternatively, in an electric melting furnace that melts the melt on the furnace bottom electrode by a current generated by a high voltage applied between the main electrode and the start electrode, the main electrode and the start electrode in the furnace Electric melting control that transmits or receives control data to and from the electrode lifting control means for moving the electrode position and the power supply device that applies a voltage between the electrodes, and controls the operation of the electrodes. A furnace control device that performs automatic operation control of the main electrode and the start electrode according to the state of the melted material at the time of start-up, and melts the melted material only by the automatic operation control of the main electrode For driving And a control for moving the electrode position of the main electrode in the furnace to the electrode elevation control means in order to control the voltage applied to the main electrode and the start electrode during steady operation. An electrode raising / lowering control unit that performs the melting, and the activation control unit can melt the state of the melted material to the steady operation by applying a first voltage between the main electrode and the furnace bottom electrode. Automatic operation control of the main electrode Start, and after the control starts, the descent of the main electrode is started, the first current value flowing between the main electrode and the furnace bottom electrode is determined, and the first current value is smaller than a predetermined first threshold value. Performing a lowering control of the main electrode to lower the main electrode to a predetermined lowering position, and performing a control to stop the lowering of the main electrode when the first current value is equal to or greater than the predetermined first threshold value, In automatic operation control of the main electrode, When the first current value is smaller than the predetermined first threshold and the main electrode is lowered to the predetermined lowered position, It is determined that the application of the first voltage cannot change the state of the material to be melted to a molten state capable of shifting to the steady operation. do it, Automatic operation control of the main electrode and the start electrode in which a second voltage application between the main electrode and the start electrode is added to the first voltage application The third current value obtained by starting the descent of the start electrode, determining the second current value flowing between the main electrode and the start electrode, and summing the first current value and the second current value When the value is equal to or greater than a predetermined third threshold value, the start electrode is controlled to stop descending, and the main electrode and the start electrode are kept at the position where the main electrode and the start electrode are stopped. To melt the material to be melted In the point.
[0012]
The current generated by applying a high voltage between the electrodes includes at least one of a plasma arc discharge current and a current flowing through the conductive material of the melt. , Usually both included.
[0013]
According to the first characteristic configuration, the start control unit performs automatic operation control of the main electrode and the start electrode in accordance with the state of the melted object in the start-up control at the time of start-up. It can be used uniformly in various electric melting furnaces that start up using an electrode and a start electrode, and has both a start control unit and an electrode lifting control unit, so that Regardless of the state, the electrode elevation control of the main electrode during the steady operation can be integrated from the start-up control. That is, it is possible to automatically perform the electrode elevation control of the main electrode during the steady operation from the start-up control, or it is possible to perform stable operation that is not affected by the experience of the operator even if the confirmation operation by the operator is interposed.
[0014]
More When the state of the melted material at the time of starting is in a state where a sufficient current cannot flow between the main electrode and the furnace bottom electrode, that is, in a solid state (non-molten state), both the main electrode and the start electrode Energization between both electrodes is performed while the position where the descent stops is substantially in contact with the material to be melted. In general (for example, in ordinary arc welding, etc.), in order to promote melting, and in order to obtain a high voltage when electric power is used, discharge is performed with a constant interval from the melted material. By generating a plasma arc along the surface of the material to be melted while maintaining the position where the main electrode and the start electrode are lowered and stopped, the material to be melted is melted from the surface of the material to be melted inwardly, and efficiently. Relatively high-speed melting is possible, and it is possible to shift to steady operation at an early stage.
[0015]
Same two The start control unit melts the material to be melted by passing a current between the main electrode and the start electrode in a state where the main electrode and the start electrode are stopped at a predetermined descending stop position. After that, when returning the start electrode to a predetermined lift stop position, the start electrode is lifted in a plurality of times with a predetermined stop period in between.
[0016]
Above two According to the characteristic configuration, since the start electrode can be raised while being cooled stepwise, damage to the furnace wall adjacent to the start electrode can be suppressed.
[0017]
Same three The electrode lift control unit includes a PID control unit that performs movement control of the electrode position of the main electrode by PID control, a step control unit that performs step control, and a linear control unit that performs linear control. There is in point.
[0018]
Above three According to the characteristic configuration of the above, by providing a plurality of control units, even if the control unit that is performing the electrode elevation control of the main electrode fails, the other control unit immediately backs up and continues the control It is possible to avoid the shutdown of the electric melting furnace.
[0019]
Same Four The characteristic configuration is that the electrode elevation control unit performs control by the step control unit or the linear control unit immediately after the start of control.
[0020]
Above Four According to the characteristic configuration, the step controller or linear control with good responsiveness to the PID control that requires a relatively long time for the control because the state of the melted material is not stable immediately after the start of control and the fluctuation is large. By using the unit, it is possible to perform more stable control against large fluctuations.
[0021]
Same Five In order to add an electrode rod to the main electrode or the start electrode, at least a conveying means for conveying a spare electrode rod, and the spare electrode rod is automatically joined to the main electrode or the start electrode. Transmission or transmission / reception of control data between the additional electrode automatic extension device and the electrode lifting / lowering control means, the spare electrode rod is taken out from the storage location of the spare electrode rod, and the spare electrode rod Further, an automatic electrode continuation control unit that performs control until automatic addition to the main electrode or the start electrode is further provided.
[0022]
Above Five According to the characteristic configuration of the above, the same electric melting furnace control device includes an electrode automatic extension control unit, so that the startup control by the startup control unit and the elevation control of the main electrode during steady operation by the electrode elevation control unit, In addition, the automatic control of the automatic addition of the electrodes by the automatic automatic addition control unit can be easily performed in a unified manner in which the conventional electric melting furnaces are individually linked to each other. Become.
[0023]
Same Six The characteristic configuration is that after the automatic electrode joining by the automatic electrode joining control unit is completed, the start-up control by the activation control unit is automatically started.
[0024]
Above Six According to the characteristic configuration, it is possible to automatically restart the operation of the electric melting furnace stopped during the automatic electrode extension.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of an electric melting furnace control apparatus according to the present invention (hereinafter referred to as “the present invention apparatus” as appropriate) will be described with reference to the drawings.
[0026]
First, as shown in FIG. 2, the electric melting furnace 30 which is a control target of the apparatus 1 of the present invention is provided with a main electrode 31 and a start electrode 33 which are inserted into the furnace 36 through the furnace wall ceiling 35a. Each of the electrodes is supported by an electrode lifting device 23a for the main electrode 31 and an electrode lifting device 23b for the start electrode 33, and the tip position of each electrode in the furnace 36 can be moved up and down. A furnace bottom electrode 32 is provided on the furnace bottom 35 b and is connected to the current collector plate 34. Moreover, the furnace side wall part 35c is provided with a supply port 37 of ash which is a material to be melted, and the material to be melted is supplied into the furnace 36 by a conveying means such as a screw conveyor. The main electrode 31 is connected to the negative electrode of the DC power supply 22 a that generates a high voltage via a support arm that supports the main electrode 31. The start electrode 33 is connected to one positive electrode of the DC power supply device 22a through a support arm that supports the start electrode 33. The furnace bottom electrode 32 is connected to the other positive electrode of the DC power supply device 22a through a current collector plate. The DC power supply 22a is supplied with an extra high voltage via a VCB (vacuum circuit breaker) 22b provided in the high voltage switchboard.
[0027]
In the electric melting furnace 30 configured as described above, a DC high voltage is applied between the main electrode 31 and the furnace bottom electrode 32 to generate a plasma arc to heat the molten slag 40 on the furnace bottom electrode 32 and sequentially supply it. Melt the material to be melted such as ash. In addition, since current flows in the slag, Joule heat can be used and efficient melting is performed. Molten ash or the like becomes slag, is cooled after continuous overflowing from the outlet 38 provided in the furnace side wall 35c, and is discharged by the conveyor.
[0028]
As shown in FIG. 1, the device 1 of the present invention includes a control calculation processing unit 2, a control calculation processing unit 2, an electrode lifting device 23 a of an electric melting furnace 30, an electrode lifting device control panel 23 of a 23 b, a DC power supply device 22 a. The I / O interface 3 for transferring control input / output data to / from the VCB 22b and the like, and the display 4 for displaying various data are configured as one control panel. Three control functions of the start-up control of the furnace 30, the main electrode lifting / lowering control during steady operation, and the automatic electrode extension control are exhibited.
[0029]
The control arithmetic processing unit 2 includes a central arithmetic processing unit 5 configured by a general-purpose computer and a PID control unit 12 configured by a dedicated controller. The central arithmetic processing unit 5 further includes an activation control unit that exclusively performs the startup control. 6, an electrode lifting / lowering control unit 7 exclusively performing main electrode lifting / lowering control during the steady operation, an electrode automatic anchoring control unit 8 exclusively performing the electrode automatic anchoring control, and a distributed control system used for control monitoring ( A DCS interface 9 is provided to exchange input / output data via a DCS) 20 and a data link 21 which is a kind of computer network. The PID control unit 12 implements a PID control function for executing the electrode lifting control of the electrode lifting control unit 7 by PID control with a dedicated controller, and forms part of the electrode lifting control unit 7. The activation control unit 6 of the central processing unit 5, the electrode lifting / lowering control unit 7 excluding the PID control unit 12, and the electrode automatic continuation control unit 8 are executed by a general-purpose computer constituting the central processing unit 5. Is realized by software processing. Furthermore, the electrode elevation control unit 7 in the central processing unit 5 includes a step control unit 10 that performs the electrode elevation control of the electrode elevation control unit 7 by step control by software processing, and the electrode elevation control of the electrode elevation control unit 7. In addition to the linear control unit 11 that is executed by linear control by software processing, it is possible to manage which of the step control unit 10, the linear control unit 11, and the PID control unit 12 performs electrode elevation control, and between each control unit The management when the control is taken over is also performed.
[0030]
The I / O interface 3 directly controls the electrode lifting device control panel 23, the DC power supply device 22a, the VCB 22b, the electrode automatic footing device control panel 24 for directly controlling the electrode automatic footing device 24a, and the electrode mounting device 25a. Input / output data for control is input / output to / from the electrode mounting device control panel 25 via individual communication lines or data links.
[0031]
In the present embodiment, in the automatic electrode extension control, the input / output data for control with the furnace top crane 26 that transports the new electrode (preliminary electrode rod) from the electrode mounting device 25a to above the old electrode currently in use. The transfer is performed via the DCS 20.
[0032]
Next, the processing procedure of the startup control of the electric melting furnace 30 by the activation control unit 6 of the apparatus 1 of the present invention will be described with reference to the flowcharts of FIGS. In the following description, each process is executed by the activation control unit 6 unless otherwise specified.
[0033]
When the start command (# 0) by the operator is received from the DCS 20, confirmation of each device state (presence / absence of alarm, etc.), pre-processing such as alarm display and time delay processing by the timing timer are performed (# 1), A VCB input command is output to the VCB 22b (# 2). The VCB 22b is turned on by a VCB input command, and an extra high voltage is supplied to the DC power supply device 22a. Subsequently, after receiving the VCB on state input of the DCS 20, a main electrode lowering command is output to the electrode lifting device control panel 23 (# 3). The electrode lifting device control panel 23 starts the lowering control on the electrode lifting device 23a for the main electrode 31 in response to the main electrode lowering command. As the main electrode 31 descends, the first current value I flowing between the main electrode 31 and the furnace bottom electrode 32 according to the state of the material to be melted. 1 In order to detect the change of the first current value I from the DC power supply 22a. 1 (Data) is received (# 4), and the first current value I 1 Is a predetermined first threshold I 1A It is determined whether it is above (# 5: initial current over determination). First current value I 1 Is the first threshold I 1A If smaller, the main electrode wire slack data is received from the electrode lifting device control panel 23 (# 6), and the presence or absence of main electrode wire slack is determined (# 7). If there is no wire slack according to the main electrode wire slack determination, it is determined that the lower end of the main electrode 31 has not been lowered downward, and the process returns to steps # 4 and # 5. Here, if there is a loose wire in the determination of step # 7, the main electrode 31 has been lowered to the lower side and cannot be further lowered, and the first current value I 1 Is the first threshold I 1A Since it is smaller, it is determined that the material to be melted is in a solid (non-molten) state, and the process proceeds to the second pattern start-up control (steps # 20 to # 46) using the start electrode 33 described later.
[0034]
In the initial current over determination in step # 5, the first current value I 1 Is the first threshold I 1A In the above case, since the melted material is in a conductive state (melted state) to some extent, the start-up control is completed without using the start electrode 33 by simply applying a DC voltage between the main electrode 31 and the furnace bottom electrode 32. it can. (First pattern startup control)
[0035]
In the start-up control of the first pattern, the first current value I 1 Is the first threshold I 1A If it becomes above, in order to stop the fall of the main electrode 31, the main electrode fall stop command will be output with respect to the electrode raising / lowering device control board 23 (# 8). The electrode lifting device control panel 23 causes the electrode lifting device 23a to stop the lowering of the main electrode 31 in response to a main electrode lowering stop command. Subsequently, time delay processing by the main arc starting timer is performed (# 9), and the first current value I 1 Is the first threshold I 1A Greater second threshold I 1B Until the above is reached, the DC voltage application between the main electrode 31 and the furnace bottom electrode 32 is continued at the lowering stop position of the main electrode 31 (# 10 to # 12). Specifically, the first current value I from the DC power supply 22a. 1 (Data) is received (# 10), and the first current value I 1 Is the second threshold I 1B It is determined whether or not (# 11: second initial current over determination), the first current value I 1 Is the second threshold I 1B Steps # 10 and # 11 are repeated until the above is reached, and a time delay process using an initial current overtimer is performed in parallel (# 12). The second initial current over determination (# 10, # 11) is also performed during the time delay process, and the first current value I 1 Is the second threshold I 1B Make sure that this is the case.
[0036]
First current value I 1 Is the second threshold I 1B After the time delay processing by the initial current overtime is completed, the voltage V between the main electrode 31 and the furnace bottom electrode 32 is reached. 1 In order to raise the lower end position of the main electrode 31 so that the voltage value is appropriate for starting steady operation, a main electrode raising command is output to the electrode lifting device control panel 23 (# 13). The electrode lifting device control panel 23 starts raising control of the main electrode 31 with respect to the electrode lifting device 23a in response to a main electrode raising command.
[0037]
Voltage value V between main electrode 31 and furnace bottom electrode 32 1 (Data) is received from the DC power supply 22a (# 14), and the voltage value V 1 Is a predetermined first threshold voltage V 1A It is determined whether or not (# 15), V 1 Is V 1A Steps # 14 and # 15 are repeated until V 1 Is V 1A If it becomes above, a main electrode raise stop command will be output with respect to the electrode raising / lowering apparatus control board 23 (# 16). First current value I 1 Shifts to a steady operation through a predetermined post-process (# 17) such as confirmation of whether or not the current is greater than or equal to a predetermined current value and setting of conditions at the start of steady operation.
[0038]
Next, the startup control of the second pattern will be described. If it is determined in step # 7 that there is a loose wire, a time delay process is performed by a start electrode activation timer (# 20), and an electrode lifting device is provided on condition that the operator has selected to use the start electrode in DCS20 A start electrode lowering command is output to the control panel 23 (# 21). The electrode lifting device control panel 23 starts the lowering control for the electrode lifting device 23b for the start electrode 33 in response to the start electrode lowering command. The second current value I flowing between the main electrode 31 and the start electrode 33 corresponding to the state of the melt as the start electrode 33 descends and approaches the surface of the melt. 2 In order to detect the change of the first current value I from the DC power supply 22a. 1 And the second current value I 2 The third current value I that is the sum of 3 (Data) is received (# 22), and the third current value I 3 Is a predetermined third threshold I 3A It is determined whether it is above (# 23: third initial current over determination). Third current value I 1 Is the third threshold I 3A If it is smaller, start electrode wire slack data is received from the electrode elevator control panel 23 (# 24), and the presence or absence of start electrode wire slack is determined (# 25). If there is no wire slack according to the start electrode wire slack determination, it is determined that the lower end of the start electrode 33 has not been lowered to the bottom, and the process returns to steps # 22 and # 23.
[0039]
Here, the third current value I 3 Is the third threshold I 3A If it is smaller and there is loose wire, the non-conductive substance is concentrated near the surface of the melt and is in a solid state (non-molten state). An alarm is generated for the DCS 20 in order to perform a process of supplying a conductive material to the DCS 20.
[0040]
In the third initial current over determination in step # 23, the third current value I 3 Is a predetermined third threshold I 3A In the above case, it is determined that the melt can be melted by generating a plasma arc along the surface of the melt between the main electrode 31 and the start electrode 33 at the descending position of the start electrode 33, and the start electrode In order to stop the descent of the electrode, a start electrode descent stop command is output to the electrode elevator control panel 23 (# 26). The electrode lifting / lowering device control panel 23 stops the lowering of the electrode lifting / lowering device 23b by a start electrode lowering / stopping command. The main electrode 31 and the start electrode 33 continue to generate a plasma arc between the two electrodes along the surface of the melt while maintaining the stop positions of the respective electrodes, and heat generated downward by the plasma arc and the plasma arc. The material to be melted is gradually melted from the surface by conduction (# 27 to # 30). Specifically, in the state where a high voltage is applied between the main electrode 31 and the start electrode 33, a time delay process by a timing timer is performed (# 27), and the first current value I is supplied from the DC power supply device 22a. 1 (Data) is received (# 28), and the first current value I 1 Is the second threshold I 1B It is determined whether or not (# 29: second initial current over determination), and the first current value I 1 Is the second threshold I 1B Steps # 28 and # 29 are repeated until the above is reached, and a time delay process using an initial current overtimer is performed in parallel (# 30). The second initial current over determination (# 28, # 29) is also performed during the time delay process (# 30), and the first current value I 1 Is the second threshold I 1B Make sure that this is the case. As a result, the material to be melted is in a state where it can sufficiently shift to the steady operation, and therefore, an end step (# 31 to # 46) is entered in order to end the start-up control of the second pattern.
[0041]
First current value I 1 Is the second threshold I 1B After the time delay processing by the initial current overtime is completed as described above, first, a VCB cut command is output to the VCB 22b (# 31). The VCB 22b is turned off by the VCB cut command, the extra high voltage supply to the DC power supply 22a is cut off, and the high voltage is applied between the main electrode 31 and the furnace bottom electrode 32 and between the main electrode 31 and the start electrode 33. Canceled.
[0042]
Next, the main electrode supporting arm position data is received from the electrode lifting device control panel 23 (# 32), the main electrode supporting arm position is stored (# 33), and the main electrode lifting command is sent to the electrode lifting device control panel 23. Is output (# 34). The electrode lift device control panel 23 starts the lift control for the electrode lift device 23a for the main electrode 31 in response to the main electrode lift command.
[0043]
While the main electrode 31 is being raised, main electrode support arm position data is received from the electrode lifting device control panel 23 (# 35), and the main electrode support arm position stored in step # 33 and the current main electrode support arm position are used to determine the increase distance. While making the determination (# 36), the predetermined distance is increased. After determining that the main electrode 31 has moved up the predetermined distance, a main electrode ascent / stop command is output to the electrode lifting device control panel 23 (# 37). The electrode lifting device control panel 23 causes the electrode lifting device 23a to stop the lifting of the main electrode 31 in response to a main electrode lifting stop command.
[0044]
Subsequently, step-up control (# 38 to # 46) of the start electrode is executed. Specifically, a start electrode raising command is output to the electrode lifting device control panel 23 (# 38). The electrode lift device control panel 23 starts the lift control for the electrode lift device 23b for the start electrode 33 in response to the start electrode lift command. Time delay processing by the timing timer is performed (# 39), and a start electrode ascent / stop command is output to the electrode lifting device control panel 23 (# 40). The electrode lift device control panel 23 stops the lift of the electrode lift device 23b in response to a start electrode lift stop command. Further, time delay processing by the timing timer is performed again (# 41), and a start electrode raising command is output to the electrode lifting device control panel 23 (# 42). The electrode lift device control panel 23 again starts the lift control for the electrode lift device 23b for the start electrode 33 in response to the start electrode lift command. A time delay process is performed again by the timing timer (# 43), and a start electrode ascent / stop command is again output to the electrode elevator control panel 23 (# 44). The electrode lift device control panel 23 stops the lift of the electrode lift device 23b in response to a start electrode lift stop command. When start electrode support arm position data is received from the electrode lifting device control panel 23 (# 45), it is determined whether the start electrode support arm position is equal to or higher than a predetermined height (# 46), and the predetermined height is not reached Repeats the processing of steps # 38 to # 46 until the predetermined height is reached, and ends the start-up control of the second pattern.
[0045]
Next, the electrode raising / lowering control of the main electrode 31 by the electrode raising / lowering control part 7 of this invention apparatus 1 is demonstrated.
[0046]
The electrode elevating control unit 7 outputs various control commands to the electrode elevating device control panel 23 using any one of the step control unit 10, the linear control unit 11, and the PID control unit 12, and the main electrode Elevating control is performed on the electrode lifting device 23a for 31. A first current value I flowing between the main electrode 31 and the furnace bottom electrode 32 with respect to the DC power supply device 22a. 1 By adjusting the distance between the main electrode 31 and the furnace bottom electrode 32 by controlling the elevation of the main electrode 31 while controlling the constant current so that becomes constant current, the plasma voltage (V 1 ) Is controlled.
[0047]
1st electric current value I with respect to the electrode raising / lowering control part 7 1 And voltage value V 1 Each set value is input from the DCS 20. In addition, when the current / voltage set values are changed from the DCS 20, the actual set values are gradually changed by the change rate setting. Note that the change rate setting is switched for each control mode of electrode elevation control. The control mode includes a step control mode by the step control unit 10, a linear control mode by the linear control unit 11, a PID control mode by the PID control unit 12, and a manual control mode by manual mode. An increase rate and a decrease rate with respect to the voltage set value and the current set value are preset and tabulated.
[0048]
Next, an outline of electrode elevation control in the PID control mode by the PID control unit 12 will be described. The PID controller 12 receives the voltage V received from the DC power supply 22a. 1 Based on the voltage setting value, the calculation process is performed according to the processing procedure shown in FIG.
[0049]
First, voltage V 1 The deviation DV of the voltage setting value is obtained, and a gap calculation for outputting the deviation DV ′ is performed on the deviation DV based on the gap calculation characteristics shown in FIG. 7, and then the reverse operation for compensating the deviation DV ′ is performed. The PID calculation for attracting is executed and the main electrode lifting speed is output. The PID output is subjected to an output limiter process, and the main electrode lifting speed is output within a predetermined output upper limit value and output lower limit value. Note that the gap width GW of the gap calculation, the proportional, integral, and differential setting values of the PID calculation, and the output upper limit value and output lower limit value of the output limiter process are set as setting values, respectively.
[0050]
Further, when shifting from another control mode to the PID control mode, the operation starts from the output before the transition. On the other hand, when the PID control unit 12 fails during PID control, it automatically shifts to a control mode (step control mode or linear control mode) set in advance in the control mode at the time of PID control failure.
[0051]
Next, an outline of the electrode lifting control in the step control mode by the step controller 10 will be described. The step controller 10 receives the voltage V received from the DC power supply 22a. 1 Based on the voltage setting value, the arithmetic processing is performed according to the processing procedure shown in FIG.
[0052]
First, voltage V 1 And a deviation DV of the voltage setting value are determined, it is determined which of the six regions shown in FIG. 8 corresponds to the deviation DV, and five types of electrode elevation control are executed on the electrode elevation device control panel 23. . That is, four deviation determination thresholds ΔV1, ΔV2, −ΔV1, and −ΔV2 are set (where ΔV2> ΔV1), and the first descending operation is performed when DV ≧ ΔV2, and when ΔV2> DV ≧ ΔV1. The second descending operation is executed when DV ≦ −ΔV2, the first ascending operation is performed when −ΔV2 <DV ≦ −ΔV1, and any ascending / descending operation is performed when −ΔV1 <DV <ΔV1. Also do not run.
[0053]
The first descent operation and the first ascending operation, and the second descent operation and the second ascending operation are the same in the set values of the operation time and the stop time during each control, except that the moving directions of the electrodes are opposite to each other. On the other hand, the first descent operation and the second descent operation, and the first ascending operation and the second ascending operation have the same moving direction of the electrodes, but the set values of the operation time and stop time during each control are different. Each first operation is set so as to perform a greater descent or rise.
[0054]
Therefore, the step control unit 10 determines the operation time and stop time of each operation when any of the first descending operation, the second descending operation, the first ascending operation, or the second ascending operation is selected as described above. Based on the set value, an electrode lowering command and an electrode lowering stop command, or an electrode raising command and an electrode raising stop command are output to the electrode lifting device 23a for the main electrode 31. If no operation is selected, no elevation control command is output.
[0055]
Next, an outline of electrode elevation control in the linear control mode by the linear control unit 11 will be described. The linear controller 11 receives the voltage V received from the DC power supply 22a. 1 Based on the voltage setting value, the arithmetic processing is performed according to the processing procedure shown in FIG.
[0056]
First, voltage V 1 The deviation DV of the voltage setting value is obtained, and a gap calculation for outputting the deviation DV ′ is performed on the deviation DV based on the gap calculation characteristics shown in FIG. 7, and then the reverse operation for compensating the deviation DV ′ is performed. The ratio calculation (see the ratio calculation formula in Formula 1) is executed, and the main electrode lifting speed R is output.
[0057]
[Expression 1]
R = GA · DV '+ BI
[0058]
The ratio calculation output R is subjected to an output limiter process, and the main electrode lifting speed is output within a predetermined output upper limit value and output lower limit value. Here, the gap width GW of the gap calculation, the gain GA and bias BI of the ratio calculation formula, and the output upper limit value and the output lower limit value of the output limiter process are set as set values, respectively. The gap width GW for the gap calculation may be either the same setting as in the PID control mode or a different setting.
[0059]
The electrode lift control unit 7 selects a preset step control mode or linear control mode at the start of electrode lift control of the main electrode 31, and activates the corresponding step control unit 10 and linear control unit 11, It is also preferable to shift from the control mode being executed to the PID control mode when the voltage fluctuation becomes stable.
[0060]
Next, the outline of the processing procedure in the automatic electrode extension control of the main electrode 31 by the automatic electrode extension control unit 8 of the device 1 of the present invention will be described with reference to the flowchart of FIG. In the present embodiment, for the plurality of electric melting furnaces 30, the automatic electrode continuation device 24 a and the automatic electrode continuation device control panel 24, the electrode gantry device 25 a and the electrode gantry device control necessary for automatic electrode continuation are provided. The automatic electrode extension control when the panel 25 and the furnace top crane 26 are shared will be described. However, in the present embodiment, the device 1 of the present invention is provided for each electric melting furnace 30 and the electric automatic melting control unit 8 (hereinafter referred to as “own furnace” as appropriate) is also controlled. Electrode automatic extension control is executed. In the following description, unless otherwise specified, each process in each process is executed by the electrode automatic continuation control unit 8.
[0061]
First, the step for preparing the stern (# 100) will be described. The main electrode lifting / lowering device position data is received from the electrode lifting / lowering device control panel 23, and it is determined whether or not the main electrode 31 of the own furnace is capable of automatic electrode extension, and if so, a message to that effect is sent to the DCS 20. Output. Upon receiving the start-up preparation start command from the DCS 20 by the operator, a selection command indicating that the automatic top-up control has been selected is output to the top crane 26 for which the own furnace is to be operated. Each state data for confirming the presence / absence of abnormality is acquired from each device 23 to 26, and further, the start electrode support arm position data is received from the electrode lifting device control panel 23, and it is determined whether or not the automatic electrode extension operation is possible. . If there is no abnormality in any of them, a preparation preparation command is output to the electrode automatic extension device control panel 24 and the furnace top crane 26. The automatic electrode extension device control panel 24 and the furnace top crane 26 execute a predetermined preparation operation when receiving a preparation preparation command, respectively, and output a message to that effect to the automatic electrode addition control unit 8. When the completion data for the prepping operation is received from both the automatic electrode continuation device control panel 24 and the furnace top crane 26, a message to that effect is output to the DCS 20.
[0062]
Next, the automatic extension process (# 110) will be described. On the basis of the DCS 20 prepping operation completion message, the operator issues an automatic continuation start command on the DCS 20 and, upon receiving the command from the DCS 20, sends an automatic continuation start command to each related device. In the automatic extension process (# 110), first, an electrode dispensing process (# 111) is executed.
[0063]
In the electrode dispensing process (# 111), when the electrode mounting device control panel 25 receives the automatic extension start command, the electrode mounting device 25a performs a predetermined electrode dispensing operation so that a new electrode can be taken out. When the electrode take-out possible data is received from the electrode mounting device control panel 25, a new electrode preparation command is transmitted to the electrode automatic extension device control panel 24.
[0064]
Subsequent to the electrode dispensing process (# 111), the ash supply stopping process (# 112) and the new electrode gripping process (# 113) for stopping the ash supply operation during the ash supply operation are executed in parallel. In the new electrode gripping step (# 113), when the automatic electrode extension device control panel 24 receives the new electrode preparation command, the automatic electrode extension device 24a performs an operation of holding the new electrode. In this operation, at the same time, a male screw joining member that is screwed into the female screw portion at the upper end portion of the old electrode is attached to the female screw portion at the tip portion (lower end portion) of the new electrode.
[0065]
Subsequent to the new electrode gripping step (# 113), in the crane intermediate point movement step (# 114), a crane intermediate point movement command is output to the furnace top crane 26, and the furnace top crane 26 receives the command, and the crane is moved. Move to the middle point.
[0066]
Subsequently, an electrode operation stop process (# 115) is performed. More specifically, after the furnace top crane 26 has moved to the middle point and confirmed that the ash supply operation has stopped, the VCB 22b is in an on state, that is, an extra high voltage is supplied to the DC power supply device 22a, and between the electrodes. When a high voltage is applied, a command to stop the automatic electrode lifting operation and turn off the VCB 22b is output to the electrode lifting device control panel 23. After the application of the high voltage to the main electrode 31 and the lifting control are canceled, after a lapse of a predetermined time, an electrode standby position lifting command is output to the electrode lifting device control panel 23, and the electrode lifting device control panel 23 outputs the command. The main electrode 31 is raised or lowered to a predetermined standby position.
[0067]
If the electrode lifting / lowering control unit 7 is performing electrode lifting / lowering control of the main electrode 31 on the electrode lifting / lowering device control panel 23, the DC power supply device 22a, and the VCB 22b at the start of the electrode operation stopping step (# 115), the electrode automatic The control of the joint control unit 8 is executed in preference to the electrode lifting control of the electrode lifting control unit 7, and the electrode lifting control by the electrode lifting control unit 7 is interrupted.
[0068]
Following the electrode operation stopping step (# 115), in the crane joint point moving step (# 116), first, an instruction to open the handrail passage gate, which becomes an obstacle to the movement of the furnace top crane 26, is output to the DCS 20, Handrail passage gate open state data is received from the DCS 20 and a crane joint point movement command is output to the top crane 26. The furnace top crane 26 receives the command and moves the crane to the anchor point. Subsequently, an N2 detachment device opening command is output to the electrode lifting device control panel 23, and confirmation data for opening the N2 detaching device of the electrode lifting device 23a is received from the electrode lifting device control panel 23.
[0069]
Next, after the furnace top crane 26 has moved to the anchor point, an automatic electrode anchoring device cover lowering command is output to the electrode automatic anchoring device control panel 24 in the electrode automatic anchoring device cover lowering step (# 117). Then, the electrode automatic extension device 24a executes the cover lowering process.
[0070]
Subsequently, in the crane joint point moving step (# 116), confirmation data for opening the N2 detaching device of the electrode lifting device 23a is received from the electrode lifting device control panel 23, and in the crane unwinding / main electrode lifting step (# 118), After the cover lowering process by the electrode automatic extension device 24a is completed, a crane lowering command is output to the furnace top crane 26, and the furnace top crane 26 starts the lowering operation. After confirming whether the landing height has been reached from the furnace top crane 26 or whether the crane has been completely unwound, a main electrode raising command is output to the electrode lifting device control panel 23. The electrode elevating device 23a starts ascending the main electrode 31, and receives the old electrode upper end position detection data from the electrode automatic extension device control panel 24, and based on the position detection data, the electrode elevating device control panel 23 An electrode ascent / stop command is output, and the main electrode 31 stops ascending.
[0071]
Subsequently, in the electrode joining step (# 119), an electrode joining command is output to the electrode lifting device control panel 23, and the electrode lifting device control panel 23 is used to join the new electrode to the old electrode according to the command. Perform the action. After the completion of the transfer operation, a notification of completion to that effect is received, and a transfer operation end message is output to the DCS 20.
[0072]
Subsequently, an electrode holding / replacement step (# 120) is performed. At the end of the electrode extension step (# 119), the old electrode is supported by the electrode support arm of the electrode lifting device 23a, and the new electrode is supported by the electrode automatic extension device 24a. Therefore, in a state where the new electrode is supported by the electrode automatic extension device 24a, an electrode gripping change command is output to the electrode lifting device control panel 23, and the electrode lifting device 23a changes the support position from the old electrode to the new electrode. Moving. When the electrode replacement is completed, a new electrode release command is output to the electrode automatic extension device control panel 24, and the support of the new electrode is released to the electrode automatic extension device 24a.
[0073]
When the automatic electrode extension device 24a finishes the new electrode releasing operation, the crane retracting step (# 121) is executed, and the furnace top crane 26 executes the crane hoisting operation, the intermediate point moving operation, and the like. Subsequently, in the post-processing step (# 122), a command to close the handrail passage date is output to the DCS 20, and the handrail passage gate closed state data is received from the DCS 20, and the N2 detachment device mounting command is sent to the electrode lifting device control panel 23. Is received from the electrode lifting / lowering device control panel 23 to confirm that the electrode lifting / lowering device 23a is attached to the N2 desorption device.
[0074]
When the completion of the post-processing step (# 122) is confirmed, the electrode automatic extension control unit 8 instructs the start-up control unit 6 to start up the electric melting furnace 30 (# 123). After the start-up control by the start control unit 6 is finished, when the operation shifts to the steady operation by the electrode lifting control unit 7, an ash supply operation start command is output to the ash supply device (# 124). When confirmation data indicating that the ash supply operation is being performed from the ash supply device is received and the completion of the retreat operation of the furnace top crane 26 in the crane retreat process (# 121) is confirmed, in the end process (# 125), to the DCS 20 , An automatic continuation completion message is output, an automatic continuation completion confirmation command is received from the DSC 20, an automatic continuation control completion instruction is output to the furnace crane 26, and the automatic electrode continuation of the main electrode 31 is performed. End foot control.
[0075]
As described above, the device 1 of the present invention includes the activation control unit 6, the electrode lifting / lowering control unit 7, and the electrode automatic continuation control unit 8, so that in the automatic electrode continuation control of the main electrode 31, The automatic start-up control of the main melting furnace 30 and the automatic raising / lowering control of the main electrode 31 during steady operation can be automatically executed smoothly, and the automatic electrode extension control of the main electrode 31 can be terminated.
[0076]
Hereinafter, another embodiment will be described.
In the above embodiment, the apparatus 1 of the present invention has been described on the premise that the apparatus 1 is provided for each electric melting furnace 30. However, one apparatus 1 of the present invention simultaneously connects a plurality of electric melting furnaces 30. The form to control may be sufficient.
[0077]
The specific operation / processing procedure and configuration of each of the activation control unit 6, the electrode lifting / lowering control unit 7, and the electrode automatic continuation control unit 8 of the device 1 of the present invention are the same as the operation / processing procedure of the above embodiment. It is not limited to the configuration, and can be appropriately changed within the technical scope of the present invention.
[0078]
For example, the PID control unit 12 of the electrode elevation control unit 7 may be realized by software processing in the same manner as the step control unit 10 and the linear control unit 11 without configuring with a dedicated controller. Furthermore, the automatic electrode joining control by the electrode automatic joining control unit 8 may be executed for the start electrode 33.
[0079]
【The invention's effect】
As described above, according to the present invention, stable start-up control of an electric melting furnace that is not affected by the experience of an operator, automatic elevating control of the main electrode during steady operation, and automatic electrode extension control of the main electrode are possible. Become.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of an electric melting furnace control device according to the present invention.
FIG. 2 is a conceptual diagram of a configuration of an electric melting furnace to be controlled by the electric melting furnace control apparatus according to the present invention.
FIG. 3 is a flowchart showing a processing procedure for startup control of an electric melting furnace.
FIG. 4 is a flowchart showing a processing procedure for startup control of an electric melting furnace.
FIG. 5 is a flowchart showing a processing procedure for startup control of an electric melting furnace.
FIG. 6 is a process diagram for explaining the processing procedure of PID control by the PID control unit.
FIG. 7 is a diagram showing input / output characteristics used for gap calculation.
FIG. 8 is an explanatory diagram for explaining a processing procedure of step control by a step control unit;
FIG. 9 is a process diagram for explaining a linear control processing procedure by a linear control unit;
FIG. 10 is a flowchart showing a processing procedure for automatic electrode extension control.
[Explanation of symbols]
1: Electric melting furnace control device according to the present invention
2: Control processing unit
3: I / O interface
4: Display
5: Central processing unit
6: Start control unit
7: Electrode lifting control unit
8: Automatic electrode extension control unit
9: DCS interface
10: Step controller
11: Linear controller
12: PID controller
20: Distributed control system (DCS)
21: Data link
22a: DC power supply device
22b: VCB (vacuum circuit breaker)
23: Electrode lifting device control panel
23a: Electrode lifting device for main electrode
23b: Electrode lifting device for start electrode
24: Electrode automatic extension device control panel
24a: Automatic electrode extension device
25: Electrode mounting device control panel
25a: Electrode mounting device
26: Furnace top crane
30: Electric melting furnace
31: Main electrode
32: Furnace bottom electrode
33: Start electrode
34: Current collector
35a: furnace wall ceiling
35b: Furnace bottom
35c: furnace side wall
36: Inside the furnace
37: Ash supply port
38: Outlet
40: Molten slag

Claims (6)

炉内に主電極と炉底電極とスタート電極とを備え、前記主電極と前記炉底電極間或いは前記主電極と前記スタート電極間に印加された高電圧によって発生する電流により前記炉底電極上にある被溶融物を溶融する電気式溶融炉において、
前記主電極と前記スタート電極の前記炉内での電極位置を移動させる電極昇降制御手段、及び、前記各電極間に電圧を印加する電源装置との間で、制御データの送信または送受信を行い、前記各電極に対する運転制御を行う電気式溶融炉制御装置であって、
起動時に、前記被溶融物の状態に応じて前記主電極と前記スタート電極の自動運転制御を行い、前記主電極の自動運転制御だけで前記被溶融物を溶融する定常運転にまで立ち上げる起動制御部と、
定常運転時に、前記主電極と前記炉底電極間に印加される電圧を制御すべく、前記主電極の前記炉内での電極位置の移動制御を前記電極昇降制御手段に対して行う電極昇降制御部と、を備え、
前記起動制御部が、前記主電極と前記炉底電極間の第1の電圧印加によって、前記被溶融物の状態を前記定常運転に移行可能な溶融状態とする前記主電極の自動運転制御を開始し、制御開始後に前記主電極の下降を開始するとともに、前記主電極と前記炉底電極間を流れる第1電流値を判定し、前記第1電流値が所定の第1閾値より小さい場合に、前記主電極を所定の下降位置まで下降させる前記主電極の下降制御を行い、前記第1電流値が前記所定の第1閾値以上の場合に、前記主電極の下降を停止する制御を行い、
前記主電極の自動運転制御において、前記第1電流値が前記所定の第1閾値より小さく、且つ、前記主電極が前記所定の下降位置まで下降している場合に、前記第1の電圧印加では前記被溶融物の状態を前記定常運転に移行可能な溶融状態とすることができないと判定して、前記第1の電圧印加に対して前記主電極と前記スタート電極間の第2の電圧印加を追加した前記主電極と前記スタート電極の自動運転制御に移行し、前記スタート電極の下降を開始するとともに、前記主電極と前記スタート電極間を流れる第2電流値を判定し、前記第1電流値と前記第2電流値を合計した第3電流値が所定の第3閾値以上になると、前記スタート電極の下降を停止する前記スタート電極の下降制御を行い、前記主電極と前記スタート電極の下降停止位置のままで、前記主電極と前記スタート電極間に電流を流して前記被溶融物を溶融することを特徴とする電気式溶融炉制御装置。
A furnace is provided with a main electrode, a furnace bottom electrode, and a start electrode, and a current generated by a high voltage applied between the main electrode and the furnace bottom electrode or between the main electrode and the start electrode is provided on the furnace bottom electrode. In the electric melting furnace for melting the melted material in
Transmission or transmission / reception of control data between the main electrode and the electrode elevation control means for moving the electrode position in the furnace of the start electrode, and the power supply device that applies a voltage between the electrodes, An electric melting furnace control device that performs operation control on each of the electrodes,
Start-up control that performs automatic operation control of the main electrode and the start electrode according to the state of the material to be melted at start-up, and starts up to a steady operation in which the material to be melted is melted only by the automatic operation control of the main electrode. And
Electrode lifting control for controlling the movement of the position of the main electrode in the furnace to the electrode lifting control means in order to control the voltage applied between the main electrode and the furnace bottom electrode during steady operation. And comprising
The activation control unit, the first voltage application between the bottom electrode and the main electrode, starts the automatic operation control of the main electrode to the state of the object to be melt in a molten state can be migrated to the steady operation And starting the descent of the main electrode after the start of control, determining a first current value flowing between the main electrode and the furnace bottom electrode, and when the first current value is smaller than a predetermined first threshold, Performing a lowering control of the main electrode to lower the main electrode to a predetermined lowering position, and performing a control to stop the lowering of the main electrode when the first current value is equal to or greater than the predetermined first threshold value;
In the automatic operation control of the main electrode, when the first current value is smaller than the predetermined first threshold and the main electrode is lowered to the predetermined lowered position, the first voltage application is wherein it is determined that it is not possible to allow a molten state transition the state of the melt in the steady operation, the second voltage application between the main electrode and the start electrode to said first voltage application The operation shifts to the automatic operation control of the added main electrode and the start electrode , starts the descent of the start electrode, determines a second current value flowing between the main electrode and the start electrode, and determines the first current value When the third current value obtained by adding the second current value exceeds a predetermined third threshold value, the start electrode is controlled to stop descending, and the main electrode and the start electrode are stopped descending. Place Remains in said main electrode to melt the object to be melt by applying a current between said start electrode electric melting furnace control device comprising a.
前記起動制御部は、前記主電極と前記スタート電極を所定の下降停止位置で停止させた状態で、前記主電極と前記スタート電極間に電流を流して前記被溶融物を溶融した後、前記スタート電極を所定の上昇停止位置に戻す際に、前記スタート電極の上昇を、間に所定の停止期間を挟みながら複数回に分けて実行することを特徴とする請求項1に記載の電気式溶融炉制御装置。The start control unit is configured to melt the material to be melted by flowing a current between the main electrode and the start electrode in a state where the main electrode and the start electrode are stopped at a predetermined lowering stop position. when returning the electrodes to a predetermined elevated stop position, the rise of the start electrode, an electric melting furnace according to claim 1, characterized in that to perform a plurality of times while sandwiching the predetermined stop period during Control device. 前記電極昇降制御部は、前記主電極の電極位置の移動制御を、PID制御で行うPID制御部と、ステップ制御で行うステップ制御部と、リニア制御で行うリニア制御部を備えていることを特徴とする請求項1または2に記載の電気式溶融炉制御装置。The electrode elevation control unit includes a PID control unit that performs movement control of the electrode position of the main electrode by PID control, a step control unit that performs step control, and a linear control unit that performs linear control. The electric melting furnace control device according to claim 1 or 2 . 前記電極昇降制御部は、制御開始直後は、前記ステップ制御部または前記リニア制御部による制御を行うことを特徴とする請求項に記載の電気式溶融炉制御装置。The electric melting furnace control device according to claim 3 , wherein the electrode elevation control unit performs control by the step control unit or the linear control unit immediately after the start of control. 前記主電極または前記スタート電極に電極棒を継ぎ足すために、少なくとも、予備の電極棒を搬送する搬送手段、前記予備の電極棒を前記主電極または前記スタート電極に自動で継ぎ足す電極自動継足装置、及び、前記電極昇降制御手段との間で、制御データの送信または送受信を行い、前記予備の電極棒の保管場所から前記予備の電極棒を取り出し、前記予備の電極棒を前記主電極または前記スタート電極に自動で継ぎ足すまでの制御を行う電極自動継足制御部を、更に備えていることを特徴とする請求項1〜の何れか1項に記載の電気式溶融炉制御装置。In order to add an electrode rod to the main electrode or the start electrode, at least a conveying means for transferring a spare electrode rod, an automatic electrode extension for automatically adding the spare electrode rod to the main electrode or the start electrode Control data is transmitted or received between the apparatus and the electrode elevation control means, the spare electrode bar is taken out from the storage location of the spare electrode bar, and the spare electrode bar is taken as the main electrode or The electric melting furnace control device according to any one of claims 1 to 4 , further comprising an electrode automatic extension control unit that performs control until the start electrode is automatically added. 前記電極自動継足制御部による電極自動継足が終了した後、前記起動制御部による立ち上げ制御が自動的に開始されることを特徴とする請求項に記載の電気式溶融炉制御装置。6. The electric melting furnace control device according to claim 5 , wherein start-up control by the start-up control unit is automatically started after completion of automatic electrode-jointing by the electrode automatic-joining control unit.
JP2003051218A 2003-02-27 2003-02-27 Electric melting furnace controller Expired - Fee Related JP4199563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003051218A JP4199563B2 (en) 2003-02-27 2003-02-27 Electric melting furnace controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051218A JP4199563B2 (en) 2003-02-27 2003-02-27 Electric melting furnace controller

Publications (2)

Publication Number Publication Date
JP2004257703A JP2004257703A (en) 2004-09-16
JP4199563B2 true JP4199563B2 (en) 2008-12-17

Family

ID=33116415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051218A Expired - Fee Related JP4199563B2 (en) 2003-02-27 2003-02-27 Electric melting furnace controller

Country Status (1)

Country Link
JP (1) JP4199563B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548777B2 (en) * 2004-11-19 2010-09-22 三菱重工環境・化学エンジニアリング株式会社 Method for predicting remaining amount of refractory and method for operating ash melting furnace using the same
CN100455967C (en) * 2005-07-18 2009-01-28 宝山钢铁股份有限公司 Simulation analogue regulator for DC electric arc furnace control and protective function
CN104215085A (en) * 2013-06-04 2014-12-17 宁夏嘉翔自控技术有限公司 Safe electric automatic control system of carbon electric forging furnace
JP6278265B2 (en) * 2014-04-07 2018-02-14 新日鐵住金株式会社 Tundish plasma heating apparatus and method for heating molten steel in tundish
CN105716416B (en) * 2014-12-03 2018-09-18 冯志权 A kind of frequency conversion type electric arc furnaces
CN106766972B (en) * 2016-12-14 2019-02-19 内蒙古鄂尔多斯电力冶金集团股份有限公司 A kind of charge level control method of three-phase alternating current mineral hot furnace
CN113814522B (en) * 2021-08-11 2023-03-21 西北工业大学 Electric arc melting system

Also Published As

Publication number Publication date
JP2004257703A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
CN100462176C (en) Consumable electrode type welding method
JP4199563B2 (en) Electric melting furnace controller
US6600135B2 (en) Method and apparatus for controlling AC pulse arc welding and welding power source apparatus
BR112012030269B1 (en) SYSTEM FOR CONTROLING A WELDING CURRENT IN A CURRENT WIDE ARC WELDING APPARATUS, SHORT ARC WELDING SYSTEM, AND METHOD FOR CONTROLING A POWER SUPPLY ON A WELDING ARC CONTINUOUS CURRENT FOR SHORT BOW WELDING
CN102922092B (en) A kind of monofilament weldering manipulator control system
US8491025B2 (en) Magnet controller for controlling a lifting magnet
EP1193019B1 (en) Method and apparatus for controlling AC pulse ARC welding and welding power source apparatus
JP4815175B2 (en) Electrode lifting device for arc furnace
KR102477349B1 (en) Slope type Feeder for welding rod
JPH0839252A (en) Control method of welding wire position and device therefor
JP4500489B2 (en) Welding method and welding apparatus
KR101913404B1 (en) Electric furnace and method for removing motlen metal
JP4548387B2 (en) Consumable electrode welding method
JP2004174523A (en) Method for controlling arc welding
CN111628701B (en) Control device for angle adjustment of photovoltaic panel
JP3894746B2 (en) Twin torch type plasma melting furnace and operation method thereof
JP2769327B2 (en) Control method for raising and lowering electrodes of DC arc furnace
JPH05217671A (en) Speed changeover method for arc furnace electrode elevating/sinking device
JP2017168415A (en) Lighting control system
KR20180039896A (en) Apparatus for supporting block and method for connecting block using the same
JP2001004281A (en) Controller for electrode lifting device for arc furnace
KR20190092654A (en) Integrated Control Module for Agricultural Motor Vehicles
JPH0257888A (en) Electrode elevation control method for dc arc furnace
JPH0254892A (en) Voltage control method of dc arc furnace
JP2000346559A (en) Control apparatus and method for electrode for electric furnace

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141010

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees