JP4056534B2 - Furnace bottom temperature measuring method and apparatus, and melting furnace bottom monitoring method and apparatus - Google Patents

Furnace bottom temperature measuring method and apparatus, and melting furnace bottom monitoring method and apparatus Download PDF

Info

Publication number
JP4056534B2
JP4056534B2 JP2005133562A JP2005133562A JP4056534B2 JP 4056534 B2 JP4056534 B2 JP 4056534B2 JP 2005133562 A JP2005133562 A JP 2005133562A JP 2005133562 A JP2005133562 A JP 2005133562A JP 4056534 B2 JP4056534 B2 JP 4056534B2
Authority
JP
Japan
Prior art keywords
temperature
emissivity
furnace
melting furnace
thermography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005133562A
Other languages
Japanese (ja)
Other versions
JP2006308497A (en
Inventor
野間  彰
敬太 井上
朋弘 原田
忠八 五島
佳正 川見
秋三 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005133562A priority Critical patent/JP4056534B2/en
Publication of JP2006308497A publication Critical patent/JP2006308497A/en
Application granted granted Critical
Publication of JP4056534B2 publication Critical patent/JP4056534B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶融炉の炉底表面の温度分布を広範囲に且つ高精度で以って測定する炉底温度測定方法及び装置に関し、さらに、該測定した温度に基づいて溶融炉の炉底の異常を検知する溶融炉の炉底監視方法及び装置に関する。   The present invention relates to a furnace bottom temperature measuring method and apparatus for measuring the temperature distribution of the furnace bottom surface of a melting furnace over a wide range and with high accuracy, and further, an abnormality in the furnace bottom of the melting furnace based on the measured temperature. The present invention relates to a method and apparatus for monitoring the bottom of a melting furnace.

廃棄物を溶融処理する溶融炉は、廃棄物の無害化、減容化及び資源化の観点からその必要性が高まりつつある。溶融炉には、重油等を燃料として被処理物を溶融するバーナ式溶融炉や、電気を熱源として被処理物を溶融する電気抵抗式溶融炉及びプラズマ式溶融炉等が知られている。
一例として、プラズマ式溶融炉につき図7を参照して説明すると、このプラズマ式溶融炉50は、炉頂部から垂下される主電極51と、炉底に配設される炉底電極52とが設けられ、これらの両電極間に直流電圧53を印加することによりプラズマアークを発生する。そして、投入ホッパ55より炉本体54内に投下された被処理物をプラズマ熱により加熱して溶融する。被処理物は溶融して溶融スラグ56と、これより比重が大である溶融メタル57が炉本体54内に溜まり、出滓口58より排出される。また、炉本体54内は高温に維持されるため、その内部は不定形耐火材60や耐火レンガ61等の耐火材により形成され、この耐火材を鉄皮62により被覆した構造が採られている。
The need for melting furnaces for melting waste is increasing from the viewpoint of detoxification, volume reduction, and resource recycling of waste. Known melting furnaces include a burner type melting furnace for melting an object to be processed using heavy oil or the like as a fuel, an electric resistance type melting furnace and a plasma type melting furnace for melting an object to be processed using electricity as a heat source.
As an example, a plasma melting furnace will be described with reference to FIG. 7. This plasma melting furnace 50 includes a main electrode 51 suspended from the top of the furnace and a furnace bottom electrode 52 disposed on the furnace bottom. A plasma arc is generated by applying a DC voltage 53 between these two electrodes. And the to-be-processed object dropped in the furnace main body 54 from the charging hopper 55 is heated and melted by plasma heat. The object to be processed is melted and molten slag 56 and molten metal 57 having a specific gravity larger than that are accumulated in the furnace main body 54 and discharged from the outlet 58. Moreover, since the inside of the furnace main body 54 is maintained at a high temperature, the inside thereof is formed of a refractory material such as an irregular refractory material 60 or a refractory brick 61, and a structure in which the refractory material is covered with an iron shell 62 is employed. .

このような溶融炉においては、炉内から溶融メタルや溶融スラグが漏れ出す可能性があり、水蒸気爆発等の危険性があることから炉底は水冷却しない場合が多い。しかし、自然空冷の場合は冷却が弱く、耐火物がメタルやスラグによって侵食されてしまう。一般に、侵食の進行は、耐火物同士を固着させる目地から発生し、目地の侵食が進むと耐火レンガの固定が劣弱となりメタルより比重の小さい耐火レンガが剥離してメタル中に浮き上がる。耐火レンガは剥離部を中心として徐々に拡大し、該剥離部近傍の鉄皮の温度は上昇する。鉄皮は、耐熱温度以上(350℃程度)まで昇温すると変形、抜け落ち等の不具合が発生してしまう惧れがある。従って、炉底の鉄皮温度を監視する必要がある。   In such a melting furnace, there is a possibility that molten metal or molten slag leaks from the inside of the furnace, and there is a risk of a steam explosion or the like, so the furnace bottom is often not cooled with water. However, in the case of natural air cooling, the cooling is weak and the refractory is eroded by metal or slag. In general, the progress of erosion occurs from the joint where the refractories adhere to each other. When the erosion of the joint progresses, the fixing of the refractory brick becomes poor, and the refractory brick having a specific gravity smaller than that of the metal peels off and floats in the metal. The refractory brick gradually expands around the peeling portion, and the temperature of the iron skin near the peeling portion increases. If the iron skin is heated to a temperature higher than the heat-resistant temperature (about 350 ° C.), there is a risk that defects such as deformation and dropout may occur. Therefore, it is necessary to monitor the furnace skin temperature at the bottom of the furnace.

従来は、炉体温度の測定には、特許文献1(特開平11−218320号公報)等に記載されるように、炉本体底部から耐火物に貫通するごとく熱電対65(図7参照)を設置し、耐火物の温度を測定したり、また、炉底鉄皮に熱電対を設置して炉底表面の温度を測定する方法が一般的であった。   Conventionally, as described in Patent Document 1 (Japanese Patent Laid-Open No. 11-218320) or the like, the thermocouple 65 (see FIG. 7) is used to measure the furnace temperature as it penetrates the refractory from the bottom of the furnace body. It was common to install and measure the temperature of the refractory, or to measure the temperature of the furnace bottom surface by installing a thermocouple on the furnace bottom iron skin.

特開平11−218320号公報JP 11-218320 A

しかしながら、特許文献1に記載される方法では、炉底温度を局所的にしか測定できなかった。ところが、炉底に略一面に敷設された耐火材のうち、どの耐火材が浮き上がるかは不明であるため炉底表面の広範囲における温度分布を把握する必要がある。この場合、特許文献1では多数の熱電対を設置しなければならず、且つ複数の熱電対で得られた局所的な温度を総合して得られる温度分布は推測の範囲を出ず、精度の良い測定とは言えなかった。
従って、本発明は上記従来技術の問題点に鑑み、炉底表面の温度を広範囲に亘って精度良く測定することができる炉底温度測定方法及び装置を提供することを目的とする。さらにまた、前記炉底温度測定技術を用いて、炉底の異常を検知することが可能である溶融炉の炉底監視方法及び装置を提供することを目的とする。
However, the method described in Patent Document 1 can only measure the furnace bottom temperature locally. However, it is unclear which refractory material will float out of the refractory material laid almost on the bottom of the furnace, so it is necessary to grasp the temperature distribution over a wide range of the furnace bottom surface. In this case, in Patent Document 1, it is necessary to install a large number of thermocouples, and the temperature distribution obtained by combining the local temperatures obtained by a plurality of thermocouples does not go beyond the range of estimation, and the accuracy is high. It was not a good measurement.
Accordingly, in view of the above-described problems of the prior art, an object of the present invention is to provide a furnace bottom temperature measuring method and apparatus capable of accurately measuring the temperature of the furnace bottom surface over a wide range. Furthermore, it aims at providing the bottom monitoring method and apparatus of a melting furnace which can detect abnormality of a bottom using the said bottom temperature measuring technique.

そこで、本発明はかかる課題を解決するために、
溶融炉の炉底表面を測定範囲に含む位置にサーモグラフィ装置を設置し、前記測定範囲に含まれる任意の温度測定点の近傍に、放射率を1.0の値に設定した黒体を設けておき、
予め基準放射率を1.0の値に設定し、前記サーモグラフィ装置にて前記黒体の放射エネルギから黒体温度を測定する工程と、
前記サーモグラフィ装置にて前記測定点の放射エネルギから測定した測定点温度が、前記黒体温度と一致する放射率を求める工程と、
前記求めた放射率を前記測定範囲の放射率に設定し、前記サーモグラフィ装置により該測定範囲の温度分布を測定する工程と、を備え、
前記黒体を、前記溶融炉の中心位置から該溶融炉の出滓口を結ぶ線上に対応する炉底表面に設けることを特徴とする。
Therefore, in order to solve this problem, the present invention provides:
A thermography device is installed at a position including the furnace bottom surface of the melting furnace in the measurement range, and a black body with an emissivity set to a value of 1.0 is provided in the vicinity of an arbitrary temperature measurement point included in the measurement range. Every
Setting the reference emissivity to a value of 1.0 in advance, and measuring the black body temperature from the radiant energy of the black body with the thermography device;
A step of obtaining an emissivity at which a measurement point temperature measured from the radiant energy of the measurement point by the thermography device matches the black body temperature;
Setting the obtained emissivity to the emissivity of the measurement range, and measuring the temperature distribution of the measurement range by the thermography device,
The black body is provided on the surface of a furnace bottom corresponding to a line connecting a melting furnace outlet from a center position of the melting furnace .

本発明のように、サーモグラフィ装置を用いて炉底面からの放射エネルギを測定することにより、炉底の広範囲な温度分布を測定することができる。ここで、サーモグラフィ装置は、非接触で測定対象からの放射エネルギを捉えて、その測定対象の温度を測定することができる温度計として知られているが、測定対象の放射率は、その種類、形状、温度等の種々の因子の支配を受けることがわかっている。従って、より精度の良い温度測定をするためには炉底部の測定域の放射率を正確に把握する必要がある。そこで、本発明のように、放射率が1.0の値を有する理想的な黒体を炉底面に設け、該黒体の温度と、該黒体の近傍の温度に基づき、測定域の放射率を求めることにより、精度の良い温度測定が可能となる。 As in the present invention, by measuring the radiant energy from the bottom of the furnace using a thermography apparatus, a wide temperature distribution in the bottom of the furnace can be measured. Here, the thermography device is known as a thermometer that can measure the temperature of the measurement object by capturing radiant energy from the measurement object in a non-contact manner, but the emissivity of the measurement object is the type, It is known to be subject to various factors such as shape and temperature. Therefore, in order to perform temperature measurement with higher accuracy, it is necessary to accurately grasp the emissivity of the measurement area at the bottom of the furnace. Therefore, as in the present invention, the emissivity is 1. An ideal black body with a value of 0 is provided on the bottom of the furnace, and the emissivity in the measurement area is obtained based on the temperature of the black body and the temperature in the vicinity of the black body, enabling accurate temperature measurement. It becomes.

また、本発明のように、溶融スラグの流れ方向であって、溶融炉の略中心位置から出滓口を結ぶ線上のうち何れかの位置に黒体を設け、溶融炉において最も高温になり易く、炉内耐火材の侵食が著しい出滓口近傍を測定範囲とすることによって、炉底の異常を確実に検知することが可能となる。 Further, as in the present invention , a black body is provided at any position in the flow direction of the molten slag and on the line connecting the tap port from the approximate center position of the melting furnace, and is likely to become the highest temperature in the melting furnace. By setting the vicinity of the spout where the refractory material in the furnace is significantly eroded as the measurement range, it is possible to reliably detect an abnormality in the furnace bottom.

また、本発明は、溶融炉の炉底表面を測定範囲に含む位置にサーモグラフィ装置を設置し、前記測定範囲に含まれる任意の温度測定点の近傍に、放射率を1.0の値に設定した複数の黒体を設けておき、予め基準放射率を1.0の値に設定し、前記サーモグラフィ装置にて前記複数の黒体の放射エネルギから黒体温度を測定する工程と、
前記サーモグラフィ装置にて前記測定点の放射エネルギから測定した測定点温度が、前記黒体温度と一致する放射率を求める工程と、
前記求めた放射率を前記測定範囲の放射率に設定し、前記サーモグラフィ装置により該測定範囲の温度分布を測定する工程と、を備え、
前記複数の黒体を、溶融炉の中心位置を中心軸とした同心円上に複数設けるか、或いは前記溶融炉の半径方向に複数設け、該複数の黒体に対応した炉底表面の温度分布を測定するようにしたことを特徴とする。
これは、溶融スラグ及び溶融メタルの温度の関係から、溶融炉の同心円上は温度変化が小さいため、該同心円状に黒体を複数設けることにより、温度変化による放射率の誤差を最小限に抑え、測定域の温度分布をより一層正確に測定することが可能である。また、前記半径方向は、温度分布が比較的大きいため、ここに複数の黒体を設けることにより放射率の温度依存を補正することができる。
また、前記サーモグラフィ装置の選定波長を、8〜14μmの範囲内とすることが好ましく、これにより前記サーモグラフィ装置にて検出する放射エネルギに対する太陽光の影響を防ぎ、より一層精度の高い温度測定が可能となる。
In the present invention, a thermography apparatus is installed at a position including the furnace bottom surface of the melting furnace in the measurement range, and the emissivity is set to a value of 1.0 in the vicinity of an arbitrary temperature measurement point included in the measurement range. Providing a plurality of black bodies, setting a reference emissivity to a value of 1.0 in advance, and measuring the black body temperature from the radiant energy of the plurality of black bodies with the thermography device;
A step of obtaining an emissivity at which a measurement point temperature measured from the radiant energy of the measurement point by the thermography device matches the black body temperature;
Setting the obtained emissivity to the emissivity of the measurement range, and measuring the temperature distribution of the measurement range by the thermography device,
A plurality of the black bodies are provided on a concentric circle with the center position of the melting furnace as a central axis, or a plurality of black bodies are provided in the radial direction of the melting furnace, and the temperature distribution of the furnace bottom surface corresponding to the plurality of black bodies is determined. It is characterized by being measured.
This is because the temperature change on the concentric circle of the melting furnace is small due to the relationship between the temperature of the molten slag and the molten metal. By providing multiple black bodies in the concentric circle, errors in emissivity due to the temperature change can be minimized. It is possible to more accurately measure the temperature distribution in the measurement area. Further, since the temperature distribution in the radial direction is relatively large, the temperature dependence of the emissivity can be corrected by providing a plurality of black bodies here.
In addition, it is preferable that the selected wavelength of the thermography device is in the range of 8 to 14 μm, thereby preventing the influence of sunlight on the radiant energy detected by the thermography device, and enabling more accurate temperature measurement. It becomes.

さらに、前期炉底温度測定方法を用いた溶融炉の炉底監視方法において、
前記測定した温度分布に基づき、通常運転時より高温を示す高温域を検出する工程と、該検出した高温域に基づき炉底の異常を検知する工程と、を備えたことを特徴とする。
さらにまた、前記高温域検出工程にて検出した高温域が局所的であるか広域的であるかを判定する工程と、
前記高温域が広域的であると判定された場合に、他の測定因子に基づき溶融炉の炉内温度が適正温度より高温であるか否かを判定する工程と、
前記炉内温度が適正である場合、若しくは前記高温域が局所的である場合には、前記炉底の耐火材に異常が発生したと判断する工程と、を備えたことを特徴とする。
このように、前記測定した温度分布から高温域を検出することにより、運転中であっても炉底の耐火材の侵食、浮き上がり等の不具合を正確に把握することが可能であり、鉄皮の変形、抜け落ち等を未然に防止することが可能である。尚、前記他の測定因子とは、例えば、熱電対或いは放射温度計により測定した溶融スラグ温度、熱電対により測定した耐火材温度、炉壁の冷却水熱量等が挙げられる。
Furthermore, in the bottom monitoring method of the melting furnace using the previous bottom temperature measurement method,
The method includes a step of detecting a high temperature region showing a higher temperature than that during normal operation based on the measured temperature distribution, and a step of detecting an abnormality of the furnace bottom based on the detected high temperature region.
Furthermore, the step of determining whether the high temperature region detected in the high temperature region detection step is local or wide area,
When it is determined that the high-temperature region is wide-area, determining whether the furnace temperature of the melting furnace is higher than the appropriate temperature based on other measurement factors;
A step of determining that an abnormality has occurred in the refractory material at the bottom of the furnace when the temperature in the furnace is appropriate or when the high temperature region is local.
In this way, by detecting the high temperature region from the measured temperature distribution, it is possible to accurately grasp problems such as erosion of the refractory material at the bottom of the furnace and floating even during operation. It is possible to prevent deformation, dropout, and the like. The other measurement factors include, for example, a molten slag temperature measured with a thermocouple or a radiation thermometer, a refractory material temperature measured with a thermocouple, a heat quantity of cooling water on the furnace wall, and the like.

また、装置の発明として、溶融炉の炉底表面を測定範囲に含む位置に設置されたサーモグラフィ装置と、前記測定範囲に含まれる任意の温度測定点の近傍に設けられた放射率を1.0の値に設定した黒体と、を備えるとともに、
基準放射率を1.0の値に設定した前記サーモグラフィ装置にて測定された黒体温度を記憶させる記憶手段と、前記サーモグラフィ装置にて測定した測定点温度が、前記黒体温度と一致する放射率を求める放射率補正手段と、を有する制御装置を備え、
前記制御装置にて求めた放射率を前記測定範囲の放射率に設定し、前記サーモグラフィ装置により該測定範囲の温度分布を測定するとともに、
前記黒体を、前記溶融炉の中心位置から該溶融炉の出滓口を結ぶ線上に対応する炉底表面に設けることを特徴とする。
Further, as an invention of the apparatus, a thermography apparatus installed at a position including the furnace bottom surface of the melting furnace in the measurement range, and an emissivity provided in the vicinity of an arbitrary temperature measurement point included in the measurement range is 1.0. And a black body set to the value of
Storage means for storing a black body temperature measured by the thermography apparatus with a reference emissivity set to a value of 1.0, and radiation whose measurement point temperature measured by the thermography apparatus matches the black body temperature An emissivity correction means for determining a rate, and a control device,
Set the emissivity obtained by the control device to the emissivity of the measurement range, measure the temperature distribution of the measurement range by the thermography device,
The black body is provided on the surface of a furnace bottom corresponding to a line connecting a melting furnace outlet from a center position of the melting furnace .

た、前記サーモグラフィ装置を炉底の直下を外れた位置に配置したことを特徴とし、これにより、溶融炉からの溶融物等の落下によるサーモグラフィ装置の損傷等を防止できる。
さらに、前記黒体を複数設ける場合であって、該黒体を、溶融炉の中心位置を中心軸とした同心円上に複数設けるか、或いは前記溶融炉の半径方向に複数設けることを特徴とする。
さらにまた、前記サーモグラフィ装置の選定波長が、8〜14μmの範囲内であることが好ましい。
また、前記炉底温度測定装置を用いた溶融炉の炉底監視装置において、
前記制御装置が、前記測定した温度分布に基づき、通常運転時より高温を示す高温域を検出する手段と、該検出した高温域に基づき炉底の異常を検知する手段と、を備えたことを特徴とする。
Also, characterized in that arranged at a position off the right under the thermography of the furnace bottom, which makes it possible to prevent damage to the thermographic apparatus due to dropping such as melt from the melting furnace.
Further, in the case of providing a plurality of the black bodies, a plurality of the black bodies are provided on a concentric circle with the center position of the melting furnace as a central axis, or a plurality of black bodies are provided in the radial direction of the melting furnace. .
Furthermore, it is preferable that the selected wavelength of the thermographic apparatus is in the range of 8 to 14 μm.
In the bottom monitoring device of the melting furnace using the bottom temperature measuring device,
The control device comprises means for detecting a high temperature region showing a higher temperature than during normal operation based on the measured temperature distribution, and means for detecting an abnormality in the furnace bottom based on the detected high temperature region. Features.

以上記載のごとく本発明によれば、炉底の広範囲な温度分布を簡単に測定することができ、また黒体を設けて正確な放射率を算出し、これに基づき温度測定を行っているため、精度の高い炉底の温度測定が可能となり、延いては炉底耐火材の侵食、耐火材の浮き上がり等の不具合を早期に検知でき、炉底表面の鉄皮の変形、抜け落ち等の不具合を未然に防止することができる。   As described above, according to the present invention, a wide temperature distribution in the furnace bottom can be easily measured, and an accurate emissivity is calculated by providing a black body, and temperature is measured based on this. Therefore, it is possible to measure the temperature at the bottom of the furnace with high accuracy, and as a result, it is possible to detect problems such as erosion of the furnace bottom refractory material and floating of the refractory material at an early stage, and to prevent defects such as deformation and dropout of the iron skin on the furnace bottom surface. It can be prevented in advance.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
本実施例では炉底温度測定、監視対象である溶融炉として、一例としてプラズマ式溶融炉につき説明するが、被処理物を溶融処理する溶融炉であれば特にこれに限定されるものではない。
図1は本発明の実施例に係る炉底監視装置を備えた溶融炉の側断面を示す全体構成図、図2は本実施例に係る炉底監視装置を備えた炉底部の概略を示す側断面図、図3は図2に示した炉底監視装置を備えた炉底部の概略を示す平面図である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
In this embodiment, a plasma melting furnace will be described as an example of a melting furnace to be measured and monitored at the furnace bottom. However, the present invention is not particularly limited as long as it is a melting furnace for melting an object to be processed.
FIG. 1 is an overall configuration diagram showing a side cross section of a melting furnace provided with a furnace bottom monitoring device according to an embodiment of the present invention, and FIG. 2 is a side showing an outline of a furnace bottom portion provided with a furnace bottom monitoring device according to this embodiment. FIG. 3 is a cross-sectional view, and FIG. 3 is a plan view showing an outline of a furnace bottom portion provided with the furnace bottom monitoring device shown in FIG.

まず、図1を参照して本実施例に係る炉底温度測定装置及び監視装置が設置されるプラズマ式溶融炉につき説明する。プラズマ式溶融炉1は、炉本体14の炉蓋から主電極11が垂下され、これに対向して炉底17から炉底電極12が挿設されている。プラズマ式灰溶融炉10では、これらの電極間に直流電源13により直流電流を通流して炉内にプラズマアーク24を発生させる。投入ホッパ21より投入された被処理物は、炉壁に設けられた被処理物投入口20より炉内に投下され、プラズマアーク熱及び前記電極間を流れる電流のジュール熱により溶融処理され、溶融スラグ22として炉底に溜まる。また溶融スラグ22の下部には比重差により溶融メタル23が形成されている。溶融後は、適宜出滓口25より排出される。   First, a plasma melting furnace in which a furnace bottom temperature measuring device and a monitoring device according to this embodiment are installed will be described with reference to FIG. In the plasma melting furnace 1, the main electrode 11 is suspended from the furnace lid of the furnace body 14, and the furnace bottom electrode 12 is inserted from the furnace bottom 17 to face the main electrode 11. In the plasma ash melting furnace 10, a direct current is passed between these electrodes by a direct current power source 13 to generate a plasma arc 24 in the furnace. An object to be processed input from the input hopper 21 is dropped into the furnace from an object input port 20 provided on the furnace wall, melted by plasma arc heat and Joule heat of current flowing between the electrodes, and melted. The slag 22 accumulates at the furnace bottom. In addition, a molten metal 23 is formed in the lower portion of the molten slag 22 due to a difference in specific gravity. After melting, it is discharged from the tap 25 as appropriate.

炉本体14の側壁及び蓋部の内側は不定形耐火材15で形成され、底部には耐火レンガ18が内張りされ、その外表面が鉄皮16で被覆されている。
また、前記プラズマ式溶融炉10では、円滑で適正な運転を行なうために各種計測器(不図示)を具備し、これにより取得した計測値に基づいて運転及び炉内監視を行なっている。例えば、炉蓋に設けられた計測用開口に設置されたスラグ温度計、炉壁に埋設され耐火レンガ温度を検出する熱電対、前記出滓口の内部に通流する冷却水の入口温度及び出口温度を検出する温度検出計、炉内温度を検出する温度検出計、前記電極間の電流、電圧を計測する電流計及び電圧計、炉内へ投入する灰を計量する計量器などが挙げられる。
The inner side of the side wall and the lid of the furnace body 14 is formed of an irregular refractory material 15, and a refractory brick 18 is lined on the bottom, and the outer surface thereof is covered with an iron skin 16.
The plasma melting furnace 10 is provided with various measuring instruments (not shown) in order to perform a smooth and proper operation, and the operation and in-furnace monitoring are performed based on the measured values obtained thereby. For example, a slag thermometer installed in the measurement opening provided in the furnace lid, a thermocouple embedded in the furnace wall to detect the temperature of the refractory brick, the inlet temperature and outlet of the cooling water flowing through the outlet Examples include a temperature detector for detecting temperature, a temperature detector for detecting the temperature in the furnace, an ammeter and a voltmeter for measuring the current and voltage between the electrodes, and a meter for measuring the ash charged into the furnace.

また本実施例では、炉底17の温度を測定する温度測定装置を設けている。この温度測定装置は、サーモグラフィ装置30と、画像処理機能を備えた制御装置40とを備える。
前記サーモグラフィ装置30は、測定対象から放出される放射エネルギ量を非接触で検出して該放射エネルギ量から測定対象の温度を求める周知の装置である。該サーモグラフィ装置30は、前記炉底17の鉄皮表面のうち少なくとも一部を測定範囲に含む位置に設置され、特に好ましくは、前記溶融炉10の直下から外れた側方位置から炉底17を測定範囲とする位置に設置される。これにより、溶融スラグ22等が流出した際に、サーモグラフィ装置30に落下して損傷することを防止する。該サーモグラフィ装置30は、複数設けるようにしても良い。また、前記サーモグラフィ装置30を炉底の直下に配置する場合には、該サーモグラフィ装置30を治具等により自在に移動可能にしても良い。さらに、前記サーモグラフィ装置30を移動自在な構造とし、定期的に測定範囲が異なる位置に移動するようにしても良い。
また、前記サーモグラフィ装置30の選定波長は8〜14μmとすることが好適である。これにより、太陽光の影響を受けず、正確な測定が可能となる。
In the present embodiment, a temperature measuring device for measuring the temperature of the furnace bottom 17 is provided. This temperature measurement device includes a thermography device 30 and a control device 40 having an image processing function.
The thermography device 30 is a well-known device that detects the amount of radiant energy emitted from a measurement object in a non-contact manner and determines the temperature of the measurement object from the amount of radiant energy. The thermography apparatus 30 is installed at a position including at least a part of the iron skin surface of the furnace bottom 17 in the measurement range, and particularly preferably, the furnace bottom 17 is moved from a lateral position outside the melting furnace 10. Installed at the position to be measured. Thereby, when molten slag 22 grade | etc., Flows out, it is prevented from falling to the thermography apparatus 30 and being damaged. A plurality of thermography devices 30 may be provided. Further, when the thermographic device 30 is disposed immediately below the furnace bottom, the thermographic device 30 may be freely movable by a jig or the like. Further, the thermographic device 30 may be configured to be movable, and may be periodically moved to a position having a different measurement range.
The selected wavelength of the thermographic device 30 is preferably 8 to 14 μm. As a result, accurate measurement is possible without being affected by sunlight.

また、サーモグラフィ装置30では、測定対象の放射率が変化すると大幅な誤差を生じるため、これを解消するために、本実施例では放射率を補正する補正機構を設けている。図2及び図3に示されるように、炉底17のうち、測定範囲33に含まれる温度測定点32の近傍に、放射率1.0若しくはこれに近似させた黒体31を設ける。該黒体31は、黒色塗料を塗布しても良いし、同様の外表面加工及び処理しても良く、その形態は特に限定されない。
前記黒体31は、一又は複数設けられる。さらに、該黒体31の設置位置は、炉底17のうち、スラグの流れ方向に沿って、前記炉底電極12と前記出滓口25を結ぶ線上に対応する位置に設けることが好ましい。これは、溶融炉10において最も高温になり易く、炉内耐火材の侵食が著しい出滓口近傍を測定範囲33とするためである。
また、前記黒体31を複数設ける場合には、電極12を中心とした同心円状に設けることが好ましい。これは、溶融炉10の同心円上は温度変化が小さいため、該同心円状に黒体31を複数設けることにより、温度変化による放射率の誤差を最小限に抑え、測定範囲33の温度分布をより一層正確に測定するためである。また、前記炉底17の半径方向に複数設けるようにしても良く、半径方向は温度分布が比較的大きいため、ここに複数の黒体を設けることにより放射率の温度依存を補償することができる。
Further, in the thermography device 30, since a large error occurs when the emissivity of the measurement object changes, in order to eliminate this, a correction mechanism for correcting the emissivity is provided in this embodiment. As shown in FIGS. 2 and 3, an emissivity 1.0 or a black body 31 approximated to this is provided in the vicinity of the temperature measurement point 32 included in the measurement range 33 in the furnace bottom 17. The black body 31 may be coated with a black paint, or may be processed and treated in the same manner, and its form is not particularly limited.
One or a plurality of the black bodies 31 are provided. Further, it is preferable that the black body 31 is installed at a position corresponding to the line connecting the furnace bottom electrode 12 and the tap outlet 25 along the slag flow direction in the furnace bottom 17. This is because the measurement range 33 is the vicinity of the spout where the melting furnace 10 is likely to reach the highest temperature and the refractory material in the furnace is significantly eroded.
Further, when a plurality of the black bodies 31 are provided, they are preferably provided concentrically around the electrode 12. This is because the temperature change is small on the concentric circle of the melting furnace 10, and by providing a plurality of black bodies 31 concentrically, errors in emissivity due to the temperature change are minimized, and the temperature distribution in the measurement range 33 is further improved. This is for more accurate measurement. Further, a plurality of them may be provided in the radial direction of the furnace bottom 17, and since the temperature distribution is relatively large in the radial direction, the temperature dependence of the emissivity can be compensated by providing a plurality of black bodies here. .

上記した構成により、予め設定した基準放射率εを補正し、測定範囲33である炉底鉄皮表面に固有の放射率を算出する方法につき、図5及び図6を参照して説明する。
図に示されるように、まず、基準放射率をεを1.0、若しくはこれに近似した値に設定してサーモグラフィ装置30にて黒体31の温度Tを測定し(S1)、測定した黒体温度Tを記録しておく(S2)。さらに、サーモグラフィ装置30を任意の予測放射率εに設定して、前記測定点32の放射エネルギから該測定点温度Tを測定し、前記予測放射率εを段階的に変化させていき(S3)、黒体温度Tと前記測定点温度Tが略一致するときの予測放射率εを測定範囲33の放射率に設定する(S4)。
このようにして炉底鉄皮表面の放射率εを設定し、該放射率に応じて前記サーモグラフィ装置30により炉底17の温度分布を測定する。これにより、正確な炉底の温度分布を得ることが可能となる。
With the configuration described above, by correcting the reference emissivity epsilon b set in advance, the furnace bottom steel shell surface is a measurement range 33 per method of calculating the specific emissivity will be described with reference to FIGS.
As shown in the figure, first, the reference emissivity is set to ε b equal to 1.0 or a value approximate thereto, and the temperature T b of the black body 31 is measured by the thermography device 30 (S1). The black body temperature Tb thus recorded is recorded (S2). Further, the thermographic apparatus 30 is set to an arbitrary predicted emissivity ε t , the measurement point temperature T t is measured from the radiant energy of the measurement point 32, and the predicted emissivity ε b is changed stepwise. (S3) The predicted emissivity ε t when the black body temperature T b substantially coincides with the measurement point temperature T t is set to the emissivity of the measurement range 33 (S4).
In this way, the emissivity ε t of the furnace bottom iron skin surface is set, and the temperature distribution of the furnace bottom 17 is measured by the thermography device 30 according to the emissivity. This makes it possible to obtain an accurate furnace bottom temperature distribution.

さらにまた、本実施例では、上記したように測定した炉底温度を基にして炉底監視を行う装置を備えている。
この炉底監視装置は、サーモグラフィ装置30と、該サーモグラフィ装置30に接続された制御装置40とからなり、該制御装置40にて演算された制御信号が溶融炉10の各種制御機器へ伝達されるようになっている。
炉底監視を行う方法の一例につき図6を参照して説明すると、通常運転(S10)の際に、定期的に前記サーモグラフィ装置30により炉底鉄皮表面の温度分布を測定する(S11)。該測定された温度分布から、高温域が局所的であるか広域的であるかを判断し(S12)、広域的である場合には、前記溶融炉10が具備する前記各種計測器により求められた他の測定因子から運転状態の確認を行う(S13)。該測定因子とは、例えば、検出スラグ温度(S14)、計算スラグ温度(S15)、冷却水熱量(S16)、スタンプ温度(S17)等が挙げられる。これらの測定因子から、溶融炉の運転温度が高いために高温域が広域的に現れているか否かを判断し(S18)、運転温度が高いと判断された場合には、直流電源13の制御、主電極の上昇、被処理物投入量の増加等により運転温度を低下させ(S19)、通常運転に戻る。
Furthermore, in this embodiment, there is provided a device for monitoring the furnace bottom based on the furnace bottom temperature measured as described above.
The furnace bottom monitoring device includes a thermography device 30 and a control device 40 connected to the thermography device 30, and a control signal calculated by the control device 40 is transmitted to various control devices of the melting furnace 10. It is like that.
An example of a method for monitoring the furnace bottom will be described with reference to FIG. 6. During the normal operation (S 10), the temperature distribution on the surface of the furnace bottom iron skin is periodically measured by the thermography device 30 (S 11). From the measured temperature distribution, it is determined whether the high temperature region is local or wide area (S12), and if it is wide area, it is obtained by the various measuring instruments provided in the melting furnace 10. The operation state is confirmed from other measurement factors (S13). Examples of the measurement factor include a detected slag temperature (S14), a calculated slag temperature (S15), a cooling water heat quantity (S16), a stamp temperature (S17), and the like. From these measurement factors, it is determined whether or not a high temperature region appears in a wide area because the operating temperature of the melting furnace is high (S18). If it is determined that the operating temperature is high, the control of the DC power source 13 is performed. Then, the operating temperature is lowered by increasing the main electrode, increasing the amount of work to be processed, etc. (S19) and returning to normal operation.

ここで、広域的な温度上昇が溶融炉の運転温度が高いことが要因でないと判断された場合には、炉底17の耐火レンガ18が全体的に浮いている可能性が高いと判断され(S20)、炉の運転を停止し(S21)、耐火レンガ18の補修・交換を行う(S22)。
一方、サーモグラフィ装置30により得られた温度分布画像から、前記高温域が局所的であると判断された場合には、炉底17の耐火レンガ18が部分的に浮いている可能性が高いと判断され(S23)、炉の運転を停止し(S24)、耐火レンガ18の補修・交換を行う(S25)。
このように、前記測定した温度分布から高温域を検出することにより、運転中であっても炉底17の耐火材の侵食、浮き上がり等の不具合を正確に把握することが可能であり、鉄皮16の変形、抜け落ち等を未然に防ぐことが可能である。
Here, when it is determined that the temperature rise in a wide area is not caused by the high operating temperature of the melting furnace, it is determined that there is a high possibility that the refractory brick 18 on the furnace bottom 17 is floating as a whole ( S20), the operation of the furnace is stopped (S21), and the refractory brick 18 is repaired or replaced (S22).
On the other hand, when it is determined from the temperature distribution image obtained by the thermography device 30 that the high temperature region is local, it is determined that there is a high possibility that the refractory bricks 18 in the furnace bottom 17 are partially floating. Then, the operation of the furnace is stopped (S24), and the refractory brick 18 is repaired or replaced (S25).
Thus, by detecting the high temperature region from the measured temperature distribution, it is possible to accurately grasp problems such as erosion of the refractory material of the furnace bottom 17 and lifting even during operation. It is possible to prevent the deformation and dropout of 16.

本発明は、炉底の温度を広範囲に且つ精度良く検出可能であるため、プラズマ式溶融炉を始めとして、電気抵抗式溶融炉、バーナ式溶融炉、旋回式溶融炉、反射式溶融炉等の何れの溶融炉にも適用可能である。   Since the present invention can detect the temperature of the furnace bottom in a wide range and with high accuracy, it can be used in a plasma melting furnace, an electric resistance melting furnace, a burner melting furnace, a swirling melting furnace, a reflection melting furnace, etc. It can be applied to any melting furnace.

本発明の実施例に係る炉底監視装置を備えた溶融炉の側断面を示す全体構成図である。It is a whole block diagram which shows the side cross section of the melting furnace provided with the furnace bottom monitoring apparatus which concerns on the Example of this invention. 本実施例に係る炉底監視装置を備えた炉底部の概略を示す側断面図である。It is a sectional side view which shows the outline of the furnace bottom part provided with the furnace bottom monitoring apparatus which concerns on a present Example. 図2に示した炉底監視装置を備えた炉底部の概略を示す平面図である。It is a top view which shows the outline of the furnace bottom part provided with the furnace bottom monitoring apparatus shown in FIG. 放射率補正方法を説明するための模式図である。It is a schematic diagram for demonstrating the emissivity correction method. 本実施例における放射率補正処理を示すフロー図である。It is a flowchart which shows the emissivity correction | amendment process in a present Example. 本実施例における溶融炉の炉底監視処理を示すフロー図である。It is a flowchart which shows the furnace bottom monitoring process of the melting furnace in a present Example. 従来の溶融炉の断面を示す全体構成図である。It is a whole block diagram which shows the cross section of the conventional melting furnace.

符号の説明Explanation of symbols

10 プラズマ溶融炉
11 主電極
12 炉底電極
14 炉本体
15 不定形耐火材
16 鉄皮
17 炉底
18 耐火レンガ
22 溶融スラグ
23 溶融メタル
25 出滓口
30 サーモグラフィ装置
31 黒体
32 標的
40 制御装置
DESCRIPTION OF SYMBOLS 10 Plasma melting furnace 11 Main electrode 12 Furnace bottom electrode 14 Furnace main body 15 Amorphous refractory material 16 Iron skin 17 Furnace bottom 18 Refractory brick 22 Molten slag 23 Molten metal 25 Outlet 30 Thermography device 31 Black body 32 Target 40 Control device

Claims (10)

溶融炉の炉底表面を測定範囲に含む位置にサーモグラフィ装置を設置し、前記測定範囲に含まれる任意の温度測定点の近傍に、放射率を1.0の値に設定した黒体を設けておき、
予め基準放射率を1.0の値に設定し、前記サーモグラフィ装置にて前記黒体の放射エネルギから黒体温度を測定する工程と、
前記サーモグラフィ装置にて前記測定点の放射エネルギから測定した測定点温度が、前記黒体温度と一致する放射率を求める工程と、
前記求めた放射率を前記測定範囲の放射率に設定し、前記サーモグラフィ装置により該測定範囲の温度分布を測定する工程と、を備え、
前記黒体を、前記溶融炉の中心位置から該溶融炉の出滓口を結ぶ線上に対応する炉底表面に設けることを特徴とする炉底温度測定方法。
A thermography device is installed at a position including the furnace bottom surface of the melting furnace in the measurement range, and a black body with an emissivity set to a value of 1.0 is provided in the vicinity of an arbitrary temperature measurement point included in the measurement range. Every
Setting the reference emissivity to a value of 1.0 in advance, and measuring the black body temperature from the radiant energy of the black body with the thermography device;
A step of obtaining an emissivity at which a measurement point temperature measured from the radiant energy of the measurement point by the thermography device matches the black body temperature;
Setting the obtained emissivity to the emissivity of the measurement range, and measuring the temperature distribution of the measurement range by the thermography device,
The black body furnace bottom temperature measuring how to wherein providing the heart located in the furnace bottom surface corresponding to the line connecting the tapping port of the melting furnace in the melting furnace.
溶融炉の炉底表面を測定範囲に含む位置にサーモグラフィ装置を設置し、前記測定範囲に含まれる任意の温度測定点の近傍に、放射率を1.0の値に設定した複数の黒体を設けておき、予め基準放射率を1.0の値に設定し、前記サーモグラフィ装置にて前記複数の黒体の放射エネルギから黒体温度を測定する工程と、
前記サーモグラフィ装置にて前記測定点の放射エネルギから測定した測定点温度が、前記黒体温度と一致する放射率を求める工程と、
前記求めた放射率を前記測定範囲の放射率に設定し、前記サーモグラフィ装置により該測定範囲の温度分布を測定する工程と、を備え、
前記複数の黒体を、溶融炉の中心位置を中心軸とした同心円上に複数設けるか、或いは前記溶融炉の半径方向に複数設け、該複数の黒体に対応した炉底表面の温度分布を測定するようにしたことを特徴とする請求項1記載の炉底温度測定方法。
A thermography apparatus is installed at a position including the furnace bottom surface of the melting furnace in the measurement range, and a plurality of black bodies having an emissivity of 1.0 are set in the vicinity of any temperature measurement point included in the measurement range. Providing a reference emissivity to a value of 1.0 in advance, and measuring the black body temperature from the radiant energy of the plurality of black bodies with the thermography device;
A step of obtaining an emissivity at which a measurement point temperature measured from the radiant energy of the measurement point by the thermography device matches the black body temperature;
Setting the obtained emissivity to the emissivity of the measurement range, and measuring the temperature distribution of the measurement range by the thermography device,
A plurality of the black bodies are provided on a concentric circle with the center position of the melting furnace as a central axis, or a plurality of black bodies are provided in the radial direction of the melting furnace, and the temperature distribution of the furnace bottom surface corresponding to the plurality of black bodies is determined. 2. The furnace bottom temperature measuring method according to claim 1, wherein the temperature is measured.
前記サーモグラフィ装置の選定波長が、8〜14μmの範囲内であることを特徴とする請求項1若しくは2記載の炉底温度測定方法。 The furnace bottom temperature measuring method according to claim 1 or 2, wherein a selected wavelength of the thermographic apparatus is within a range of 8 to 14 µm. 請求項1若しくは2記載の炉底温度測定方法を用いた溶融炉の炉底監視方法において、
前記測定した温度分布に基づき、通常運転時より高温を示す高温域を検出する工程と、該検出した高温域に基づき炉底の異常を検知する工程と、を備えたことを特徴とする溶融炉の炉底監視方法。
In the bottom monitoring method of the melting furnace using the bottom temperature measuring method according to claim 1 or 2 ,
A melting furnace comprising: a step of detecting a high temperature region showing a higher temperature than during normal operation based on the measured temperature distribution; and a step of detecting an abnormality of the furnace bottom based on the detected high temperature region. Furnace bottom monitoring method.
前記高温域検出工程にて検出した高温域が局所的であるか広域的であるかを判定する工程と、
前記高温域が広域的であると判定された場合に、他の測定因子に基づき溶融炉の炉内温度が適正温度より高温であるか否かを判定する工程と、
前記炉内温度が適正である場合、若しくは前記高温域が局所的である場合には、前記炉底の耐火材に異常が発生したと判断する工程と、を備えたことを特徴とする請求項記載の溶融炉の炉底監視方法。
Determining whether the high temperature area detected in the high temperature area detection step is local or wide area; and
When it is determined that the high-temperature region is wide-area, determining whether the furnace temperature of the melting furnace is higher than the appropriate temperature based on other measurement factors;
And a step of determining that an abnormality has occurred in the refractory material at the bottom of the furnace when the furnace temperature is appropriate or the high temperature region is local. 4. A method for monitoring the bottom of a melting furnace according to 4 .
溶融炉の炉底表面を測定範囲に含む位置に設置されたサーモグラフィ装置と、前記測定範囲に含まれる任意の温度測定点の近傍に設けられた放射率を1.0の値に設定した黒体と、を備えるとともに、
基準放射率を1.0の値に設定した前記サーモグラフィ装置にて測定された黒体温度を記憶させる記憶手段と、前記サーモグラフィ装置にて測定した測定点温度が、前記黒体温度と一致する放射率を求める放射率補正手段と、を有する制御装置を備え、
前記制御装置にて求めた放射率を前記測定範囲の放射率に設定し、前記サーモグラフィ装置により該測定範囲の温度分布を測定するとともに、
前記黒体を、前記溶融炉の中心位置から該溶融炉の出滓口を結ぶ線上に対応する炉底表面に設けることを特徴とする炉底温度測定装置。
A thermography device installed at a position including the bottom surface of the melting furnace in the measurement range, and a black body in which the emissivity provided in the vicinity of any temperature measurement point included in the measurement range is set to a value of 1.0 And comprising
Storage means for storing a black body temperature measured by the thermography apparatus with a reference emissivity set to a value of 1.0, and radiation whose measurement point temperature measured by the thermography apparatus matches the black body temperature An emissivity correction means for determining a rate, and a control device,
Set the emissivity obtained by the control device to the emissivity of the measurement range, measure the temperature distribution of the measurement range by the thermography device,
It said black body, the melting furnace hearth temperature measuring device you characterized in that provided on the furnace bottom surface corresponding to the line connecting the tapping port of the melting furnace from cardiac position within.
溶融炉の炉底表面を測定範囲に含む位置に設置されたサーモグラフィ装置と、前記測定範囲に含まれる任意の温度測定点の近傍に設けられた放射率を1.0の値に設定した黒体と、を備えるとともに、
基準放射率を1.0の値に設定した前記サーモグラフィ装置にて測定された黒体温度を記憶させる記憶手段と、前記サーモグラフィ装置にて測定した測定点温度が、前記黒体温度と一致する放射率を求める放射率補正手段と、を有する制御装置を備え、
前記制御装置にて求めた放射率を前記測定範囲の放射率に設定し、前記サーモグラフィ装置により該測定範囲の温度分布を測定するとともに、
前記サーモグラフィ装置を炉底直下を外れた位置に配置したことを特徴とする請求項記載の炉底温度測定装置。
A thermography device installed at a position including the bottom surface of the melting furnace in the measurement range, and a black body in which the emissivity provided in the vicinity of any temperature measurement point included in the measurement range is set to a value of 1.0 And comprising
Storage means for storing a black body temperature measured by the thermography apparatus with a reference emissivity set to a value of 1.0, and radiation whose measurement point temperature measured by the thermography apparatus matches the black body temperature An emissivity correction means for determining a rate, and a control device,
Set the emissivity obtained by the control device to the emissivity of the measurement range, measure the temperature distribution of the measurement range by the thermography device,
7. The furnace bottom temperature measuring device according to claim 6, wherein the thermography device is disposed at a position off the bottom of the furnace bottom.
溶融炉の炉底表面を測定範囲に含む位置に設置されたサーモグラフィ装置と、前記測定範囲に含まれる任意の温度測定点の近傍に設けられた放射率を1.0に設定した複数の黒体と、を備えるとともに、
基準放射率を1.0の値に設定した前記サーモグラフィ装置にて測定された複数の黒体温度を記憶させる記憶手段と、前記サーモグラフィ装置にて測定した測定点温度が、前記黒体温度と一致する放射率を求める放射率補正手段と、を有する制御装置を備え、
前記制御装置にて求めた放射率を前記測定範囲の放射率に設定し、前記サーモグラフィ装置により該測定範囲の温度分布を測定するとともに、
前記複数の黒体を、溶融炉の中心位置を中心軸とした同心円上に複数設けるか、或いは前記溶融炉の半径方向に複数設けることを特徴とする炉底温度測定装置。
A thermography device installed at a position including the furnace bottom surface of the melting furnace in the measurement range, and a plurality of black bodies having an emissivity set to 1.0 provided in the vicinity of an arbitrary temperature measurement point included in the measurement range And comprising
Storage means for storing a plurality of black body temperatures measured by the thermography apparatus with a reference emissivity set to a value of 1.0, and a measurement point temperature measured by the thermography apparatus match the black body temperature An emissivity correction means for obtaining an emissivity to be
Set the emissivity obtained by the control device to the emissivity of the measurement range, measure the temperature distribution of the measurement range by the thermography device,
Wherein the plurality of black body, or providing a plurality on a concentric circle whose center axis the center position of the melting furnace, or the melting furnace hearth temperature measuring device you characterized by providing a plurality in the radial direction of the.
前記サーモグラフィ装置の選定波長が、8〜14μmの範囲内であることを特徴とする請求項6又は7若しくは8記載の炉底温度測定装置。 The furnace bottom temperature measuring device according to claim 6, 7 or 8, wherein a selected wavelength of the thermographic device is within a range of 8 to 14 µm. 請求項6又は7若しくは8記載の炉底温度測定装置を用いた溶融炉の炉底監視装置において、
前記制御装置が、前記測定した温度分布に基づき、通常運転時より高温を示す高温域を検出する手段と、該検出した高温域に基づき炉底の異常を検知する手段と、を備えたことを特徴とする溶融炉の炉底監視装置。
In the bottom monitoring device of the melting furnace using the bottom temperature measuring device according to claim 6 or 7 or 8 ,
The control device comprises means for detecting a high temperature region showing a higher temperature than during normal operation based on the measured temperature distribution, and means for detecting an abnormality in the furnace bottom based on the detected high temperature region. A furnace bottom monitoring device for a melting furnace.
JP2005133562A 2005-04-28 2005-04-28 Furnace bottom temperature measuring method and apparatus, and melting furnace bottom monitoring method and apparatus Expired - Fee Related JP4056534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005133562A JP4056534B2 (en) 2005-04-28 2005-04-28 Furnace bottom temperature measuring method and apparatus, and melting furnace bottom monitoring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005133562A JP4056534B2 (en) 2005-04-28 2005-04-28 Furnace bottom temperature measuring method and apparatus, and melting furnace bottom monitoring method and apparatus

Publications (2)

Publication Number Publication Date
JP2006308497A JP2006308497A (en) 2006-11-09
JP4056534B2 true JP4056534B2 (en) 2008-03-05

Family

ID=37475542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005133562A Expired - Fee Related JP4056534B2 (en) 2005-04-28 2005-04-28 Furnace bottom temperature measuring method and apparatus, and melting furnace bottom monitoring method and apparatus

Country Status (1)

Country Link
JP (1) JP4056534B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5438276B2 (en) * 2007-01-29 2014-03-12 三菱重工環境・化学エンジニアリング株式会社 Refractory erosion detection method and apparatus for melting furnace bottom
JP6913043B2 (en) * 2018-02-22 2021-08-04 パンパシフィック・カッパー株式会社 How to operate a metal smelter
CN113310324A (en) * 2021-05-25 2021-08-27 中国恩菲工程技术有限公司 Metallurgical furnace monitoring system
CN117168630B (en) * 2023-11-01 2023-12-29 江苏皓越真空设备有限公司 Fault detection method and system for air pressure sintering furnace

Also Published As

Publication number Publication date
JP2006308497A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
RU2417346C2 (en) Device for measurement and control of loading charge or metal scrap into electric arc furnace and corresponding procedure
JP4056534B2 (en) Furnace bottom temperature measuring method and apparatus, and melting furnace bottom monitoring method and apparatus
JP2016519750A (en) A method for determining the state of the metal outlet in particular of a metallurgical vessel
JP4321824B2 (en) Method and apparatus for monitoring the bottom of melting furnace
JP4707635B2 (en) Method and apparatus for monitoring the bottom of melting furnace
JP2008241218A (en) Rotary kiln type high temperature treating device
JP5906945B2 (en) How to prevent ladle leakage
JPH0894264A (en) Refractory residual thickness detecting method for electric furnace
JP4949074B2 (en) Method and apparatus for controlling operation of plasma melting furnace
JPH01267426A (en) Method and apparatus for temperature measurement of molten metal
JP2004138500A (en) Temperature measurement system in furnace and operation control method of melting furnace
KR20130035084A (en) Electric furnace capable of measuring temparature for refractories
JP4285743B2 (en) Melting furnace temperature measuring device and monitoring device
JP2755813B2 (en) Refractory repair time judgment device
KR101363617B1 (en) Electric furnace capable of measuring temparature
JP2010025464A (en) Unit for measuring molten material surface level in vertical type furnace and measuring method therefor
JP2005226105A (en) Method and instrument for measuring level of molten material in blast furnace
JPH03223658A (en) Method for monitoring surface state of refractory material and repairing-time judging apparatus for refractory material
JPH04348236A (en) Temperature detector for molten metal
JP4181075B2 (en) Early detection method for blast furnace hearth temperature level
JPH08247433A (en) Method and device for measuring depth of melt of incineration ash melting furnace
JP4195539B2 (en) Blast furnace bottom water flow detection method
JPH10245604A (en) Operation of blast furnace
JPH08285478A (en) Monitor for wear and attachment on melting furnace inner wall
JP2021148337A (en) Operation support device for electric furnace, electric furnace, operation support method for electric furnace and steel making method by electric furnace

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R151 Written notification of patent or utility model registration

Ref document number: 4056534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees