JP2010025464A - Unit for measuring molten material surface level in vertical type furnace and measuring method therefor - Google Patents

Unit for measuring molten material surface level in vertical type furnace and measuring method therefor Download PDF

Info

Publication number
JP2010025464A
JP2010025464A JP2008188515A JP2008188515A JP2010025464A JP 2010025464 A JP2010025464 A JP 2010025464A JP 2008188515 A JP2008188515 A JP 2008188515A JP 2008188515 A JP2008188515 A JP 2008188515A JP 2010025464 A JP2010025464 A JP 2010025464A
Authority
JP
Japan
Prior art keywords
furnace
conductive refractory
electrodes
measuring
potential difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008188515A
Other languages
Japanese (ja)
Inventor
Tomohiko Ito
友彦 伊藤
Akio Nagamune
章生 長棟
Hiroshi Tanaka
宏 田中
Masaru Ishikawa
勝 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Nippon Chutetsukan KK
Original Assignee
JFE Steel Corp
Nippon Chutetsukan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Nippon Chutetsukan KK filed Critical JFE Steel Corp
Priority to JP2008188515A priority Critical patent/JP2010025464A/en
Publication of JP2010025464A publication Critical patent/JP2010025464A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a unit for measuring a molten material surface level in a vertical type furnace allowing highly accurate measuring of the surface level of a molten material in the furnace and a measuring method therefor. <P>SOLUTION: At least four electrodes 21-24 are set in the vertical direction at a side of a furnace bottom part of the vertical type furnace. The upper most electrode 24 and the lower most electrode 21 out of the electrodes supply current as current supplying electrodes, and the electrodes other than the current supplying electrodes measure the electric potential difference as electric potential difference detecting electrodes. The surface level of the molten material is measured based on the measured electric potential difference or an electric resistance value calculated from the electric potential difference. A conductive refractory 11 is used at a portion where the electrodes are set in the vertical type furnace. The conductive refractory 11 is set to be in contact with molten metal accumulated at a lower part of the furnace and molten slag on a face of the furnace inner side, and on faces other than the face on the furnace inner side, the conductive refractory 11 covered by being in contact with a material having lower electric conductivity than itself. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、竪型炉炉内溶融物レベル計測装置及びその計測方法に関し、特に、炉底部の側部を構成する耐火物の一部を導電性耐火物とした竪型炉の炉内溶融物レベルの計測に関する。   TECHNICAL FIELD The present invention relates to a vertical furnace melt level measuring device and a measuring method thereof, and more particularly to a vertical furnace melt in which a part of the refractory constituting the side portion of the furnace bottom is a conductive refractory. Regarding level measurement.

高炉やシャフト炉をはじめとする竪型炉では炉下部に溶融物が溜まり、炉下部に取り付けられた出銑口から間欠的又は連続的に溶融物を取り出している。キュポラ(シャフト炉)等の小型の竪型炉では、出銑口周辺にコークスなどが詰まり、溶融物レベルが上昇してしまうというトラブルが発生することがある。このため、操業中の炉内の溶融物レベルの監視が必要であるが、直接観察することはきわめて困難である。このようなことから、炉外から間接的に溶融物レベルを計測する方法が提案されている。   In vertical furnaces such as blast furnaces and shaft furnaces, a melt is accumulated in the lower part of the furnace, and the melt is taken out intermittently or continuously from a spout attached to the lower part of the furnace. In a small vertical furnace such as a cupola (shaft furnace), there may be a problem that coke or the like is clogged around the tap outlet and the melt level rises. For this reason, it is necessary to monitor the melt level in the furnace during operation, but it is very difficult to observe directly. For this reason, a method for measuring the melt level indirectly from outside the furnace has been proposed.

竪型炉の炉下部は導電性耐火物(例えばカーボンレンガ)によって構成されている場合が多いので、電気抵抗式の炉内溶融物レベル計の使用が可能となる。電気抵抗式溶融物レベル計は、炉下部の耐火物の炉外側表面に垂直方向に複数の電極を取り付けて4端子法によって炉下部の電気抵抗を測定し、溶融物レベルの変動に伴う電気抵抗値の変化から炉内溶融物レベルの増減を計測する。   Since the lower part of the vertical furnace is often made of a conductive refractory (for example, carbon brick), an electric resistance type in-furnace melt level meter can be used. The electric resistance type melt level meter is equipped with a plurality of electrodes in the vertical direction on the outer surface of the refractory in the lower part of the furnace, and measures the electric resistance of the lower part of the furnace by the four-terminal method. Measure the increase and decrease of the melt level in the furnace from the change in value.

例えば、特許文献1に開示された炉内溶融物レベル計測方法は、高炉側面に高さ方向に所定の間隔で複数の電極を設け、これらの電極のうち最上部及び最下部に設けた2本の電極を電流印加用電極として電流を印加し、電流印加用電極以外の電極を電圧検出用電極としてこれらの電極間の電位差を計測することによって、計測した電圧又は電気抵抗の変化から溶鉱炉内の溶融物レベルを把握しており、複数の電極のうち電圧検出用電極によって測定される電位差から算出される電気抵抗値によって炉内の溶融物のレベルを知ることが可能である。なお、これらの電極は炉下部を構成するカーボンレンガに直接接触させることで感度が向上する。   For example, in the in-furnace melt level measurement method disclosed in Patent Document 1, a plurality of electrodes are provided at predetermined intervals in the height direction on the side surface of the blast furnace, and two of these electrodes are provided at the uppermost part and the lowermost part. Current is applied as an electrode for current application, and a potential difference between these electrodes is measured using an electrode other than the current application electrode as a voltage detection electrode. The melt level is grasped, and the melt level in the furnace can be known from the electric resistance value calculated from the potential difference measured by the voltage detection electrode among the plurality of electrodes. In addition, a sensitivity improves these electrodes by making it contact directly with the carbon brick which comprises a furnace lower part.

特開2006−176849号公報JP 2006-176849 A

しかしながら、上記の特許文献1に開示された炉内溶融物レベル計測方法においても、導電性耐火物が炉体と電気的に絶縁されていない場合には、鉄皮などにより電気伝導率が低い材質のものが近接して存在することが多いため、印加電流が炉体へ回り込み、炉内の溶融物に電流を効率的に流すことが困難となって測定感度が低下するという課題があった。   However, even in the in-furnace melt level measurement method disclosed in Patent Document 1 described above, when the conductive refractory is not electrically insulated from the furnace body, a material having low electrical conductivity due to an iron skin or the like. Therefore, there is a problem that the applied current flows into the furnace body and it is difficult to efficiently pass the current through the melt in the furnace, resulting in a decrease in measurement sensitivity.

本発明は、前記課題を解決するためになされたものであり、炉内溶融物のレベルを高精度に計測することを可能にした竪型炉炉内溶融物レベル計測装置及び竪型炉炉内溶融物レベル計測方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and a vertical furnace melt level measuring apparatus and a vertical furnace interior capable of measuring the level of the melt in the furnace with high accuracy. An object is to provide a melt level measurement method.

本発明に係る竪型炉炉内溶融物レベル計測装置は、竪型炉の炉底部の側部に、垂直方向に少なくとも4本以上の電極を設置し、該電極のうち最上部と最下部を電流供給用電極として電流を供給し、該電流供給用電極以外の電極を電位差検出用電極として電位差を計測することによって、該計測した電位差又は該電位差から算出される電気抵抗の値に基づいて炉内の溶融物レベルを計測する炉内溶融物レベル計測装置であって、竪型炉の前記電極を設置する部位に導電性耐火物を用いて、該導電性耐火物を、炉内側の面においては炉下部に溜まる溶湯及び溶融スラグに接し、かつ、炉内側の面以外においては前記導電性耐火物の電気伝導率より低い材料に接して覆われるように設置したものである。   In the vertical furnace melt level measuring apparatus according to the present invention, at least four or more electrodes are installed in the vertical direction on the side of the bottom of the vertical furnace, and the uppermost part and the lowermost part of the electrodes are arranged. Based on the measured potential difference or the electric resistance value calculated from the potential difference by supplying a current as the current supply electrode and measuring the potential difference using an electrode other than the current supply electrode as a potential difference detection electrode An in-furnace melt level measuring device for measuring the melt level in the furnace, using the conductive refractory at the site where the electrode of the vertical furnace is installed, and the conductive refractory on the inner surface of the furnace Is installed so as to be in contact with the molten metal and molten slag accumulated in the lower part of the furnace and in contact with a material lower than the electric conductivity of the conductive refractory except for the surface inside the furnace.

本発明に係る竪型炉炉内溶融物レベル計測装置において、前記導電性耐火物の電気伝導率は、竪型炉内で溶融スラグ上面より上において積層されているコークス層の電気伝導率より大きく、かつ、溶融スラグ層のコークスを含めた溶融スラグの電気伝導率より小さい値である。   In the vertical furnace melt level measuring apparatus according to the present invention, the electrical conductivity of the conductive refractory is larger than the electrical conductivity of the coke layer laminated above the upper surface of the molten slag in the vertical furnace. And it is a value smaller than the electric conductivity of the molten slag including coke of the molten slag layer.

本発明に係る竪型炉炉内溶融物レベル計測装置は、前記導電性耐火物の温度を測定する温度測定器を設置し、該温度測定器の結果から前記導電性耐火物の電気抵抗値の温度変化を補正して溶融物レベルの値を算出する。   The vertical furnace melt level measuring device according to the present invention is provided with a temperature measuring device for measuring the temperature of the conductive refractory, and from the result of the temperature measuring device, the electric resistance value of the conductive refractory is calculated. The melt level is calculated by correcting the temperature change.

本発明に係る竪型炉炉内溶融物レベル計測方法は、竪型炉の炉底部の側部に、垂直方向に少なくとも4本以上の電極を設置し、該電極のうち最上部と最下部を電流供給用電極として電流を供給し、該電流供給用電極以外の電極を電位差検出用電極として電位差を計測することによって、該計測した電位差又は該電位差から算出される電気抵抗の値に基づいて炉内の溶融物レベルを計測する炉内溶融物レベル計測方法であって、竪型炉の前記電極を設置する部位には導電性耐火物を用いて、該導電性耐火物を、炉内側の面においては炉下部に溜まる溶湯及び溶融スラグに接し、かつ、炉内側の面以外においては前記導電性耐火物の電気伝導率より低い材料に接して覆われるように設置する。   In the method for measuring the melt level in the vertical furnace according to the present invention, at least four or more electrodes are installed in the vertical direction on the side of the bottom of the vertical furnace, and the uppermost part and the lowermost part of the electrodes are connected to each other. Based on the measured potential difference or the electric resistance value calculated from the potential difference by supplying a current as the current supply electrode and measuring the potential difference using an electrode other than the current supply electrode as a potential difference detection electrode A method for measuring an in-furnace melt level in a furnace, wherein a conductive refractory is used for a portion of the vertical furnace where the electrode is installed, and the conductive refractory is disposed on the inner surface of the furnace. Is installed so as to be in contact with the molten metal and the molten slag accumulated in the lower part of the furnace and in contact with a material lower than the electric conductivity of the conductive refractory except for the inner surface of the furnace.

本発明によれば、竪型炉の前記電極を設置する部位に導電性耐火物を用いて、該導電性耐火物を、炉内側の面においては炉下部に溜まる溶湯及び溶融スラグに接し、かつ、炉内側の面以外においては前記導電性耐火物の電気伝導率より低い材料に接して覆われるように設置したことにより、電極を設置する導電性耐火物の周囲に電気伝導率の低い材料(例えば電気伝導率の低い耐火物)を設置することにより、導電性耐火物に印加した電流は炉体への回りこみがなくなり、効率的に溶融物へ流すことが可能となり感度のよい測定を行うことが可能となっている。また、導電性耐火物の電気抵抗の温度による変化を補正することにより、さらに精度のよい測定が可能になる。   According to the present invention, a conductive refractory is used at a site where the electrode of the vertical furnace is installed, the conductive refractory is in contact with the molten metal and molten slag accumulated in the lower part of the furnace on the inner surface of the furnace, and The material other than the inner surface of the furnace is covered and covered with a material lower than the electrical conductivity of the conductive refractory, so that a material having a low electrical conductivity around the conductive refractory on which the electrode is installed ( (For example, a refractory with low electrical conductivity) is installed, so that the current applied to the conductive refractory does not sneak into the furnace body and can be efficiently flowed to the melt to perform highly sensitive measurement. It is possible. Further, by correcting a change in the electrical resistance of the conductive refractory due to the temperature, a more accurate measurement can be performed.

本発明の一実施形態を図を用いて説明する。本実施形態では、特に小型の竪型炉(キュポラなど)での溶融物レベル計測を想定して説明する。   An embodiment of the present invention will be described with reference to the drawings. In the present embodiment, description will be made assuming that the melt level is measured particularly in a small vertical furnace (such as a cupola).

図1は、本実施形態に係る炉内溶融物レベル計測装置の模式図であり、図2は図1の導電性耐火物を上側から見たときの説明図である。導電性耐火物11は、炉内側に露出しており操業時には炉内の溶融物12と直接接しており、さらに、導電性耐火物11の底面は炉床13と接している。また、導電性耐火物11の炉外側には4本の電極21〜24が垂直方向に設置されており、一番下と一番上に設置した電極21、24はケーブル25を介して直流電流源26と接続されており、導電性耐火物11に電流を印加することができる。また、電流印加用電極21、24間には2本の電圧検出用電極22、23が設置されており、2本の電圧検出用電極22、23はそれぞれケーブル27に接続されており、電流を印加することで導電性耐火物11上に発生する電位差を電位差検出手段28によって計測する。電位差検出手段28から測定された電位差が出力され、例えばPC29に取り込まれて記録される。炉内の溶融物レベルが変化すると印加された電流の電流分布が変化するので、電位差も変化する。このとき、溶湯に多くの電流が分布するため溶融物レベルが上昇すると電位差は小さくなる。なお、直流電流源26から電流印加用電極21、24に供給される電流は電流計30により計測されて、PC29に出力して記録される。また、導電性耐火物11の温度を測定するための温度計31が取り付けられており、温度計31の出力はPC29に出力され、導電性耐火物11の電気抵抗値の補正に用いられる。   FIG. 1 is a schematic diagram of the in-furnace melt level measuring device according to the present embodiment, and FIG. 2 is an explanatory diagram when the conductive refractory of FIG. 1 is viewed from above. The conductive refractory 11 is exposed inside the furnace and is in direct contact with the melt 12 in the furnace during operation. Further, the bottom surface of the conductive refractory 11 is in contact with the hearth 13. In addition, four electrodes 21 to 24 are installed in the vertical direction outside the furnace of the conductive refractory 11, and the electrodes 21 and 24 installed at the bottom and the top are connected to a direct current via a cable 25. Connected to the source 26, current can be applied to the conductive refractory 11. In addition, two voltage detection electrodes 22 and 23 are installed between the current application electrodes 21 and 24, and the two voltage detection electrodes 22 and 23 are connected to a cable 27, respectively. The potential difference generated on the conductive refractory 11 by application is measured by the potential difference detection means 28. The measured potential difference is output from the potential difference detecting means 28, and is taken in and recorded in the PC 29, for example. As the melt level in the furnace changes, the current distribution of the applied current changes, so the potential difference also changes. At this time, since a large amount of current is distributed in the molten metal, the potential difference decreases as the melt level increases. The current supplied from the direct current source 26 to the current application electrodes 21 and 24 is measured by an ammeter 30 and output to the PC 29 for recording. Further, a thermometer 31 for measuring the temperature of the conductive refractory 11 is attached, and the output of the thermometer 31 is output to the PC 29 and used for correcting the electric resistance value of the conductive refractory 11.

溶融物レベルが上昇すると、電圧検出用電極22、23間の電位差、又はその電位差から算出される電気抵抗は降下する。また、シャフト炉においては、出湯樋のレベルと炉内圧、各溶融物の密度からレベルを見積もることが可能なため、定常操業時にレベルと電圧の関係についてキャリブレーションを行うことが可能である。   When the melt level increases, the potential difference between the voltage detection electrodes 22 and 23 or the electrical resistance calculated from the potential difference decreases. Further, in the shaft furnace, since the level can be estimated from the level of the tap water, the pressure in the furnace, and the density of each melt, it is possible to calibrate the relationship between the level and the voltage during steady operation.

このとき、導電性耐火物11が炉体を構成する耐火物や材料に直接接していて、耐火物や材料が、導電性耐火物11の電気抵抗より小さい場合には、電流が炉体を構成する耐火物や材料に流れ込むことになり、その結果、炉内部の溶湯や溶融スラグに電流が流れなくなり、溶融物のレベル変化による電位差の変化は小さくなり、測定感度が低下すると考えられる。このため、本実施形態においては、導電性耐火物11の周囲、即ち、炉内側の溶融物と接触する面を除いて、導電性耐火物11の左右の側面、上面、底面及び背面が絶縁耐火物14で覆われている(換言すれば、炉底側部の絶縁耐火物14の中に、炉内側に面する部位が炉内に露出した状態で導電性耐火物11を挿入した状態となっている。)。これにより炉体を構成する耐火物や材料に電流が流入するのを抑制することができ、高感度な測定が実現可能になる。このとき、導電性耐火物11の周囲に設置する絶縁耐火物14の電気伝導率としては、電流流入を抑制するために導電性耐火物11の電気伝導率の1/100以下であることが望ましい。   At this time, when the conductive refractory 11 is in direct contact with the refractory or material constituting the furnace body, and the refractory or material is smaller than the electrical resistance of the conductive refractory 11, the current constitutes the furnace body. As a result, the current does not flow to the molten metal or molten slag inside the furnace, and the change in potential difference due to the level change of the molten material is reduced, so that the measurement sensitivity is lowered. For this reason, in this embodiment, the right and left side surfaces, the top surface, the bottom surface, and the back surface of the conductive refractory 11 are insulated and refractory except for the periphery of the conductive refractory 11, that is, the surface in contact with the melt inside the furnace. (In other words, the conductive refractory 11 is inserted into the insulated refractory 14 on the bottom side of the furnace with the portion facing the furnace inside exposed in the furnace.) ing.). Thereby, it can suppress that an electric current flows into the refractory material and material which comprise a furnace body, and can implement | achieve highly sensitive measurement. At this time, the electrical conductivity of the insulating refractory 14 installed around the conductive refractory 11 is preferably 1/100 or less of the electrical conductivity of the conductive refractory 11 in order to suppress current inflow. .

次に、導電性耐火物11の電気伝導率について説明する。
図3は、導電性耐火物11の電気伝導率と感度との関係を示した特性図である。図3の実線で示されるように、導電性耐火物11の電気伝導率が小さいほど炉内に電流が流れやすくなるので、感度(S/N)が良くなると考えられる。つまり、導電性耐火物11の電気伝導率の上限は、印加した電流が導電性耐火物11を経て、炉内の溶融スラグにまで流れるような値の上限と考えればよい。具体的には、導電性耐火物11の電気伝導率を溶融スラグの電気伝導率より低くすればよい。通常、溶融スラグの電気伝導率はおよそ103(1/Ωm)程度であることがわかっている。ところが、炉内の溶融スラグ中では電気伝導率の高いコークス(コークス一粒あたりの電気伝導率は約3×104(1/Ωm))が積みあがった状態になっている。よって、溶融スラグ層の見かけの電気伝導率は103(1/Ωm)よりも高くなっていると考えられ、溶融スラグの見かけの電気伝導率は104(1/Ωm)程度であると見積もられる。このため、導電性耐火物11の電気伝導率は溶融スラグの電気伝導率より低くしておかないと、電流が導電性耐火物(レンガ内部)11のみに流れてしまい、やはり感度が低下することとなってしまう。具体的には、104(1/Ωm)より小さくすればよい。
Next, the electrical conductivity of the conductive refractory 11 will be described.
FIG. 3 is a characteristic diagram showing the relationship between the electrical conductivity and sensitivity of the conductive refractory 11. As indicated by the solid line in FIG. 3, the smaller the electrical conductivity of the conductive refractory 11, the easier the current flows in the furnace, and thus the sensitivity (S / N) is considered to be improved. That is, the upper limit of the electrical conductivity of the conductive refractory 11 may be considered as the upper limit of a value at which the applied current flows through the conductive refractory 11 to the molten slag in the furnace. Specifically, the electrical conductivity of the conductive refractory 11 may be lower than the electrical conductivity of the molten slag. Usually, it is known that the electric conductivity of molten slag is about 10 3 (1 / Ωm). However, in the molten slag in the furnace, coke with high electrical conductivity (the electrical conductivity per coke grain is about 3 × 10 4 (1 / Ωm)) is piled up. Therefore, it is considered that the apparent electrical conductivity of the molten slag layer is higher than 10 3 (1 / Ωm), and the apparent electrical conductivity of the molten slag is estimated to be about 10 4 (1 / Ωm). It is. For this reason, unless the electrical conductivity of the conductive refractory 11 is lower than the electrical conductivity of the molten slag, the current flows only to the conductive refractory (inside the brick) 11 and the sensitivity is also lowered. End up. Specifically, it may be smaller than 10 4 (1 / Ωm).

一方、導電性耐火物11の電気伝導率の下限については、以下のように考える。上述のように、導電性耐火物11の電気伝導率の低下に伴って、感度が向上していくものの、炉内に積層されたコークスのうち、炉内の溶融物(溶鋼や溶融スラグなど)の上面より上側にある部分が、導電性耐火物11と直接接触して、コークスに直接的に電流が流れるようになる。この場合、積層コークスの上部に電流が流れると、溶融物レベルの測定誤差になるので、炉内溶融物の上面より上側にある積層コークスに電流が流れないように、導電性耐火物11の電気伝導率を、積層コークスの見かけの電気伝導率より大きくすればよい。コークス一粒あたりの電気伝導率は約3×104(1/Ωm)であるが、積層して互いに接触している場合には、粒子間に接触抵抗が生じる。このため、コークスが積層した場合の見かけの電気伝導率は、一粒あたりの電気伝導率より小さくなり、102(1/Ωm)程度となると考えられる。導電性耐火物11の電気伝導率が102(1/Ωm)以下となった場合には、コークスに電流が流れることとなり、コークスと導電性耐火物11の接触状態によって、計測値が異なると考えられる。よって、導電性耐火物11の電気伝導率は102(1/Ωm)より大きくすることが必要である。 On the other hand, the lower limit of the electrical conductivity of the conductive refractory 11 is considered as follows. As described above, although the sensitivity is improved as the electrical conductivity of the conductive refractory 11 is lowered, among the cokes stacked in the furnace, the melt in the furnace (molten steel, molten slag, etc.) The portion above the upper surface of the metal is in direct contact with the conductive refractory 11 so that a current flows directly through the coke. In this case, if an electric current flows in the upper part of the laminated coke, a measurement error of the melt level is caused. The conductivity may be larger than the apparent electrical conductivity of the laminated coke. The electric conductivity per coke grain is about 3 × 10 4 (1 / Ωm), but when it is laminated and in contact with each other, a contact resistance is generated between the particles. For this reason, it is considered that the apparent electrical conductivity when coke is laminated is smaller than the electrical conductivity per grain and is about 10 2 (1 / Ωm). When the electrical conductivity of the conductive refractory 11 becomes 10 2 (1 / Ωm) or less, a current flows through the coke, and the measured value varies depending on the contact state between the coke and the conductive refractory 11. Conceivable. Therefore, the electrical conductivity of the conductive refractory 11 needs to be larger than 10 2 (1 / Ωm).

ところで、導電性耐火物11の電気抵抗は一般的に温度依存性を持つ。操業を開始してから溶融物が溜まりだすと、導電性耐火物11の温度も上昇する。また、操業終了時に炉内の溶融物が排出されると、導電性耐火物11の温度は低下する。このような導電性耐火物11の温度変化により電気抵抗も変化すると考えられるので、より感度よく計測を行うために、導電性耐火物11の温度を温度計31により測定しながら溶融物レベル計測装置の計測値を補正する。次の(1)式で示したように、操業開始時の温度T0に対する電気抵抗値ρ0(T0,0)を基準として、操業中のある時間tでの温度Tに対する電気抵抗率ρ(T,t)の比を計測値Vdataに掛けて補正する。   By the way, the electrical resistance of the conductive refractory 11 generally has temperature dependency. When the melt starts to accumulate after the operation is started, the temperature of the conductive refractory 11 also rises. Further, when the melt in the furnace is discharged at the end of the operation, the temperature of the conductive refractory 11 decreases. Since it is considered that the electrical resistance also changes due to such a temperature change of the conductive refractory 11, in order to measure with higher sensitivity, the melt level measuring device while measuring the temperature of the conductive refractory 11 with the thermometer 31. Correct the measured value. As shown in the following equation (1), the electric resistivity ρ (T, T, T) at a certain time t during operation is based on the electric resistance value ρ0 (T0,0) with respect to the temperature T0 at the start of operation. The ratio t) is multiplied by the measured value Vdata to correct it.

Figure 2010025464
Figure 2010025464

このとき、導電性耐火物11は熱伝導率が高いものを選択することにより、炉内の温度変化が短時間に導電性耐火物11に伝わり温度分布が定常的となる。一方、導電性耐火物11の周囲に設置される絶縁耐火物は導電性耐火物11の熱伝導率よりも低くすると、炉外雰囲気温度の変化による導電性耐火物温度の変動を大幅に抑制することが可能となるため、導電性耐火物11の温度分布は変化することがない。このような構成にすることで安定した計測が可能となる。   At this time, by selecting the conductive refractory 11 having a high thermal conductivity, the temperature change in the furnace is transmitted to the conductive refractory 11 in a short time, and the temperature distribution becomes steady. On the other hand, if the insulating refractory installed around the conductive refractory 11 is lower than the thermal conductivity of the conductive refractory 11, fluctuations in the conductive refractory temperature due to changes in the temperature outside the furnace are greatly suppressed. Therefore, the temperature distribution of the conductive refractory 11 does not change. With such a configuration, stable measurement is possible.

また、導電性耐火物11は一体である方が安定した計測が行える。分割しブロック化した導電性耐火物11を高さ方向に積み上げた場合は、導電性耐火物ブロック同士の接触状態が熱により変化し電流の分布が不安定になると考えられるからである。   In addition, when the conductive refractory 11 is integrated, stable measurement can be performed. This is because, when the divided and blocked conductive refractories 11 are stacked in the height direction, it is considered that the contact state between the conductive refractory blocks changes due to heat and the current distribution becomes unstable.

なお、上記の説明においては、電圧検出用電極22、23の2本を設置した例について説明したが、その本数は3本以上の任意の本数であってもよい。
また、導電耐火物11に供給する電流についても、直流に限定されるものではなく、交流であってもよい。
In the above description, an example in which two voltage detection electrodes 22 and 23 are provided has been described, but the number thereof may be any number of three or more.
Further, the current supplied to the conductive refractory 11 is not limited to direct current, and may be alternating current.

本発明の一実施例を説明する。本実施例は鋳鉄を製造するためのシャフト炉における溶融物レベル計測装置の例である。シャフト炉炉底部の側面には、炉補修用のマンホールが設置してあり、操業時は耐火物で閉塞する。この耐火物の一部を導電性耐火物とし、その周囲に絶縁耐火物を設置した。導電性耐火物の炉内側は直接溶融物と接するようにする。本実施例に用いた導電性耐火物は電気伝導率が2.9×104(1/Ωm)であった。 An embodiment of the present invention will be described. A present Example is an example of the melt level measuring apparatus in the shaft furnace for manufacturing cast iron. A manhole for furnace repair is installed on the side of the shaft furnace bottom, and it is closed with refractory during operation. A part of this refractory was used as a conductive refractory, and an insulating refractory was installed around it. The inside of the furnace of conductive refractory should be in direct contact with the melt. The conductive refractory used in this example had an electric conductivity of 2.9 × 10 4 (1 / Ωm).

図4は、導電性耐火物の周囲に10-8(1/Ωm)の絶縁レンガを設置した場合のデータであり、シャフト炉の操業において、溶融物レベル計測装置により得られた、溶融物レベルの時間推移を示している。操業開始とともに溶融物レベルは増加し、溶融スラグが樋から流出を開始するとレベルは一定となる。また、操業が終了すると、炉内溶融物を排出するために溶融物を排出する作業を行うと、溶融レベルは短時間のうちに低下する。図4の特性から、以上のような一連の操業における溶融物レベルの変化を十分な感度で捉えることが可能になっていることが分かる。なお、溶融物レベルが上昇すると、溶融物レベル計測装置の出力は低下するので、図4の縦軸は正負逆転して表示してある。また、後述の溶融レベルの推移を示すデータについても同様な表示をしている。 Figure 4 shows the data when 10 -8 (1 / Ωm) insulating brick is installed around the conductive refractory. The melt level obtained by the melt level measuring device in the operation of the shaft furnace The time transition of is shown. The melt level increases with the start of operation and becomes constant when the molten slag begins to flow out of the dredging. In addition, when the operation is completed, when the operation of discharging the melt is performed in order to discharge the melt in the furnace, the melting level decreases in a short time. From the characteristics of FIG. 4, it can be seen that the change in the melt level in the series of operations as described above can be captured with sufficient sensitivity. When the melt level rises, the output of the melt level measuring device decreases, so the vertical axis in FIG. Moreover, the same display is performed also about the data which shows transition of the melting level mentioned later.

一方、図5は、絶縁耐火物14を設置しないで、導電性耐火物11を炉体に直接接するように設置した場合のレベル計測結果である。本来、計測されるべきレベル変化の感度は非常に小さくなってしまい、レベル変化に対する十分な感度が得られないことが分かる。
さらに、図6には導電性耐火物11の温度推移を示した。また、この導電性耐火物11の電気抵抗の温度依存性を図7に示した。図4のデータを絶縁レンガの温度によって補正すると、図8のようになる。操業開始直前と、操業終了直後は炉内に溶融物がないため、溶融物レベル計測装置の出力(測定した電位差または電気抵抗)は同じ値であるべきであるが、操業開始時と操業終了時では炉内の温度が異なるため、図4のデータでは出力が異なっていたが、温度補正を行った結果、操業開始時の出力値と操業終了時の出力値は一致した。なお、導電性耐火物の温度は熱電対を直接導電性耐火物に取り付けて測定を行い、逐次補正を行った。
On the other hand, FIG. 5 shows a level measurement result when the conductive refractory 11 is installed in direct contact with the furnace body without installing the insulating refractory 14. Originally, the sensitivity of the level change to be measured becomes very small, and it can be seen that sufficient sensitivity to the level change cannot be obtained.
Furthermore, the temperature transition of the conductive refractory 11 is shown in FIG. Moreover, the temperature dependence of the electrical resistance of this conductive refractory 11 is shown in FIG. When the data of FIG. 4 is corrected by the temperature of the insulating brick, it is as shown in FIG. Since there is no melt in the furnace immediately before the start of operation and immediately after the end of operation, the output of the melt level measuring device (measured potential difference or electrical resistance) should be the same value, but at the start of operation and at the end of operation. However, since the temperature in the furnace is different, the output in the data in FIG. 4 is different, but as a result of the temperature correction, the output value at the start of operation and the output value at the end of operation are the same. In addition, the temperature of the conductive refractory was measured by attaching a thermocouple directly to the conductive refractory, and sequentially corrected.

本実施例では導電性耐火物の温度測定に熱電対を用いたが、この熱電対を電圧検出用電極22と電圧検出用電極23との間に設置する。熱電対を設置する位置は、定常操業で溶融物が達しない高さとすることで、導電性耐火物11の電気抵抗変化を直接測定することが可能であり、それによって、導電性耐火物11の電気抵抗の温度変化を補正することができる。
また、本実施例においては炉外側に熱伝導率の低い絶縁体耐火物を設置することで、外気と遮断した。このような構成で測定を行うと導電性耐火物の温度分布を一定に保つことが容易となり、温度補正も容易に行える。
In this embodiment, a thermocouple is used to measure the temperature of the conductive refractory, but this thermocouple is installed between the voltage detection electrode 22 and the voltage detection electrode 23. The position where the thermocouple is installed is a height at which the melt does not reach during steady operation, so that the change in electrical resistance of the conductive refractory 11 can be directly measured. The temperature change of the electrical resistance can be corrected.
Further, in this example, an insulating refractory having a low thermal conductivity was installed outside the furnace to cut off from the outside air. When the measurement is performed in such a configuration, it becomes easy to keep the temperature distribution of the conductive refractory constant, and temperature correction can be easily performed.

本発明の一実施形態に係る竪型炉炉内溶融レベル計測装置の模式図である。1 is a schematic diagram of a vertical furnace melting level measuring apparatus according to an embodiment of the present invention. 炉内底部の側部に設置された導電性耐火物及びその周囲の絶縁耐火物の構成を示した説明図である。It is explanatory drawing which showed the structure of the conductive refractory installed in the side part of the bottom part in a furnace, and the surrounding insulation refractory. 導電性耐火物と感度(S/N)との関係を示した特性図である。It is the characteristic view which showed the relationship between a conductive refractory and a sensitivity (S / N). 本発明の実施例において、溶融物レベル計測装置の出力の時間推移を示すグラフである。In the Example of this invention, it is a graph which shows the time transition of the output of a melt level measuring apparatus. 比較例(本発明を実施しない場合)として示した、溶融物レベル計測装置の出力の時間推移を示すグラフである。It is a graph which shows the time transition of the output of the melt level measuring device shown as a comparative example (when not implementing this invention). 本発明の実施例に用いた導電性耐火物の操業中の温度変化を示すグラフである。It is a graph which shows the temperature change during operation of the conductive refractory used for the example of the present invention. 本発明の実施例に用いた導電性耐火物の温度と電気抵抗の関係を示すグラフである。It is a graph which shows the relationship between the temperature of an electrically conductive refractory used for the Example of this invention, and an electrical resistance. 図4の温度補正を行った結果を示すグラフである。It is a graph which shows the result of having performed the temperature correction of FIG.

符号の説明Explanation of symbols

11 導電性耐火物、12 溶融物、13 炉床、14 絶縁耐火物、21、24 電流印加用電極、22、23 電圧検出用電極、25、27 ケーブル、26 直流電流源、28 電位差検出手段、29 PC、30 電流計 31 温度計。   DESCRIPTION OF SYMBOLS 11 Conductive refractory, 12 Melt, 13 Hearth, 14 Insulation refractory, 21, 24 Current application electrode, 22, 23 Voltage detection electrode, 25, 27 Cable, 26 DC current source, 28 Potential difference detection means, 29 PC, 30 Ammeter 31 Thermometer.

Claims (4)

竪型炉の炉底部の側部に、垂直方向に少なくとも4本以上の電極を設置し、該電極のうち最上部と最下部を電流供給用電極として電流を供給し、該電流供給用電極以外の電極を電位差検出用電極として電位差を計測することによって、該計測した電位差又は該電位差から算出される電気抵抗の値に基づいて炉内の溶融物レベルを計測する炉内溶融物レベル計測装置であって、
竪型炉の前記電極を設置する部位に導電性耐火物を用いて、
該導電性耐火物を、炉内側の面においては炉下部に溜まる溶湯及び溶融スラグに接し、かつ、炉内側の面以外においては前記導電性耐火物の電気伝導率より低い材料に接して覆われるように設置したことを特徴とする竪型炉炉内溶融物レベル計測装置。
At least four or more electrodes are installed in the vertical direction on the side of the bottom of the vertical furnace, and current is supplied using the uppermost and lowermost electrodes as current supply electrodes. Other than the current supply electrodes An in-furnace melt level measuring device for measuring the melt level in the furnace based on the measured potential difference or the electric resistance value calculated from the potential difference by measuring the potential difference using the electrode of There,
Using a conductive refractory at the site where the electrode of the vertical furnace is installed,
The conductive refractory is covered on the inner surface of the furnace in contact with the molten metal and molten slag accumulated in the lower part of the furnace, and on the surface other than the inner surface of the furnace, in contact with a material lower than the electric conductivity of the conductive refractory A vertical furnace melt level measuring device, characterized in that it is installed as described above.
前記導電性耐火物の電気伝導率は、竪型炉内で溶融スラグ上面より上において積層されているコークス層の電気伝導率より大きく、かつ、溶融スラグ層のコークスを含めた溶融スラグの電気伝導率より小さい値であることを特徴とする請求項1記載の竪型炉炉内溶融物レベル計測装置。   The electric conductivity of the conductive refractory is larger than the electric conductivity of the coke layer laminated above the upper surface of the molten slag in the vertical furnace, and the electric conductivity of the molten slag including the coke of the molten slag layer. The apparatus for measuring a melt level in a vertical furnace according to claim 1, characterized in that the value is smaller than the rate. 前記導電性耐火物の温度を測定する温度測定器を設置し、該温度測定器の結果から前記導電性耐火物の電気抵抗値の温度変化を補正して溶融物レベルの値を算出することを特徴とする請求項1又は請求項2に記載の竪型炉炉内溶融物レベル計測装置。   Installing a temperature measuring device for measuring the temperature of the conductive refractory, and calculating a melt level value by correcting a temperature change of the electric resistance value of the conductive refractory from the result of the temperature measuring device; The vertical furnace melt level measuring device according to claim 1 or 2, characterized in that 竪型炉の炉底部の側部に、垂直方向に少なくとも4本以上の電極を設置し、該電極のうち最上部と最下部を電流供給用電極として電流を供給し、該電流供給用電極以外の電極を電位差検出用電極として電位差を計測することによって、該計測した電位差又は該電位差から算出される電気抵抗の値に基づいて炉内の溶融物レベルを計測する炉内溶融物レベル計測方法であって、
竪型炉の前記電極を設置する部位には導電性耐火物を用いて、
該導電性耐火物を、炉内側の面においては炉下部に溜まる溶湯及び溶融スラグに接し、かつ、炉内側の面以外においては前記導電性耐火物の電気伝導率より低い材料に接して覆われるように設置したことを特徴とする竪型炉炉内溶融物レベル計測方法。
At least four or more electrodes are installed in the vertical direction on the side of the bottom of the vertical furnace, and current is supplied using the uppermost and lowermost electrodes as current supply electrodes. Other than the current supply electrodes In-furnace melt level measurement method for measuring the melt level in the furnace based on the measured potential difference or the value of electric resistance calculated from the potential difference There,
Using a conductive refractory for the part of the vertical furnace where the electrodes are installed,
The conductive refractory is covered on the inner surface of the furnace in contact with the molten metal and molten slag accumulated in the lower part of the furnace, and on the surface other than the inner surface of the furnace, in contact with a material lower than the electric conductivity of the conductive refractory A method for measuring the melt level in a vertical furnace characterized by being installed as described above.
JP2008188515A 2008-07-22 2008-07-22 Unit for measuring molten material surface level in vertical type furnace and measuring method therefor Withdrawn JP2010025464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188515A JP2010025464A (en) 2008-07-22 2008-07-22 Unit for measuring molten material surface level in vertical type furnace and measuring method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188515A JP2010025464A (en) 2008-07-22 2008-07-22 Unit for measuring molten material surface level in vertical type furnace and measuring method therefor

Publications (1)

Publication Number Publication Date
JP2010025464A true JP2010025464A (en) 2010-02-04

Family

ID=41731477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188515A Withdrawn JP2010025464A (en) 2008-07-22 2008-07-22 Unit for measuring molten material surface level in vertical type furnace and measuring method therefor

Country Status (1)

Country Link
JP (1) JP2010025464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181164A (en) * 2011-03-03 2012-09-20 Kobe Steel Ltd Method for evaluating residual thickness of refractory
JP2015108535A (en) * 2013-12-04 2015-06-11 株式会社東芝 Electrode type liquid level detector and electrode type liquid level detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181164A (en) * 2011-03-03 2012-09-20 Kobe Steel Ltd Method for evaluating residual thickness of refractory
JP2015108535A (en) * 2013-12-04 2015-06-11 株式会社東芝 Electrode type liquid level detector and electrode type liquid level detection method
US10094698B2 (en) 2013-12-04 2018-10-09 Kabushiki Kaisha Toshiba Electrode-type liquid level detection device and electrode-type liquid level detection method

Similar Documents

Publication Publication Date Title
US10520254B2 (en) Electric induction furnace lining wear detection system
US9599401B2 (en) Method and a control system for controlling a melting and refining process
JP4321824B2 (en) Method and apparatus for monitoring the bottom of melting furnace
JP2010025464A (en) Unit for measuring molten material surface level in vertical type furnace and measuring method therefor
JP5408417B2 (en) Operation method of electric furnace for ferronickel smelting
JP4056534B2 (en) Furnace bottom temperature measuring method and apparatus, and melting furnace bottom monitoring method and apparatus
JP6380990B2 (en) Electric furnace with adjusted slag solidification layer thickness and metal smelting method using the same
JP2008266669A (en) Method and instrument for measuring molten material level in shaft-furnace
JP4707635B2 (en) Method and apparatus for monitoring the bottom of melting furnace
JP4760013B2 (en) Method and apparatus for measuring melt level in blast furnace
US20200191486A1 (en) Electric Induction Furnace With Lining Wear Detection System
JP2005226105A (en) Method and instrument for measuring level of molten material in blast furnace
TWI468521B (en) Method for determinig state of a blast furnace bed
JP2000192124A (en) Method for measuring molten material level in furnace hearth part of blast furnace and its instrument
JP4313701B2 (en) Method for leveling the level in the blast furnace
JP4181075B2 (en) Early detection method for blast furnace hearth temperature level
JP2003155507A (en) Method for estimating pig iron slag height in blast furnace and its estimating instrument
JP5007094B2 (en) Control method of plasma melting furnace
JP5958938B2 (en) Estimation device and estimation method for clogging of thrown pipe for raw material input in a three-phase AC electrode type circular electric furnace
JP3990560B2 (en) Blast furnace bottom potential difference measuring apparatus and soot level evaluation method in blast furnace
JP2006170692A (en) Thermometer for measuring temperature in chlorination furnace
JPH09209011A (en) Method for restraining erosion of sidewall brick of furnace bottom of blast furnace
JP2004144443A (en) Operation controller and its method for dc electric type melting furnace
JP4232406B2 (en) Melting leak detection method for melting holding furnace and melting holding furnace
JP2003201508A (en) Estimation method and control method of void ratio of blast furnace hearth

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111004