JP2008241218A - Rotary kiln type high temperature treating device - Google Patents

Rotary kiln type high temperature treating device Download PDF

Info

Publication number
JP2008241218A
JP2008241218A JP2007086291A JP2007086291A JP2008241218A JP 2008241218 A JP2008241218 A JP 2008241218A JP 2007086291 A JP2007086291 A JP 2007086291A JP 2007086291 A JP2007086291 A JP 2007086291A JP 2008241218 A JP2008241218 A JP 2008241218A
Authority
JP
Japan
Prior art keywords
temperature
furnace body
rotary kiln
type high
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007086291A
Other languages
Japanese (ja)
Other versions
JP4998045B2 (en
Inventor
Ko Hatakeyama
耕 畠山
Nozomi Hasegawa
望 長谷川
Akira Kaneda
章 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007086291A priority Critical patent/JP4998045B2/en
Publication of JP2008241218A publication Critical patent/JP2008241218A/en
Application granted granted Critical
Publication of JP4998045B2 publication Critical patent/JP4998045B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary kiln type high temperature treating device suppressing the damage and degradation of a refractory layer to extend a service life of a furnace body by accurately measuring the internal temperature of the furnace body to carry out operation. <P>SOLUTION: The rotary kiln type high temperature treating device has the furnace body 2 rotated around an axis and charged with a treated material inside; a combustion burner for burning the treated material inside the furnace body 2; a temperature measuring means 4 for measuring the internal temperature of the furnace body 2; and a control means 5 adjusting at least one of the charged quantity of the treated material or the burning state of the combustion burner based on the measured value of the temperature measuring means 4 to control the internal temperature of the furnace body 2. The temperature measuring means 4 has a plurality of temperature sensors 12A, 12B, 12C, 12D, and the plurality of temperature sensors 12A, 12B, 12C, 12D are disposed at circumferential spaces in the same position in the axial direction of the furnace body 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば可燃物付スクラップ等の被処理物を炉本体の内部に投入し、炉本体内部で被処理物を燃焼、溶融させて処理するロータリーキルン式高温処理装置に関する。   The present invention relates to a rotary kiln-type high-temperature processing apparatus in which an object to be processed such as scrap with combustible material is put into a furnace body, and the object to be processed is burned and melted inside the furnace body.

前述のロータリーキルン式高温処理装置による被処理物の高温処理は、産業廃棄物等を処理する有効な方法として広く提供されている。例えば自動車のシュレッダーダストや廃家電品をはじめとする金属を含有する産業廃棄物を高温処理する場合には、炉本体の内部に投入された被処理物のうち、例えばウレタンなどの可燃物をガス化し、金属を含む不燃物を溶融して溶融スラグとする。ここで形成された溶融スラグは、溶融炉の出口から排出され、冷却器で水冷されるとともに破砕されて砕塊が生成される。そして、生成された砕塊の中から、鉄(Fe)をはじめとして銅(Cu)、金(Au)、銀(Ag)などの有用または高価な金属を回収する。一方、生成されたガスは、二次燃焼室で高温に燃焼され、悪臭物質などが分解されて二次燃焼室から排出される。その後、熱交換工程、クエンチ工程、煤塵・有害ガス除去工程などを経て大気中に排出される。   High temperature processing of an object to be processed by the above rotary kiln type high temperature processing apparatus is widely provided as an effective method for processing industrial waste and the like. For example, when industrial waste containing metals such as automobile shredder dust and waste home appliances is treated at high temperature, combustibles such as urethane are gasified from the materials to be treated that are put into the furnace body. And incombustible material containing metal is melted to form molten slag. The molten slag formed here is discharged from the outlet of the melting furnace, cooled with water by a cooler and crushed to produce a crushed lump. And useful or expensive metals, such as copper (Cu), gold | metal | money (Au), silver (Ag), etc. are collect | recovered from the produced | generated crushed lump. On the other hand, the generated gas is burned to a high temperature in the secondary combustion chamber, and malodorous substances are decomposed and discharged from the secondary combustion chamber. Then, it is discharged into the atmosphere through a heat exchange process, a quench process, a dust / toxic gas removal process, and the like.

このようなロータリーキルン式高温処理装置においては、燃焼バーナーによる燃焼により炉本体内部が例えば1200℃程度の高温状態となるため、炉本体は、高温に耐え得る耐火物層とこの耐火物層を支持する炉体シェルとの2重構造をなしている。この耐火物層は、前述のように高温雰囲気下におかれることになるため、耐火物層の損傷や劣化を抑制することにより、この炉本体の寿命延長を図ることが可能となる。   In such a rotary kiln-type high-temperature treatment apparatus, the furnace main body is brought into a high temperature state of, for example, about 1200 ° C. due to combustion by the combustion burner, and therefore the furnace main body supports the refractory layer that can withstand high temperatures and the refractory layer. It has a double structure with the furnace shell. Since the refractory layer is placed in a high-temperature atmosphere as described above, it is possible to extend the life of the furnace body by suppressing damage and deterioration of the refractory layer.

耐火物層は、温度変化による体積変化によって亀裂が生じることがあるため、その温度を安定に保持することが耐火物層の損傷の抑制に効果的である。そこで、従来、炉本体の内部温度を推定又は測定して前記内部温度を安定させるように操業が行われている。例えば、特許文献1にはキルン出口温度から炉本体の内部温度を推定して操業する方法が、特許文献2,3には放射温度計によって炉本体の内部温度を測定する方法が、特許文献4には熱電対や測温抵抗体等によって炉本体の内部温度を測定する方法が提案されている。
特開2004−20105号公報 特開平08−29260号公報 特開平10−332124号公報 特開2004−11990号公報
Since the refractory layer may crack due to a volume change due to a temperature change, keeping the temperature stable is effective in suppressing damage to the refractory layer. Therefore, conventionally, operations have been performed so that the internal temperature of the furnace body is estimated or measured to stabilize the internal temperature. For example, Patent Document 1 discloses a method of operating by estimating the internal temperature of the furnace body from the kiln outlet temperature, and Patent Documents 2 and 3 include a method of measuring the internal temperature of the furnace body using a radiation thermometer. Has proposed a method of measuring the internal temperature of the furnace body using a thermocouple, a resistance temperature detector, or the like.
JP 2004-20105 A Japanese Patent Application Laid-Open No. 08-29260 Japanese Patent Laid-Open No. 10-332124 JP 2004-111990 A

ところで、特許文献1に記載された方法では、炉本体の内部温度を直接的に測定しているものではないので、温度制御を精度よく行うことができない。また、特許文献2,3に記載された方法では、放射温度計を用いているため、炉本体内部がダスト等により曇った場合には正確な温度測定が困難となる。   By the way, since the method described in Patent Document 1 does not directly measure the internal temperature of the furnace body, temperature control cannot be performed with high accuracy. In addition, in the methods described in Patent Documents 2 and 3, since a radiation thermometer is used, accurate temperature measurement becomes difficult when the inside of the furnace body is clouded with dust or the like.

特許文献4に記載されている方法では、熱電対や測温抵抗体等を炉本体内部に配設して直接測定しているために正確な温度測定を行うことが可能となる。ところが、熱電対や測温抵抗体等は高温状況下におかれるため、炉本体の内部で劣化して測定ができなくなってしまう。熱電対や測温抵抗体等を交換するためには、ロータリーキルンの操業を一旦中止する必要があるが、この交換作業によって、操業効率が低下するとともに、耐火物層が温度変化によって劣化してしまう。
また、熱電対や測温抵抗体が配置された箇所に金属等が付着する、いわゆる「鋳付き」が発生した場合には、その部分のみ温度が低下したり、感度が鈍くなったりして、炉本体の内部温度として異常値が測定されてしまい、適正な操業ができなくなってしまうおそれがあった。
In the method described in Patent Document 4, since a thermocouple, a resistance temperature detector, and the like are arranged inside the furnace body and directly measured, accurate temperature measurement can be performed. However, since thermocouples, resistance temperature detectors, and the like are placed under a high temperature condition, they are deteriorated inside the furnace body and cannot be measured. In order to replace thermocouples, resistance thermometers, etc., it is necessary to temporarily stop the operation of the rotary kiln, but this replacement operation reduces the operation efficiency and deteriorates the refractory layer due to temperature changes. .
In addition, when so-called `` casting '' occurs where metal or the like adheres to the place where the thermocouple or resistance temperature detector is placed, the temperature drops only at that part or the sensitivity becomes dull, An abnormal value was measured as the internal temperature of the furnace body, and there was a risk that proper operation could not be performed.

本発明は、前述した状況に鑑みてなされたものであって、炉本体の内部温度を正確に測定してこの測定値に基いて操業することにより、耐火物層の損傷や劣化を抑制して炉本体の寿命延長を図ることが可能なロータリーキルン式高温処理装置を提供することを目的とする。   The present invention has been made in view of the above-described situation, and by measuring the internal temperature of the furnace body accurately and operating based on this measurement value, it is possible to suppress damage and deterioration of the refractory layer. An object of the present invention is to provide a rotary kiln-type high-temperature treatment apparatus capable of extending the life of a furnace body.

この課題を解決するために、本発明のロータリーキルン式高温処理装置は、軸線回りに回転され、内部に被処理物が投入される炉本体と、この炉本体の内部で被処理物を燃焼させる燃焼バーナーと、前記炉本体の内部温度を測定する温度測定手段と、この温度測定手段の測定値に基いて前記被処理物の投入量又は前記燃焼バーナーの燃焼状態の少なくとも一方を調整して炉本体の内部温度を制御する制御手段と、を有し、前記温度測定手段は、複数の温度センサを有しており、これら複数の温度センサが、前記炉本体の軸線方向の同一位置において周方向に間隔をあけて配設されていることを特徴としている。   In order to solve this problem, a rotary kiln-type high-temperature treatment apparatus according to the present invention includes a furnace body that is rotated around an axis and into which the workpiece is placed, and a combustion that burns the workpiece within the furnace body. Burner, temperature measuring means for measuring the internal temperature of the furnace main body, and furnace body by adjusting at least one of the input amount of the workpiece or the combustion state of the combustion burner based on the measured value of the temperature measuring means Control means for controlling the internal temperature of the furnace, and the temperature measuring means has a plurality of temperature sensors, and the plurality of temperature sensors are circumferentially arranged at the same position in the axial direction of the furnace body. It is characterized by being arranged at intervals.

この構成のロータリーキルン式高温処理装置においては、複数の温度センサが炉本体の軸線方向の同一位置において周方向に間隔をあけて配置されているので、これら複数の温度センサが軸線方向の同一位置の温度を測定することになる。ここで炉本体は軸線回りに回転されるので、これら複数の温度センサはそれぞれ軸線を中心として回転されることになり、炉本体の内部温度をそれぞれの温度センサで同様に測定することができる。よって、一の温度センサが故障しても温度センサの修理のために操業を停止することなく他の温度センサによって温度を測定して温度制御を行うことができ、耐火物層の損傷や劣化を抑制して炉本体の寿命延長を図ることができる。
また、これら複数の温度センサによって炉本体内部の周方向での温度分布を測定することが可能なため、一部に「鋳付き」が発生して一の温度センサによって異常値が測定された場合でも、他の温度センサの測定値に基いて操業することができる。
In the rotary kiln-type high-temperature treatment apparatus having this configuration, since the plurality of temperature sensors are arranged at intervals in the circumferential direction at the same position in the axial direction of the furnace body, the plurality of temperature sensors are located at the same position in the axial direction. The temperature will be measured. Here, since the furnace body is rotated around the axis, each of the plurality of temperature sensors is rotated around the axis, and the internal temperature of the furnace body can be similarly measured by each temperature sensor. Therefore, even if one temperature sensor fails, the temperature can be controlled by measuring the temperature with another temperature sensor without stopping the operation for repairing the temperature sensor, and the refractory layer can be damaged or deteriorated. It is possible to extend the life of the furnace main body.
In addition, since it is possible to measure the temperature distribution in the circumferential direction inside the furnace body with these multiple temperature sensors, when "casting" occurs in part and abnormal values are measured by one temperature sensor However, it can operate based on the measured values of other temperature sensors.

ここで、複数の前記温度センサを、その感温部が前記軸線を中心とした同一円周上に位置するように、それぞれ配置してもよい。
この場合、複数の温度センサの感温部の軸線を中心とした回転軌跡が一致することになり、複数の温度センサによって炉本体内部の温度を精度よく測定することができる。
Here, the plurality of temperature sensors may be arranged so that the temperature sensing parts are located on the same circumference centered on the axis.
In this case, the rotation trajectories around the axes of the temperature sensing parts of the plurality of temperature sensors coincide with each other, and the temperature inside the furnace body can be accurately measured by the plurality of temperature sensors.

さらに、複数の前記温度センサのうちの少なくとも1つを、その感温部が残りの温度センサの感温部に対して径方向外方に後退した位置となるように配置してもよい。
この場合、一の温度センサの感温部が他の温度センサの感温部に対して径方向外方に後退して配置されているので、炉本体の内周壁の径方向の温度分布、つまり、耐火物層の厚さ方向での温度分布を測定することができる。よって、耐火物の劣化状態を、操業を停止することなく把握することができ、適正な時期に耐火物層の補修を行うことが可能となる。これにより、炉本体の寿命延長を図ることが可能となる。
Further, at least one of the plurality of temperature sensors may be arranged such that the temperature sensing part is in a position retracted radially outward with respect to the temperature sensing parts of the remaining temperature sensors.
In this case, since the temperature sensing part of one temperature sensor is arranged to recede radially outward from the temperature sensing part of the other temperature sensor, the temperature distribution in the radial direction of the inner peripheral wall of the furnace body, that is, The temperature distribution in the thickness direction of the refractory layer can be measured. Therefore, the deterioration state of the refractory can be grasped without stopping the operation, and the refractory layer can be repaired at an appropriate time. This makes it possible to extend the life of the furnace body.

本発明によれば、炉本体内部の温度を正確に測定して操業することにより、耐火物層の損傷や劣化を抑制して炉本体の寿命延長を図ることが可能なロータリーキルン式高温処理装置を提供することができる。   According to the present invention, there is provided a rotary kiln type high temperature treatment apparatus capable of suppressing damage and deterioration of a refractory layer and extending the life of a furnace body by accurately measuring and operating the temperature inside the furnace body. Can be provided.

以下に、本発明の第1の実施形態について添付した図面を参照にして説明する。図1及び図2に、本発明の第1の実施形態であるロータリーキルン式高温処理装置を示す。
このロータリーキルン式高温処理装置1は、被処理物Wを高温処理する炉本体2と、この炉本体2の内部で燃焼する燃焼バーナー3と、炉本体2の内部温度を測定する温度測定手段4と、温度測定手段4で測定された温度データに基いて炉本体2の操業状態を制御する制御部5と、炉本体2に被処理物Wを投入する投入部6と、炉本体2から排出される排気ガスGが導入される二次燃焼室7と、炉本体2の内部で生成したスラグSが冷却される冷却器8と、を備えている。
ここで、被処理物Wとしては、例えば自動車のシュレッダーダストや、廃家電品、プリント基板、汚泥などが挙げられる。
Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings. 1 and 2 show a rotary kiln-type high-temperature treatment apparatus according to the first embodiment of the present invention.
The rotary kiln-type high-temperature treatment apparatus 1 includes a furnace body 2 that treats the workpiece W at a high temperature, a combustion burner 3 that burns inside the furnace body 2, and a temperature measurement unit 4 that measures the internal temperature of the furnace body 2. The control unit 5 that controls the operating state of the furnace body 2 based on the temperature data measured by the temperature measuring means 4, the input unit 6 that inputs the workpiece W into the furnace body 2, and the furnace body 2 The secondary combustion chamber 7 into which the exhaust gas G to be introduced is introduced, and the cooler 8 that cools the slag S generated inside the furnace body 2 are provided.
Here, examples of the workpiece W include automobile shredder dust, waste home appliances, printed circuit boards, and sludge.

炉本体2は、軸線Lに沿って延びる円筒状をなしており、上流側の端面には蓋部9が設けられ、この蓋部9に前記燃焼バーナー3及び投入部6が配設されている。また、下流側の端面は開口され、前記二次燃焼室7及び前記冷却器8へと連通されている。
この炉本体2は、例えば鋼材等で形成されて軸線Lに沿って円筒状をなす炉体シェル10と、この炉体シェル10の内周面に積層するように配設された耐火物層11と、を備えている。なお、本実施形態においては、炉体シェル10の厚さt1が50mm≦t1≦400mmに設定され、耐火物層11の厚さt2が100mm≦t2≦300mmに設定されている。
The furnace body 2 has a cylindrical shape extending along the axis L, and a lid portion 9 is provided on the upstream end surface, and the combustion burner 3 and the charging portion 6 are disposed on the lid portion 9. . Further, the downstream end face is opened and communicated with the secondary combustion chamber 7 and the cooler 8.
The furnace body 2 is formed of, for example, a steel material and has a cylindrical furnace body shell 10 along the axis L, and a refractory layer 11 disposed so as to be laminated on the inner peripheral surface of the furnace body shell 10. And. In the present embodiment, the thickness t1 of the furnace shell 10 is set to 50 mm ≦ t1 ≦ 400 mm, and the thickness t2 of the refractory layer 11 is set to 100 mm ≦ t2 ≦ 300 mm.

この炉本体2の内部温度を測定する温度測定手段4は、複数の熱電対12を備えており、これら複数の熱電対12が、炉本体2の軸線L方向の同一位置において周方向に間隔をあけて等間隔に配設されている。本実施形態では、図2に示すように、第1熱電対12A、第2熱電対12B、第3熱電対12C、第4熱電対12Dの4つの熱電対12が周方向に90°間隔で配設されている。ここで、複数の熱電対12A、12B、12C、12Dの感温部13A、13B、13C、13D(先端部)の径方向位置は、軸線Lを中心とした同一円周上に配置されている。
また、この温度測定手段4は、炉本体2に配設された送信機14を備えており、この送信機14は炉本体2とともに軸線Lを中心として回転されながら測定した温度データを逐次制御部5に配設された受信機15へと送信するように構成されている。
The temperature measuring means 4 for measuring the internal temperature of the furnace body 2 includes a plurality of thermocouples 12, and the plurality of thermocouples 12 are spaced apart in the circumferential direction at the same position in the axis L direction of the furnace body 2. They are spaced at regular intervals. In this embodiment, as shown in FIG. 2, four thermocouples 12 of a first thermocouple 12A, a second thermocouple 12B, a third thermocouple 12C, and a fourth thermocouple 12D are arranged at 90 ° intervals in the circumferential direction. It is installed. Here, the radial positions of the temperature sensitive portions 13A, 13B, 13C, 13D (tip portions) of the plurality of thermocouples 12A, 12B, 12C, 12D are arranged on the same circumference with the axis L as the center. .
The temperature measuring means 4 includes a transmitter 14 disposed in the furnace body 2, and the transmitter 14 sequentially measures temperature data measured while rotating around the axis L together with the furnace body 2. 5 is configured to transmit to the receiver 15 disposed in the circuit 5.

制御部5は、温度測定手段4によって測定され、送信機14によって送信された温度データを受信する受信機15を有しており、この温度データに基き、被処理物Wの投入部6及び燃焼バーナー3に対して指令を与えて、炉本体2の内部温度を調整する。具体的には、炉本体2の内部温度が低下した場合には、被処理物Wの投入量の増加又は燃焼バーナー3へのガス供給量の増加により、炉本体2内部での燃焼を促す。一方、炉本体2の内部温度が上昇した場合には、被処理物Wの投入量の低減又は燃焼バーナー3へのガス供給量の低減により、炉本体2内部での燃焼を抑える。   The control unit 5 has a receiver 15 that receives temperature data measured by the temperature measuring means 4 and transmitted by the transmitter 14, and based on this temperature data, the input unit 6 and the combustion of the workpiece W A command is given to the burner 3 to adjust the internal temperature of the furnace body 2. Specifically, when the internal temperature of the furnace body 2 decreases, combustion in the furnace body 2 is promoted by increasing the input amount of the workpiece W or increasing the gas supply amount to the combustion burner 3. On the other hand, when the internal temperature of the furnace body 2 rises, combustion in the furnace body 2 is suppressed by reducing the input amount of the workpiece W or reducing the gas supply amount to the combustion burner 3.

二次燃焼室7には、炉本体2から排出される排気ガスGをさらに燃焼するための二次バーナー(図示なし)が配設されている。
また、冷却器8は、炉本体2で溶解された不燃物成分(金属等)で構成されたスラグSを冷却する水冷手段(図示なし)を備えている。
The secondary combustion chamber 7 is provided with a secondary burner (not shown) for further burning the exhaust gas G discharged from the furnace body 2.
The cooler 8 includes water cooling means (not shown) for cooling the slag S composed of non-combustible components (metal or the like) dissolved in the furnace body 2.

次に、このロータリーキルン式高温処理装置1による被処理物Wの高温処理方法について説明する。
炉本体2を軸線Lを中心として回転させるとともに、燃焼バーナー3を点火して炉本体2の内部を800〜1200℃程度に加熱する。さらに、二次燃焼室7の二次バーナーを点火するとともに、冷却器8の水冷手段に冷却水を流通する。
Next, the high temperature processing method of the to-be-processed object W by this rotary kiln type | mold high temperature processing apparatus 1 is demonstrated.
While rotating the furnace main body 2 centering on the axis L, the combustion burner 3 is ignited and the inside of the furnace main body 2 is heated to about 800-1200 degreeC. Further, the secondary burner in the secondary combustion chamber 7 is ignited and the cooling water is circulated to the water cooling means of the cooler 8.

この状態で、被処理物Wを投入部6によって炉本体2の内部に投入する。すると、炉本体2の内部に投入された被処理物Wは、高温とされた炉本体2内部で、可燃物が分解燃焼されてガス化するとともに、金属を含む不燃性成分が溶融状態または半溶融状態のスラグSとなる。
生成したガス成分は、炉本体2の下流側開口部から二次燃焼室7に送られる。二次燃焼室7に送られた排気ガスGは、この二次燃焼室7でさらに二次バーナーから熱風と空気の供給を受けて高温に燃焼され、排出口から燃焼ガスとして煤煙処理工程(図示なし)に向けて排出される。
また、炉本体2の内部で生成したスラグSは、炉本体2の下流側開口部から流下し、冷却器8で冷却されて破砕される。これにより、砕塊が形成される。得られた砕塊は、例えば磁気選鉱装置(図示なし)などによって金属の砕塊とスラグSの砕塊とに分別され、有用な金属成分が回収される。
In this state, the workpiece W is charged into the furnace body 2 by the charging unit 6. Then, the workpiece W introduced into the furnace body 2 is decomposed and burned and gasified in the furnace body 2 at a high temperature, and the incombustible component containing metal is in a molten state or half The molten slag S is obtained.
The generated gas component is sent from the downstream opening of the furnace body 2 to the secondary combustion chamber 7. The exhaust gas G sent to the secondary combustion chamber 7 is further supplied with hot air and air from the secondary burner in the secondary combustion chamber 7 and burned to a high temperature, and is treated as a combustion gas from the exhaust port (shown in the figure). None).
In addition, the slag S generated inside the furnace body 2 flows down from the downstream opening of the furnace body 2, is cooled by the cooler 8, and is crushed. Thereby, a crush is formed. The obtained crush is separated into a metal crush and a slag S crush using, for example, a magnetic beneficiation apparatus (not shown), and useful metal components are recovered.

このような構成とされた本発明の第1の実施形態であるロータリーキルン式高温処理装置1によれば、軸線L回りに回転される炉本体2に、複数の熱電対12A、12B、12C、12Dが炉本体2の軸線L方向の同一位置において周方向に間隔をあけて配置されているので、これら複数の熱電対12A、12B、12C、12Dによって炉本体2の内部温度を同様に測定することができる。よって、例えば第1熱電対12Aが劣化しても、第1熱電対12Aを修理するために操業を停止することなく残りの第2、第3、第4熱電対12B、12C、12Dによって炉本体2の内部温度を測定して温度制御を行うことができ、耐火物層11の損傷や劣化を抑制できる。   According to the rotary kiln-type high-temperature treatment apparatus 1 that is the first embodiment of the present invention having such a configuration, a plurality of thermocouples 12 </ b> A, 12 </ b> B, 12 </ b> C, 12 </ b> D are attached to the furnace body 2 that is rotated around the axis L. Are arranged at intervals in the circumferential direction at the same position in the axis L direction of the furnace body 2, so that the internal temperature of the furnace body 2 is similarly measured by the plurality of thermocouples 12A, 12B, 12C, 12D. Can do. Thus, for example, even if the first thermocouple 12A is deteriorated, the remaining second, third, and fourth thermocouples 12B, 12C, and 12D do not stop the operation to repair the first thermocouple 12A. 2 can be measured to control the temperature, and damage and deterioration of the refractory layer 11 can be suppressed.

特に、本実施形態では、複数の熱電対12A、12B、12C、12Dは、その感温部13A、13B、13C、13Dが軸線Lを中心とした同一円周上に位置するように、配置されているので、複数の熱電対12A、12B、12C、12Dの感温部13A、13B、13C、13Dの軸線Lを中心とした回転軌跡が一致することになり、複数の熱電対12A、12B、12C、12Dによって炉本体2の内部温度を精度よく測定することができる。   In particular, in the present embodiment, the plurality of thermocouples 12A, 12B, 12C, and 12D are arranged so that the temperature sensitive portions 13A, 13B, 13C, and 13D are located on the same circumference with the axis L as the center. Therefore, the rotation trajectories around the axis L of the temperature sensing parts 13A, 13B, 13C, 13D of the plurality of thermocouples 12A, 12B, 12C, 12D coincide with each other, and the plurality of thermocouples 12A, 12B, The internal temperature of the furnace body 2 can be accurately measured by 12C and 12D.

また、これら複数の熱電対12A、12B、12C、12Dによって炉本体2内部の周方向での温度分布を測定することが可能となる。このため、例えば第1熱電対12Aの先端部分に金属等が付着して、いわゆる「鋳付き」が発生して第1熱電対12Aの温度データのみが低下してしまい異常値となった場合でも、残りの第2、第3、第4熱電対12B、12C、12Dの温度データに基いて適正な操業を行うことが可能となる。   Moreover, it becomes possible to measure the temperature distribution in the circumferential direction inside the furnace body 2 by using the plurality of thermocouples 12A, 12B, 12C, and 12D. For this reason, for example, even when metal or the like adheres to the tip portion of the first thermocouple 12A, so-called “casting” occurs, and only the temperature data of the first thermocouple 12A decreases, resulting in an abnormal value. It is possible to perform an appropriate operation based on the temperature data of the remaining second, third, and fourth thermocouples 12B, 12C, and 12D.

さらに、本実施形態では、炉本体2に複数の熱電対12A、12B、12C、12Dが配置されているが、これらの温度データを炉本体2に配設された送信機14から制御部5へと送信される構成とされているので、軸線L回りに回転される炉本体2の外周面に沿って熱電対12を配置すればよく、これら複数の熱電対12A、12B、12C、12Dの配置を容易に行うことができる。   Further, in the present embodiment, a plurality of thermocouples 12A, 12B, 12C, and 12D are disposed in the furnace body 2, but these temperature data are transmitted from the transmitter 14 disposed in the furnace body 2 to the control unit 5. Therefore, the thermocouple 12 may be disposed along the outer peripheral surface of the furnace body 2 rotated about the axis L, and the plurality of thermocouples 12A, 12B, 12C, and 12D are disposed. Can be easily performed.

次に、本発明の第2の実施形態について添付した図面を参照にして説明する。図3に、本発明の第2の実施形態であるロータリーキルン式高温処理装置を示す。なお、第1の実施形態と同一の構成要素には、同一の符号を付して詳細な説明を省略する。
このロータリーキルン式高温処理装置1においては、第1の実施形態とは、温度測定手段4に備えられた複数の熱電対12の配置が異なっている。
Next, a second embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 3 shows a rotary kiln-type high-temperature treatment apparatus according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the component same as 1st Embodiment, and detailed description is abbreviate | omitted.
In this rotary kiln type high temperature processing apparatus 1, the arrangement of the plurality of thermocouples 12 provided in the temperature measuring means 4 is different from that of the first embodiment.

詳述すると、この第2の実施形態では、図3に示すように、第1、第2、第3、第4熱電対12A、12B、12C、12Dが軸線L方向の同一位置において、周方向に等間隔(90°間隔)に配置され、それらの感温部13A、13B、13C、13D(熱電対12A、12B、12C、12Dの先端)の径方向位置がそれぞれ異なっている。第1熱電対12Aは、その感温部13Aが耐火物層11の内周面に露呈するように配置されている。第2熱電対12Bは、その感温部13Bが第1熱電対12Aの感温部13Aよりも僅かに径方向外方に後退して耐火物層11の内部に配置されており、具体的には耐火物層11の内周面から耐火物層11の厚さの約1/4だけ後退した部分に配置されている。第3熱電対12Cは、感温部13Cが第2熱電対12Bの感温部13Bよりもさらに径方向外方に後退して耐火物層11の内部に配置されており、具体的には耐火物層11の内周面から耐火物層11の厚さの約1/2だけ後退した部分に配置されている。第4熱電対12Dは、その感温部13Dが第3熱電対12Cの感温部13Cよりも径方向外方に後退して耐火物層11と炉体シェル10との境界部分に配置されている。   More specifically, in the second embodiment, as shown in FIG. 3, the first, second, third, and fourth thermocouples 12A, 12B, 12C, and 12D are circumferential in the same position in the axis L direction. The temperature sensitive portions 13A, 13B, 13C, and 13D (tips of the thermocouples 12A, 12B, 12C, and 12D) have different radial positions. 12 A of 1st thermocouples are arrange | positioned so that the temperature sensitive part 13A may be exposed to the internal peripheral surface of the refractory material layer 11. FIG. The second thermocouple 12B is disposed inside the refractory layer 11 with its temperature sensing part 13B slightly retracted radially outward from the temperature sensing part 13A of the first thermocouple 12A. Is disposed in a portion that is recessed from the inner peripheral surface of the refractory layer 11 by about 1/4 of the thickness of the refractory layer 11. The third thermocouple 12C is disposed inside the refractory layer 11 with the temperature sensing portion 13C retracting further radially outward than the temperature sensing portion 13B of the second thermocouple 12B. The refractory layer 11 is disposed at a portion retreated from the inner peripheral surface of the physical layer 11 by about ½ of the thickness of the refractory layer 11. The fourth thermocouple 12D is disposed at the boundary between the refractory layer 11 and the furnace shell 10 with its temperature sensing portion 13D receding radially outward from the temperature sensing portion 13C of the third thermocouple 12C. Yes.

このような構成とされた本発明の第2の実施形態であるロータリーキルン式高温処理装置1によれば、第1熱電対12A、第2熱電対12B、第3熱電対12C、第4熱電対12Dは、それぞれの感温部13A、13B、13C、13Dの径方向位置が異なっているため、それぞれ異なる位置の温度を測定することになるが、これらの温度データの差が一定となるように制御することで炉本体2内部温度を安定させることが可能となり、耐火物層11の損傷や劣化を抑制して炉本体2の寿命延長を図ることができる。   According to the rotary kiln-type high-temperature processing apparatus 1 that is the second embodiment of the present invention configured as described above, the first thermocouple 12A, the second thermocouple 12B, the third thermocouple 12C, and the fourth thermocouple 12D. Since the temperature-sensitive parts 13A, 13B, 13C, and 13D have different radial positions, the temperatures at the different positions are measured, but the difference between these temperature data is controlled to be constant. By doing so, it becomes possible to stabilize the internal temperature of the furnace body 2 and to suppress the damage and deterioration of the refractory layer 11 and to extend the life of the furnace body 2.

さらに、炉本体2の径方向の温度分布、つまり、耐火物層11の厚さ方向での温度分布を測定することが可能となり、耐火物層11の劣化状態を、操業を停止することなく把握することができる。例えば、操業によって耐火物層11は徐々に損耗していくが、この損耗の程度に応じて第1熱電対12Aと第2熱電対12Bとの温度差が小さくなる。さらに損耗が進むと第2熱電対12Bと第3熱電対12Cとの温度差が小さくなる。このように、耐火物層11の損耗状態を複数の熱電対12A、12B、12C、12Dの温度差を測定することで把握することができるのである。よって、適正な時期に耐火物層11の補修を行うことができ、炉本体2の寿命延長を図ることが可能となる。また、耐火物層11の劣化状態を確認するために操業を停止して炉本体2を冷却する必要がなくなり、耐火物層11への熱的衝撃を小さくして寿命の延長を図ることが可能となる。   Further, it becomes possible to measure the temperature distribution in the radial direction of the furnace body 2, that is, the temperature distribution in the thickness direction of the refractory layer 11, and grasp the deterioration state of the refractory layer 11 without stopping the operation. can do. For example, the refractory layer 11 is gradually worn by operation, but the temperature difference between the first thermocouple 12A and the second thermocouple 12B is reduced according to the degree of wear. As wear further progresses, the temperature difference between the second thermocouple 12B and the third thermocouple 12C becomes smaller. Thus, the wear state of the refractory layer 11 can be grasped by measuring the temperature difference between the plurality of thermocouples 12A, 12B, 12C, and 12D. Therefore, the refractory layer 11 can be repaired at an appropriate time, and the life of the furnace body 2 can be extended. Further, it is not necessary to stop the operation and cool the furnace body 2 in order to confirm the deterioration state of the refractory layer 11, and it is possible to extend the life by reducing the thermal shock to the refractory layer 11. It becomes.

以上、本発明の実施形態であるロータリーキルン式高温処理装置について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、温度測定手段として複数の熱電対を備えたものとして説明したが、これに限定されることはなく、測温抵抗体などの他の温度センサを用いてもよい。また、4つの熱電対を周方向に90°間隔に配置したもので説明したが、熱電対は2つ以上であればよく、炉本体の大きさ等を考慮して設定することが好ましい。
The rotary kiln-type high-temperature treatment apparatus according to the embodiment of the present invention has been described above, but the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the present invention.
For example, the temperature measuring means has been described as including a plurality of thermocouples, but the present invention is not limited to this, and other temperature sensors such as a resistance temperature detector may be used. Further, although four thermocouples have been described as being arranged at intervals of 90 ° in the circumferential direction, the number of thermocouples may be two or more, and it is preferable to set in consideration of the size of the furnace body and the like.

また、第2の実施形態では、4つの熱電対の感温部の径方向位置を互いに異なるように配置したものとして説明したが、これに限定されることはなく、複数の熱電対のうちの少なくとも1つの熱電対の感温部の径方向位置が異なるように構成されていればよい。
さらに、被処理物としては、実施形態に例示したものに限定されることはなく、他の廃棄物等であってもよい。
Moreover, in 2nd Embodiment, although demonstrated as what was arrange | positioned so that the radial direction position of the thermosensitive part of four thermocouples might mutually differ, it is not limited to this, Of several thermocouples What is necessary is just to be comprised so that the radial direction position of the temperature sensing part of at least 1 thermocouple may differ.
Furthermore, as a to-be-processed object, it is not limited to what was illustrated to embodiment, Other wastes etc. may be sufficient.

本発明の第1の実施形態であるロータリーキルン式高温処理装置を示す説明図である。It is explanatory drawing which shows the rotary kiln type | mold high temperature processing apparatus which is the 1st Embodiment of this invention. 図1に示すロータリーキルン式高温処理装置の断面説明図である。It is a cross-sectional explanatory drawing of the rotary kiln-type high temperature processing apparatus shown in FIG. 本発明の第2の実施形態であるロータリーキルン式高温処理装置の断面説明図である。It is sectional explanatory drawing of the rotary kiln type | mold high temperature processing apparatus which is the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 ロータリーキルン式高温処理装置
2 炉本体
3 燃焼バーナー
4 温度測定手段
5 制御部(制御手段)
12 熱電対(温度センサ)
DESCRIPTION OF SYMBOLS 1 Rotary kiln type high temperature processing apparatus 2 Furnace body 3 Combustion burner 4 Temperature measuring means 5 Control part (control means)
12 Thermocouple (temperature sensor)

Claims (3)

軸線回りに回転され、内部に被処理物が投入される炉本体と、この炉本体の内部で被処理物を燃焼させる燃焼バーナーと、前記炉本体の内部温度を測定する温度測定手段と、この温度測定手段の測定値に基いて前記被処理物の投入量又は前記燃焼バーナーの燃焼状態の少なくとも一方を調整して炉本体の内部温度を制御する制御手段と、を有し、
前記温度測定手段は、複数の温度センサを有しており、これら複数の温度センサが、前記炉本体の軸線方向の同一位置において周方向に間隔をあけて配設されていることを特徴とするロータリーキルン式高温処理装置。
A furnace body rotated about an axis and into which the workpiece is introduced; a combustion burner for burning the workpiece within the furnace body; a temperature measuring means for measuring the internal temperature of the furnace body; and Control means for controlling the internal temperature of the furnace body by adjusting at least one of the input amount of the workpiece or the combustion state of the combustion burner based on the measured value of the temperature measuring means,
The temperature measuring means includes a plurality of temperature sensors, and the plurality of temperature sensors are arranged at intervals in the circumferential direction at the same position in the axial direction of the furnace body. Rotary kiln type high temperature processing equipment.
複数の前記温度センサは、その感温部が前記軸線を中心とした同一円周上に位置するように、それぞれ配置されていることを特徴とする請求項1に記載のロータリーキルン式高温処理装置。   The rotary kiln type high temperature processing apparatus according to claim 1, wherein the plurality of temperature sensors are respectively arranged such that their temperature sensing parts are located on the same circumference centered on the axis. 複数の前記温度センサのうちの少なくとも1つは、その感温部が残りの温度センサの感温部に対して径方向外方に後退した位置となるように配置されていることを特徴とする請求項1に記載のロータリーキルン式高温処理装置。   At least one of the plurality of temperature sensors is arranged such that the temperature sensing part is located at a position retracted radially outward with respect to the temperature sensing parts of the remaining temperature sensors. The rotary kiln type high temperature processing apparatus according to claim 1.
JP2007086291A 2007-03-29 2007-03-29 Rotary kiln type high temperature processing equipment Expired - Fee Related JP4998045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086291A JP4998045B2 (en) 2007-03-29 2007-03-29 Rotary kiln type high temperature processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086291A JP4998045B2 (en) 2007-03-29 2007-03-29 Rotary kiln type high temperature processing equipment

Publications (2)

Publication Number Publication Date
JP2008241218A true JP2008241218A (en) 2008-10-09
JP4998045B2 JP4998045B2 (en) 2012-08-15

Family

ID=39912782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086291A Expired - Fee Related JP4998045B2 (en) 2007-03-29 2007-03-29 Rotary kiln type high temperature processing equipment

Country Status (1)

Country Link
JP (1) JP4998045B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963448A (en) * 2009-07-23 2011-02-02 株式会社村田制作所 Method and device for measuring temperature in a furnace, heat treatment device and calcination synthesis method of a ceramic material powder
KR101670180B1 (en) * 2015-07-22 2016-10-27 현대제철 주식회사 Rotary klin apparatus
CN113899203A (en) * 2021-10-11 2022-01-07 郑州大学 Method for monitoring thickness change of refractory material of kiln lining of rotary kiln

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103322794B (en) * 2013-06-26 2014-09-24 中冶长天国际工程有限责任公司 Method and device for detecting changes of rotary kiln lining
CN104833206B (en) * 2015-05-08 2016-10-05 中冶长天国际工程有限责任公司 A kind of dead-weight rotary kiln direct temperature measurement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845682U (en) * 1971-09-30 1973-06-14
JPS4820097B1 (en) * 1967-04-11 1973-06-19
JP2001004283A (en) * 1999-06-23 2001-01-12 Sumitomo Heavy Ind Ltd Monitor method for rotary kiln
JP2002295976A (en) * 2001-03-29 2002-10-09 Sumitomo Osaka Cement Co Ltd Control method for rotary kiln, controller for rotary kiln and program for controlling rotary kiln

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4820097B1 (en) * 1967-04-11 1973-06-19
JPS4845682U (en) * 1971-09-30 1973-06-14
JP2001004283A (en) * 1999-06-23 2001-01-12 Sumitomo Heavy Ind Ltd Monitor method for rotary kiln
JP2002295976A (en) * 2001-03-29 2002-10-09 Sumitomo Osaka Cement Co Ltd Control method for rotary kiln, controller for rotary kiln and program for controlling rotary kiln

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963448A (en) * 2009-07-23 2011-02-02 株式会社村田制作所 Method and device for measuring temperature in a furnace, heat treatment device and calcination synthesis method of a ceramic material powder
KR101670180B1 (en) * 2015-07-22 2016-10-27 현대제철 주식회사 Rotary klin apparatus
CN113899203A (en) * 2021-10-11 2022-01-07 郑州大学 Method for monitoring thickness change of refractory material of kiln lining of rotary kiln
CN113899203B (en) * 2021-10-11 2024-03-22 郑州大学 Method for monitoring thickness change of kiln lining refractory material of rotary kiln

Also Published As

Publication number Publication date
JP4998045B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP4998045B2 (en) Rotary kiln type high temperature processing equipment
JP5235308B2 (en) Externally heated rotary kiln
KR101511927B1 (en) Method of treating recyclable raw materials
Stjernberg et al. The grate-kiln induration machine-history, advantages, and drawbacks, and outline for the future
JP2009287863A (en) Heat treatment apparatus
CN105458614A (en) Roller press roller shell thermal detachment device and thermal detachment method thereof
JP4056534B2 (en) Furnace bottom temperature measuring method and apparatus, and melting furnace bottom monitoring method and apparatus
JP6010675B1 (en) Waste incinerator temperature detection device and waste incinerator temperature detection method
JP2009216341A (en) Operating method for melting rotary kiln, and temperature measuring device for molten material
EP3106529B1 (en) Method and plant of treating and smelting metals
JP4380331B2 (en) How to protect the iron core of a rotary furnace
JP4707635B2 (en) Method and apparatus for monitoring the bottom of melting furnace
JP4234727B2 (en) In-furnace condition monitoring / control method and apparatus for melting furnace
JP2000161859A (en) External heating rotary kiln furnace and its operation control method
US7681455B2 (en) Method and device for monitoring the state of the protective covering of a rotary furnace burner
JP4663389B2 (en) Waste ash heating system for waste gasification and melting equipment
JP2014181856A (en) Rotary kiln
CN113899203B (en) Method for monitoring thickness change of kiln lining refractory material of rotary kiln
JP2001317718A (en) Rotary kiln type melting furnace
JP2009216342A (en) Operating method for melting rotary kiln and controller for melting rotary kiln
JP4291764B2 (en) Blast furnace operation method
JP2004091887A (en) Tuyere for blast furnace and its exchanging method
JP2002310414A (en) Rotary kiln
JP5910556B2 (en) Temperature measurement unit for rotary kiln
Bhamare et al. Furnace Monitoring and Billet Cutting System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120430

R150 Certificate of patent or registration of utility model

Ref document number: 4998045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees