JP5235308B2 - Externally heated rotary kiln - Google Patents

Externally heated rotary kiln Download PDF

Info

Publication number
JP5235308B2
JP5235308B2 JP2007014619A JP2007014619A JP5235308B2 JP 5235308 B2 JP5235308 B2 JP 5235308B2 JP 2007014619 A JP2007014619 A JP 2007014619A JP 2007014619 A JP2007014619 A JP 2007014619A JP 5235308 B2 JP5235308 B2 JP 5235308B2
Authority
JP
Japan
Prior art keywords
inner cylinder
kiln
thermal elongation
rotary kiln
heating gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007014619A
Other languages
Japanese (ja)
Other versions
JP2008180451A (en
Inventor
野間  彰
猛 甘利
宏司 関野
慎也 常泉
順一 千葉
洋民 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority to JP2007014619A priority Critical patent/JP5235308B2/en
Priority to TW96140599A priority patent/TWI341915B/en
Priority to CN2007101934526A priority patent/CN101231144B/en
Publication of JP2008180451A publication Critical patent/JP2008180451A/en
Priority to HK08110316.8A priority patent/HK1114899A1/en
Application granted granted Critical
Publication of JP5235308B2 publication Critical patent/JP5235308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Muffle Furnaces And Rotary Kilns (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Coke Industry (AREA)
  • Incineration Of Waste (AREA)

Description

本発明は、炭化炉や熱分解炉、加熱処理炉等に利用される外熱式ロータリーキルンに関する。   The present invention relates to an externally heated rotary kiln used for a carbonization furnace, a pyrolysis furnace, a heat treatment furnace, or the like.

外熱式ロータリーキルンは、軸回りに回転するロータリーキルン(キルン内筒)の周囲に外筒を備え、該外筒に加熱ガスを流通させてロータリーキルンを外側から加熱し、該キルン内部で処理物を軸方向に移送しながら加熱処理を行なうものであり、加熱ガスが処理物に接触しない構成であるため間接加熱式とも呼ばれ、炭化炉を始め、熱分解炉、加熱処理炉、乾燥炉等に広く利用されている。   An externally heated rotary kiln is provided with an outer cylinder around a rotary kiln (kiln inner cylinder) that rotates about an axis, and a heated gas is circulated through the outer cylinder to heat the rotary kiln from the outside, and the processed material is rotated inside the kiln. Heat treatment is performed while being transferred in the direction, and it is also called an indirect heating type because it has a configuration in which the heated gas does not come into contact with the workpiece, and is widely used in carbonization furnaces, pyrolysis furnaces, heat treatment furnaces, drying furnaces, etc. It's being used.

外熱式ロータリーキルンの上記特徴を利用して、下水汚泥などの有機系廃棄物を加熱分解して燃料化することが検討されている。すなわち、有機系廃棄物を外熱式ロータリーキルン内部に導入し、加熱ガスを混入させずに低酸素下で加熱分解して熱分解ガスや炭化物を回収し、これらを燃料ガスや固体燃料に利用するものであり、燃料ガス化を目的とする場合には、加熱温度を極力高く設定し有機物質を効率的にガス化させる。一方、固体燃料化を目的とする場合には、ガス化する場合より低い温度で熱分解を終結させて、炭化物に可燃分を残留させる必要がある。このため、キルン内部の温度管理が重要になる。   Utilizing the above characteristics of an external heat type rotary kiln, it has been studied to thermally decompose organic waste such as sewage sludge into fuel. In other words, organic waste is introduced into the externally heated rotary kiln, and pyrolysis gas and carbides are recovered by pyrolysis under low oxygen without mixing heated gas, and these are used as fuel gas and solid fuel. In the case of fuel gasification, the heating temperature is set as high as possible to efficiently gasify the organic substance. On the other hand, when aiming at solid fuel conversion, it is necessary to terminate pyrolysis at a lower temperature than when gasifying and to leave a combustible component in the carbide. For this reason, temperature management inside the kiln becomes important.

軸回りに回転するロータリーキルン内部の温度を制御する方法としては、キルンの軸心に沿ってパイプを配設し、該パイプの内部に装着した温度センサによる検出温度に基づいて加熱コイルの出力や加熱ガス燃焼装置の火力を制御する方法(特許文献1参照)や、キルンの排出口に設けた熱伝対の検出温度に基づいて燃焼用空気量を制御する方法(特許文献3参照)がある。しかし、これらは何れもロータリーキルン内部のガス温度を測定する構成であるため、処理物の炭化温度を必ずしも反映するものではなく、キルン内部での輻射および対流のバランスの変化や温度センサへの付着物によって誤差を生じる虞があるうえ、下水汚泥などの有機廃棄物は、処理量や水分量などの入口性状の変動が大きく、炭化温度の安定的な制御は困難であった。   As a method of controlling the temperature inside the rotary kiln that rotates around the axis, a pipe is arranged along the axis of the kiln, and the output of the heating coil or heating is based on the temperature detected by the temperature sensor mounted inside the pipe. There are a method for controlling the thermal power of the gas combustion apparatus (see Patent Document 1) and a method for controlling the amount of combustion air based on the detected temperature of a thermocouple provided at the discharge port of the kiln (see Patent Document 3). However, since these are all configured to measure the gas temperature inside the rotary kiln, they do not necessarily reflect the carbonization temperature of the processed material, and changes in the balance of radiation and convection inside the kiln and deposits on the temperature sensor In addition, the organic waste such as sewage sludge has a large variation in the inlet properties such as the treatment amount and the water amount, and it is difficult to stably control the carbonization temperature.

特開平11−211040号公報JP 11-2111040 A 特開2002−174415号公報JP 2002-174415 A 特許第2903045号公報Japanese Patent No. 2903045

本発明はこのような実状に鑑みてなされたものであって、その目的は、軸回りに回転するロータリーキルン内部の温度を、処理物の温度との相関を有して正確に計測でき、加熱温度の安定的な制御を可能ならしめる外熱式ロータリーキルンを提供することにある。   The present invention has been made in view of such a situation, and the purpose thereof is to accurately measure the temperature inside the rotary kiln rotating around the axis with a correlation with the temperature of the processed material, and to increase the heating temperature. It is to provide an externally heated rotary kiln that enables stable control of the heat.

上記従来技術の有する課題を解決するため、本発明は、軸回りに回転するキルン内筒と、前記キルン内筒の周囲に加熱ガスを流通させる外筒とを備え、前記キルン内筒の内部で処理物を軸方向に移送しながら加熱処理を行なう外熱式ロータリーキルンにおいて、前記キルン内筒は、軸方向に移動可能な可動側端部および固定側端部において回転可能に支持され、前記キルン内筒の軸方向の熱伸び量を計測する熱伸び量計測手段と、前記キルン内筒の軸方向の複数位置のシェル温度を前記外筒の周壁部から計測する複数の非接触式温度計とを備えた。   In order to solve the above-described problems of the prior art, the present invention includes a kiln inner cylinder that rotates around an axis, and an outer cylinder that circulates a heated gas around the kiln inner cylinder, and the inside of the kiln inner cylinder. In an external heating type rotary kiln that performs heat treatment while transferring a processed material in the axial direction, the kiln inner cylinder is rotatably supported at a movable side end portion and a fixed side end portion that are movable in the axial direction. Thermal elongation measuring means for measuring the amount of thermal elongation in the axial direction of the cylinder, and a plurality of non-contact type thermometers for measuring the shell temperature at a plurality of positions in the axial direction of the inner cylinder of the kiln from the peripheral wall portion of the outer cylinder. Prepared.

本発明の好適な態様では、前記熱伸び量計測手段が、前記キルン内筒の軸方向の全熱伸び量を計測する全熱伸び量計測手段を含んでいる。また、前記熱伸び量計測手段が、前記キルン内筒の軸方向中間部分における熱伸び量を、前記外筒の周壁部から計測する少なくとも1つの部分熱伸び量計測手段を含んでいる。   In a preferred aspect of the present invention, the thermal elongation measuring means includes total thermal elongation measuring means for measuring the total thermal elongation in the axial direction of the kiln inner cylinder. Further, the thermal elongation amount measuring means includes at least one partial thermal elongation amount measuring means for measuring the thermal elongation amount in the axially intermediate portion of the kiln inner cylinder from the peripheral wall portion of the outer cylinder.

本発明に係わる外熱式ロータリーキルンの他の態様では、前記外筒が軸方向に複数のゾーンに区画され、該各ゾーンに前記非接触式温度計が配設されており、前記各ゾーンの加熱ガス流量を調節する加熱ガス量調節手段と、前記各ゾーンのシェル温度の計測値に基づいて前記加熱ガス量調節手段を制御する温度制御手段とをさらに備えている。好ましい態様においては、前記熱伸び量計測手段が、前記各ゾーンにおける熱伸び量を前記外筒の周壁部から計測するゾーン熱伸び量計測手段を含んでいる。さらに好ましい態様では、前記加熱ガス量調節手段が、1系統の加熱ガスを前記各部分に所定の流量比で配分するための加熱ガス分配手段と、前記1系統の加熱ガスの全流量を調節する加熱ガス全流量調節手段とを含んでいる。   In another aspect of the externally heated rotary kiln according to the present invention, the outer cylinder is divided into a plurality of zones in the axial direction, and the non-contact type thermometer is disposed in each of the zones. The apparatus further includes heating gas amount adjusting means for adjusting the gas flow rate, and temperature control means for controlling the heating gas amount adjusting means based on a measured value of the shell temperature in each zone. In a preferred embodiment, the thermal elongation measuring means includes zone thermal elongation measuring means for measuring the thermal elongation in each zone from the peripheral wall portion of the outer cylinder. In a further preferred aspect, the heating gas amount adjusting means adjusts the total flow rate of the heating gas distribution means for distributing the heating gas of one system to the respective parts at a predetermined flow rate ratio, and the heating gas distribution means. Heating gas total flow rate adjusting means.

本発明に係わる外熱式ロータリーキルンによれば、キルン内筒の軸方向の熱伸び量を計測する手段と、キルン内筒の軸方向の複数位置のシェル温度を外筒の周壁部から計測する複数の非接触式温度計とを備えたので、熱伸び量計測手段の計測値から得られる熱伸び率をキルン内筒素材の線膨張係数で除算することで、キルン内部での輻射や対流の変化や、キルン内筒または温度センサへの付着物などによる測定誤差を排除した正確なキルンシェル温度(換算シェル温度)を検知することができる。   According to the externally heated rotary kiln according to the present invention, a means for measuring the amount of thermal expansion in the axial direction of the kiln inner cylinder, and a plurality of shell temperatures at a plurality of axial positions of the kiln inner cylinder from the peripheral wall portion of the outer cylinder. Because it is equipped with a non-contact type thermometer, the thermal expansion rate obtained from the measured value of the thermal elongation measurement means is divided by the linear expansion coefficient of the kiln inner cylinder material to change the radiation and convection inside the kiln. In addition, it is possible to detect an accurate kiln shell temperature (converted shell temperature) that eliminates measurement errors due to deposits on the kiln inner cylinder or the temperature sensor.

しかもキルンシェル温度は、キルン内部の処理物に直接的に接する部分の温度であるため、処理物の熱分解温度との相関が高く、加熱状況を良好に反映しており、このようなキルンシェル温度に基づいて温度制御を行なうことで、加熱温度の安定的な制御が可能となる。これにより、本発明に係わる外熱式ロータリーキルンを、例えば有機系廃棄物から燃料用炭化物を得る炭化炉に利用するような場合には、炭化温度を所望する可燃分残留率に応じた適正な温度に維持でき、高品質の炭化燃料を安定的に得ることができる。   Moreover, since the kiln shell temperature is the temperature of the part in direct contact with the processed material inside the kiln, it has a high correlation with the thermal decomposition temperature of the processed material, and reflects the heating situation well. By performing temperature control based on this, it is possible to stably control the heating temperature. As a result, when the externally heated rotary kiln according to the present invention is used in, for example, a carbonization furnace for obtaining fuel carbide from organic waste, an appropriate temperature corresponding to the desired combustible residual rate is obtained. Therefore, it is possible to stably obtain a high quality carbonized fuel.

また、熱伸び量ベースの換算シェル温度と非接触式温度計の平均シェル温度とを比較することで、キルン内筒外表面への灰の付着やキルン内筒の腐食状況を検知することができ、前記温度差が所定値以上となった場合に、キルン内筒外表面に対して圧縮空気を噴射して、前記キルン内筒外表面に付着した灰を除去するような運転方法や、前記温度差が所定時間継続した場合にキルン内筒のメンテナンスを促す信号を出力するような運転方法、さらには前記温度差に応じて放射率などを用いて平均シェル温度を較正し、そのままロータリーキルンの運転を継続するような運転方法が可能となる。   Moreover, by comparing the converted shell temperature based on the amount of thermal elongation with the average shell temperature of a non-contact type thermometer, it is possible to detect the adhesion of ash to the outer surface of the kiln inner cylinder and the corrosion status of the kiln inner cylinder. When the temperature difference is equal to or greater than a predetermined value, an operation method in which compressed air is injected onto the outer surface of the kiln inner cylinder to remove ash adhering to the outer surface of the kiln inner cylinder, or the temperature An operation method that outputs a signal that prompts maintenance of the kiln inner cylinder when the difference continues for a predetermined time, and further, the average shell temperature is calibrated using emissivity according to the temperature difference, and the rotary kiln is operated as it is. A continuous driving method is possible.

また、前記外筒が軸方向に複数のゾーンに区画され、該各ゾーンに前記非接触式温度計が配設されており、前記各ゾーンの加熱ガス流量を調節する加熱ガス量調節手段と、前記各ゾーンのシェル温度の計測値に基づいて前記加熱ガス量調節手段を制御する温度制御手段とをさらに備えている態様では、前記各ゾーンのシェル温度の計測値に基づいて、ゾーン毎に異なるシェル温度に制御できる。また、各ゾーンの温度制御に、熱伸び量ベースの換算シェル温度と非接触式温度計の平均シェル温度との比較による制御温度域の較正を併用することで、一層信頼性の高い温度制御が可能となり、高品質の加熱処理を行なうことができる。   The outer cylinder is divided into a plurality of zones in the axial direction, the non-contact thermometer is disposed in each zone, and a heating gas amount adjusting means for adjusting the heating gas flow rate in each zone; In an aspect further comprising temperature control means for controlling the heating gas amount adjusting means based on the measured value of the shell temperature of each zone, the temperature varies depending on the zone based on the measured value of the shell temperature of each zone. Can be controlled to shell temperature. In addition, the temperature control of each zone is combined with the calibration of the control temperature range based on the comparison between the converted shell temperature based on the amount of thermal elongation and the average shell temperature of the non-contact thermometer, so that more reliable temperature control is possible. It becomes possible, and high-quality heat treatment can be performed.

以下、本発明を図示の実施の形態に基づいて詳細に説明する。
図1は、本発明に係わる外熱式のロータリーキルン1を炭化炉として実施する場合の実施形態を示している。図において、ロータリーキルン1は、内筒11(キルンシェル)と、その周囲に加熱ガスを流通させる外筒12(マッフル)とを備えている。内筒11は、軸方向に移動可能な可動側端部13および固定側端部14において軸回りに回転可能に支持され、内筒11の入口部を構成する可動側端部13には、処理物を投入するためのスクリューコンベア10が設けられ、内筒11の出口部を構成する固定側端部14には処理物を排出するシュート15が設けられている。
Hereinafter, the present invention will be described in detail based on illustrated embodiments.
FIG. 1 shows an embodiment in which an externally heated rotary kiln 1 according to the present invention is implemented as a carbonization furnace. In the figure, the rotary kiln 1 is provided with an inner cylinder 11 (kiln shell) and an outer cylinder 12 (muffle) through which heated gas is circulated. The inner cylinder 11 is supported so as to be rotatable about an axis at a movable side end 13 and a fixed side end 14 that are movable in the axial direction. A screw conveyor 10 is provided for charging the product, and a chute 15 for discharging the processed product is provided at the fixed side end portion 14 constituting the outlet portion of the inner cylinder 11.

より詳細に述べると、内筒11の可動側端部13には、内筒11を回転自在に支持する環状フレーム131が設けられ、この環状フレーム131の両側部は、設置面130から揺動可能に立設されている支持部材132の上端部に回動自在に支持されている。支持部材132の支点間距離は、後に詳述するキルン内筒11の熱伸び量に比べて充分に大きく設定され、支持部材132の揺動に伴う可動側端部13の上下動は充分に小さく抑えられている。   More specifically, the movable side end 13 of the inner cylinder 11 is provided with an annular frame 131 that rotatably supports the inner cylinder 11, and both sides of the annular frame 131 can swing from the installation surface 130. It is rotatably supported by the upper end part of the supporting member 132 erected. The distance between the fulcrums of the support member 132 is set to be sufficiently larger than the thermal expansion amount of the kiln inner cylinder 11 described in detail later, and the vertical movement of the movable side end 13 accompanying the swinging of the support member 132 is sufficiently small. It is suppressed.

また、内筒11の可動側端部13および固定側端部14は、それぞれの回転部分(11)と非回転部分(13、14)との間にエアシールを形成しており、さらに、可動側端部13とスクリューコンベア10との接続部分には、可動側端部13の軸方向の変位を吸収するエキスパンション133が設けられている。   Further, the movable side end 13 and the fixed side end 14 of the inner cylinder 11 form an air seal between the respective rotating portions (11) and the non-rotating portions (13, 14). An expansion 133 that absorbs the displacement of the movable side end 13 in the axial direction is provided at a connection portion between the end 13 and the screw conveyor 10.

そして、内筒11の可動側端部13には、内筒11の加熱部全体の熱伸び量、即ち全熱伸び量Dを計測する計測手段114が設けられている。該計測手段114は、内筒11の可動側端部13に設けた指標Pの変位を、ロータリーキルン1の設置部位に対して固定されているスケールで計測するものであるが、指標Pの変位を差動変圧器のような電磁気的手段等で計測する位置センサであっても良い。また、連続的な変位を検出するセンサの代わりに、予め設定された所定の変位に到達したことを検知するフィーラーを設けることや、レーザ距離計を用いて変位を検知することもできる。   The movable side end 13 of the inner cylinder 11 is provided with a measuring means 114 that measures the thermal expansion amount of the entire heating portion of the inner cylinder 11, that is, the total thermal elongation amount D. The measuring means 114 measures the displacement of the index P provided at the movable side end 13 of the inner cylinder 11 with a scale fixed to the installation site of the rotary kiln 1, and the displacement of the index P is measured. It may be a position sensor that measures by electromagnetic means such as a differential transformer. In addition, instead of a sensor that detects continuous displacement, it is possible to provide a feeler that detects that a predetermined displacement has been set in advance, or to detect displacement using a laser distance meter.

なお、内筒11の内壁部には、周方向に対して傾斜して配列された複数のフィン(またはスパイラル、図示せず)が設けられ、内筒11が、図示しない駆動源により所定の回転数で駆動回転されることにより、入口側から投入された処理物を加熱しながら出口側に移送可能である。なお、前記フィンを設ける代わりに、内筒11が水平に対して僅かに傾斜した軸回りに回転自在に支持され、その傾斜と内筒11の回転によって処理物が出口側に移送される場合もある。   The inner wall portion of the inner cylinder 11 is provided with a plurality of fins (or spirals, not shown) arranged in an inclined manner with respect to the circumferential direction, and the inner cylinder 11 is rotated at a predetermined speed by a driving source (not shown). By being driven and rotated by a number, it is possible to transfer the processed material introduced from the inlet side to the outlet side while heating. In addition, instead of providing the fins, the inner cylinder 11 may be supported so as to be rotatable about an axis slightly inclined with respect to the horizontal, and the workpiece may be transferred to the outlet side by the inclination and rotation of the inner cylinder 11. is there.

外筒12は、内筒11の回転および軸方向の移動を許容し、かつ内筒11との間でシールを確保した状態で、図示しない支持部材を介して設置部位に固定されている。外筒12の内面全体は断熱材で覆われており、図2に示すように、内部空間の一側(内筒11の側方)が隔壁120により長手方向全体に亘って仕切られ、その仕切られた部分の下側に加熱ガスの導入部121が画成され、上側に加熱ガスの送出部122が画成されており、導入部121から送出部122に至る加熱ガス流路を形成している。そして、外筒12の導入部121には、加熱ガス燃焼炉2から送給される加熱ガスの供給管20が連通する一方、外筒12の送出部122は、加熱ガス送出管21を介して加熱ガス量調節ダンパ3および誘引ファン4に連通している。   The outer cylinder 12 is fixed to an installation site via a support member (not shown) in a state in which the inner cylinder 11 is allowed to rotate and move in the axial direction and a seal is secured with the inner cylinder 11. The entire inner surface of the outer cylinder 12 is covered with a heat insulating material, and as shown in FIG. 2, one side of the inner space (the side of the inner cylinder 11) is partitioned over the entire length by a partition wall 120. A heating gas introduction part 121 is defined below the formed part, and a heating gas delivery part 122 is defined on the upper side, and a heating gas flow path from the introduction part 121 to the delivery part 122 is formed. Yes. The introduction part 121 of the outer cylinder 12 communicates with the supply pipe 20 for the heated gas fed from the heated gas combustion furnace 2, while the delivery part 122 of the outer cylinder 12 is connected via the heated gas delivery pipe 21. The heated gas amount adjusting damper 3 and the induction fan 4 are communicated with each other.

外筒12の上部には、軸方向に離間して3箇所の点検窓123が設けられており、それぞれの点検窓123には、内筒11の部分的な変位、即ち部分熱伸び量D1、D2、D3を計測する計測手段124が設けられている。計測手段124は、内筒11の外周面に設けた指標P1、P2、P3に対向して、外筒12の点検窓123に配設されたスコープまたは撮像装置で構成され、その計測位置に対する指標P1、P2、P3の変位を、前記スコープの視野内に設置されたスケールで計測するか、または、撮像装置によって得られる画像上の位置を基に計測するものである。   Three inspection windows 123 are provided at an upper portion of the outer cylinder 12 so as to be separated from each other in the axial direction. Each inspection window 123 has a partial displacement of the inner cylinder 11, that is, a partial thermal expansion amount D1, Measuring means 124 for measuring D2 and D3 is provided. The measuring means 124 is composed of a scope or an imaging device disposed in the inspection window 123 of the outer cylinder 12 so as to face the indices P1, P2, and P3 provided on the outer peripheral surface of the inner cylinder 11, and is an index for the measurement position. The displacement of P1, P2, and P3 is measured with a scale installed in the field of view of the scope, or is measured based on the position on the image obtained by the imaging device.

また、外筒12上部の送出部122寄りの位置には、軸方向に離間して6箇所の窓125が設けてあり、各窓125には、軸回りに回転する内筒11の外周面に対向してキルンシェル温度T11〜T32(Tn)を計測する非接触式温度計126が設けられている。非接触式温度計126としては放射温度計を用いることができる。その場合、後述のように外筒12の内部に流通する加熱ガスとして煤塵を含む燃焼ガスが使用されるので、放射温度計の応答波長に、煤塵や燃焼ガスの影響を受けない3.9μmの赤外波長を用いることが好適である。また、1.0μm近傍の二色温度計も燃焼ガスや煤塵の影響が少なく、さらには、内筒11外表面が腐食しても放射率の影響を受け難いので好適である。   Further, six windows 125 are provided apart from each other in the axial direction at a position near the delivery portion 122 at the upper part of the outer cylinder 12, and each window 125 is provided on the outer peripheral surface of the inner cylinder 11 rotating around the axis. A non-contact thermometer 126 that measures the kiln shell temperatures T11 to T32 (Tn) is provided. As the non-contact type thermometer 126, a radiation thermometer can be used. In that case, since the combustion gas containing soot is used as the heating gas flowing inside the outer cylinder 12 as will be described later, the response wavelength of the radiation thermometer is not affected by soot and combustion gas. It is preferred to use infrared wavelengths. A two-color thermometer in the vicinity of 1.0 μm is also preferable because it is less affected by combustion gas and dust, and even when the outer surface of the inner cylinder 11 is corroded, it is less susceptible to emissivity.

次に、上記実施形態に基づいて、外熱式ロータリーキルン1を下水汚泥などの有機系廃棄物を加熱分解して燃料化する炭化炉として用いる場合の運転方法について説明する。   Next, based on the said embodiment, the operating method in the case of using the external heating type rotary kiln 1 as a carbonization furnace which heats and decomposes organic wastes, such as sewage sludge, will be demonstrated.

ロータリーキルン1の外筒12内には、誘引ファン4の誘引作用により、加熱ガス燃焼炉2から加熱ガスが送給されており、この加熱ガスによって外筒12内に位置した内筒11が外周面から加熱される。加熱ガス燃焼炉2の火力は一定に維持され、該加熱ガス燃焼炉2から送給される加熱ガスの温度は、所定の高温に維持されているが、キルン内筒11に導入される処理物の性状や処理量、水分量などの負荷変動により、内筒11の加熱に必要な熱量は変動する。   In the outer cylinder 12 of the rotary kiln 1, heated gas is supplied from the heated gas combustion furnace 2 by the attracting action of the attracting fan 4, and the inner cylinder 11 positioned in the outer cylinder 12 is surrounded by the heated gas. Is heated from. The heating power of the heated gas combustion furnace 2 is kept constant, and the temperature of the heated gas fed from the heated gas combustion furnace 2 is maintained at a predetermined high temperature, but the processed material introduced into the kiln inner cylinder 11 The amount of heat required for heating the inner cylinder 11 varies depending on the load variation such as the properties, the processing amount, and the moisture amount.

そこで、軸方向の6箇所に設置された非接触式温度計126で計測されるキルンシェル温度T11〜T32(Tn)が所定の温度域に維持されるように、図3に示す制御ロジックに基づいて温度制御手段5で加熱ガス量調節ダンパ3の開度および誘引ファン4の回転数を制御する。   Therefore, based on the control logic shown in FIG. 3 so that the kiln shell temperatures T11 to T32 (Tn) measured by the non-contact thermometers 126 installed at six locations in the axial direction are maintained in a predetermined temperature range. The temperature control means 5 controls the opening degree of the heated gas amount adjusting damper 3 and the rotational speed of the induction fan 4.

図3において、6箇所の各計測地点におけるキルンシェル温度T11〜T32は、選択スイッチ50によって何れか1箇所または任意の複数箇所(最大6箇所)が選択され、このうち1箇所が選択された場合には、その選択されたキルンシェル温度をプロセス値とし、複数箇所が選択された場合には、平均処理51によりキルンシェル温度の平均値をプロセス値として、このプロセス値PVが設定値SVに維持されるようにPID制御を行う。   In FIG. 3, the kiln shell temperatures T11 to T32 at each of the six measurement points are selected by the selection switch 50 at any one place or any plurality of places (up to six places), and when one of these places is selected. Uses the selected kiln shell temperature as a process value, and when a plurality of locations are selected, the average value of the kiln shell temperature is set as a process value by the averaging process 51 so that the process value PV is maintained at the set value SV. PID control is performed.

すなわち、遅延処理52を経たキルンシェル温度のプロセス値PVと設定値SVの偏差に比例した比例動作(P動作)、偏差の継続時間に比例した積分動作(I動作)、偏差の変化率に比例した微分動作(D動作)を組み合わせたPID制御の出力を反転53して開度指令とし、加熱ガス量調節ダンパ3の開度調節を行なう。さらに、加熱ガス量調節ダンパ3への開度指令を遅延処理54を経て誘引ファン4の回転数制御におけるプロセス値とし、このプロセス値PVが設定値SVに維持されるようにPID制御を行い、その出力を反転55して誘引ファン4の回転数指令とし、誘引ファン4の回転数調節を行なう。   That is, the proportional operation (P operation) proportional to the deviation between the process value PV and the set value SV of the kiln shell temperature after the delay processing 52, the integral operation (I operation) proportional to the duration of the deviation, and the change rate of the deviation The output of the PID control combined with the differential operation (D operation) is inverted 53 to obtain an opening command, and the opening adjustment of the heating gas amount adjusting damper 3 is performed. Further, the opening command to the heating gas amount adjusting damper 3 is set as a process value in the rotational speed control of the induction fan 4 through the delay process 54, and PID control is performed so that the process value PV is maintained at the set value SV. The output is inverted 55 so that the rotational speed command of the attracting fan 4 is set, and the rotational speed of the attracting fan 4 is adjusted.

このようにして基本的な温度制御は加熱ガス量調節ダンパ3の開度調節で行い、誘引ファン4の回転数調節によって加熱ガス量調節ダンパ3の開度が所定の範囲内に維持されるようにバックアップ制御を行なうことで、入口負荷の変動に対して安定的な制御が可能となる。また、上記制御において、加熱ガス量調節ダンパ3の開度調節における遅延処理52に対して、誘引ファン4の回転数制御における遅延処理54を大きく設定することにより、短期的な温度変化に対しては誘引ファン4の回転数制御は動作させず、加熱ガス量調節ダンパ3の開度調節のみで対応し、誘引ファン4の回転数制御は長期的な温度変化に対応させるようにすれば、一層安定的な温度制御を行なうことができる。   In this way, the basic temperature control is performed by adjusting the opening degree of the heating gas amount adjusting damper 3, and the opening degree of the heating gas amount adjusting damper 3 is maintained within a predetermined range by adjusting the rotation speed of the induction fan 4. By performing the backup control, it is possible to perform stable control with respect to fluctuations in the inlet load. Further, in the above control, by setting the delay process 54 in the rotational speed control of the induction fan 4 larger than the delay process 52 in the opening adjustment of the heating gas amount adjusting damper 3, it is possible to prevent a short-term temperature change. If the rotational speed control of the induction fan 4 is not operated, only the opening degree adjustment of the heated gas amount adjusting damper 3 is supported, and the rotational speed control of the induction fan 4 is adapted to a long-term temperature change. Stable temperature control can be performed.

そして、上記のように温度制御されているロータリーキルン1の上流側には図示しない乾燥機が配設されており、この乾燥機で攪拌乾燥され所定の水分量に調整された乾燥汚泥71は、スクリューコンベア10によってロータリーキルン1の内筒11に導入される。内筒11に導入された乾燥汚泥71は、内筒11の回転に伴い出口側に向けて移送されながら加熱されることで、先ず残留する水分が蒸発し、水分蒸発の完了に伴い有機成分の熱分解が進行し、熱分解ガスを発生しながら炭化され、所定の炭化度の炭化物72(固体燃料)としてシュート15から排出される。   A dryer (not shown) is disposed on the upstream side of the rotary kiln 1 whose temperature is controlled as described above, and the dried sludge 71 that has been agitated and dried by this dryer and adjusted to a predetermined amount of water is a screw. It is introduced into the inner cylinder 11 of the rotary kiln 1 by the conveyor 10. The dried sludge 71 introduced into the inner cylinder 11 is heated while being transported toward the outlet side as the inner cylinder 11 rotates, so that first the remaining moisture evaporates, and the organic component of the organic component is removed along with the completion of moisture evaporation. Pyrolysis proceeds, carbonized while generating pyrolysis gas, and discharged from the chute 15 as a carbide 72 (solid fuel) having a predetermined carbonization degree.

一方、熱分解によって発生した熱分解ガス73は、シュート15から図示しない乾燥ガス燃焼炉に導入され、補助燃料や加熱ガス送出管21にて熱交換された燃焼用空気と共に燃焼され、その燃焼ガスの一部は加熱ガス燃焼炉2に環流され、加熱ガス燃焼炉2にて補助燃料と共に燃焼され、ロータリーキルン1の加熱に利用される。ところで、上記加熱ガスは燃焼ガスであるため、煤煙や灰などを含んでおり、この灰が内筒11の外周面に付着すると、非接触式温度計126で計測される温度T11〜T32(Tn)と、実際のキルンシェル温度とに誤差を生じる虞がある。   On the other hand, the pyrolysis gas 73 generated by the pyrolysis is introduced from a chute 15 into a dry gas combustion furnace (not shown) and combusted together with combustion air exchanged heat in the auxiliary fuel or the heated gas delivery pipe 21, and the combustion gas. A part of this is circulated to the heated gas combustion furnace 2, burned with auxiliary fuel in the heated gas combustion furnace 2, and used for heating the rotary kiln 1. By the way, since the said heating gas is combustion gas, it contains soot, ash, etc. If this ash adheres to the outer peripheral surface of the inner cylinder 11, it will be temperature T11-T32 (Tn) measured with the non-contact-type thermometer 126. ) And the actual kiln shell temperature may cause an error.

そこで、内筒11の可動側端部13に設けた計測手段114による全熱伸び量Dの計測値に基づいて、キルンシェル温度(換算シェル温度)の平均値を求め、この値と、先述したキルンシェル温度T11〜T32の平均値(Tn)とを比較することによって、キルンシェルへの灰の付着状況を検知することができる。   Therefore, an average value of the kiln shell temperature (converted shell temperature) is obtained based on the measured value of the total thermal elongation D by the measuring means 114 provided at the movable side end 13 of the inner cylinder 11, and this value and the kiln shell described above are obtained. By comparing the average values (Tn) of the temperatures T11 to T32, it is possible to detect the state of ash adhesion to the kiln shell.

すなわち、キルン内筒11の全熱伸び量D(mm、=ΔL)、キルン内筒11の加熱部長さL(m)、キルン素材の線膨張係数α(mm/m・℃)とすると、換算シェル温度Ts(℃)は、全熱伸び率D/L(ΔL/L)をキルン素材の線膨張係数αで除算して、
Ts=D/αL
となり、この換算シェル温度Tsと上記平均シェル温度Tnとの差
ΔT=(D/αL)−Tn
が、設定値以上となった場合またはその状態が所定時間継続した場合に、キルンシェルに灰が付着したものと判断し、外筒12に設けたノズル127(図2)から、キルン内筒11の外表面に対して圧縮空気を噴射して灰を除去するようにしたり、キルン内筒11のメンテナンスを促す信号を出力したりすることができる。
That is, when the total thermal elongation D (mm, = ΔL) of the kiln inner cylinder 11, the heating part length L (m) of the kiln inner cylinder 11, and the linear expansion coefficient α (mm / m · ° C.) of the kiln material are converted. The shell temperature Ts (° C.) is obtained by dividing the total thermal elongation D / L (ΔL / L) by the linear expansion coefficient α of the kiln material,
Ts = D / αL
And the difference between the converted shell temperature Ts and the average shell temperature Tn ΔT = (D / αL) −Tn
Is equal to or greater than the set value or when the state continues for a predetermined time, it is determined that ash has adhered to the kiln shell, and the nozzle 127 (FIG. 2) provided on the outer cylinder 12 Compressed air can be sprayed onto the outer surface to remove ash, or a signal that prompts maintenance of the kiln inner cylinder 11 can be output.

さらに、キルンシェルに灰が付着した場合には、キルン内筒11の全熱伸び量に基づく換算シェル温度Tsに比べて、非接触式温度計126に基づいた平均シェル温度Tnが低くなるものの、ロータリーキルン1自体の運転に直ちに支障を来す訳ではないため、温度差ΔTが設定値以上となった場合(またはその状態が所定時間継続した場合)に、温度差ΔTに応じて非接触温度計の放射率などを用いて平均シェル温度を較正し、較正した平均シェル温度を用いて加熱ガス量調節ダンパ3または誘引ファン4の外筒12に流通させる加熱ガス量を制御し、そのままロータリーキルン1の運転を継続することもできる。   Furthermore, when ash adheres to the kiln shell, the average shell temperature Tn based on the non-contact thermometer 126 is lower than the converted shell temperature Ts based on the total thermal elongation of the kiln inner cylinder 11, but the rotary kiln 1 does not immediately disturb the operation of itself, so when the temperature difference ΔT exceeds the set value (or when the state continues for a predetermined time), the non-contact thermometer The average shell temperature is calibrated using emissivity, etc., and the amount of heated gas flowing through the outer cylinder 12 of the heated gas amount adjusting damper 3 or the induction fan 4 is controlled using the calibrated average shell temperature, and the rotary kiln 1 is operated as it is. Can be continued.

また、内筒11の部分熱伸び量D1〜D3を計測する計測手段124の計測値に基づいて、当該部分のキルンシェル温度(換算部分シェル温度)を求め、この値と、非接触式温度計126に基づいたキルンシェル温度T11〜T32(図1に示す例では、T11とT12の平均値T1、T21とT22の平均値T2、T31とT32の平均値T3)とを比較することにより、キルン内筒11の各部分P1、P2、P3ごとの計測値の誤差や灰の付着状況を検知することができる。なお、部分熱伸び量D1〜D3のうち、D2およびD3は、実際に測定される変位量から、それより固定側端部14側の部分熱伸び量D1およびD2を差引いた値を用いる必要がある。   Moreover, based on the measured value of the measurement means 124 which measures the partial thermal expansion amounts D1-D3 of the inner cylinder 11, the kiln shell temperature (converted partial shell temperature) of the said part is calculated | required, and this value and the non-contact-type thermometer 126 are obtained. By comparing the kiln shell temperatures T11 to T32 based on the above (in the example shown in FIG. 1, the average value T1 of T11 and T12, the average value T2 of T21 and T22, the average value T3 of T31 and T32) It is possible to detect an error in measured values for each of the eleven portions P1, P2, and P3 and the ash adhesion state. Of the partial thermal elongation amounts D1 to D3, D2 and D3 need to use values obtained by subtracting the partial thermal elongation amounts D1 and D2 on the fixed-side end portion 14 side from the actually measured displacement amount. is there.

このような内筒11の部分熱伸び量D1、D2、D3の計測手段124は、図4に示されるように、軸方向に加熱温度の異なる複数のゾーンを有するロータリーキルン41に実施する場合に有利である。以下、第2実施形態のロータリーキルン41について、図面と共に説明する。なお、第2実施形態のロータリーキルン41は、基本構造においては第1実施形態のロータリーキルン1と同様であるため、同様の部材には同じ符号を付し、その説明を省略する。   Such a measuring means 124 for the partial thermal expansion amounts D1, D2, and D3 of the inner cylinder 11 is advantageous when implemented in a rotary kiln 41 having a plurality of zones with different heating temperatures in the axial direction, as shown in FIG. It is. Hereinafter, the rotary kiln 41 of 2nd Embodiment is demonstrated with drawing. In addition, since the rotary kiln 41 of 2nd Embodiment is the same as that of the rotary kiln 1 of 1st Embodiment in basic structure, the same code | symbol is attached | subjected to the same member and the description is abbreviate | omitted.

図4において、ロータリーキルン41は、外筒12の内部が隔壁42、43によって3つのゾーンZ1〜Z3に区画され、各ゾーンZ1〜Z3に、加熱ガス燃焼炉2から加熱ガスが分配して供給されると共に、各ゾーンZ1〜Z3の加熱ガス流量を調節する加熱ガス量調節ダンパ31〜33を備えている。   In FIG. 4, the rotary kiln 41 is divided into three zones Z1 to Z3 by partition walls 42 and 43, and the heated gas is distributed and supplied from the heated gas combustion furnace 2 to the zones Z1 to Z3. In addition, heating gas amount adjusting dampers 31 to 33 for adjusting the heating gas flow rates of the zones Z1 to Z3 are provided.

さらに、ロータリーキルン41は、各ゾーンZ1〜Z3に1箇所の部分熱伸び量計測手段124(D1〜D3)と、2箇所の非接触式温度計126(T11〜T32)とが配設されており、各ゾーンZ1〜Z3のキルンシェル温度の計測値T1〜T3(T11とT12の平均値T1、T21とT22の平均値T2、T31とT32の平均値T3)に基づいて、各加熱ガス量調節ダンパ31〜33の開度を制御することで、各ゾーンZ1〜Z3に流通する加熱ガス量を調節し、各ゾーンZ1〜Z3のキルンシェル温度を異なる設定温度に維持可能である。   Further, the rotary kiln 41 is provided with one partial thermal elongation measuring means 124 (D1 to D3) and two non-contact thermometers 126 (T11 to T32) in each zone Z1 to Z3. Based on the measured values T1 to T3 of the kiln shell temperature of each zone Z1 to Z3 (average value T1 of T11 and T12, average value T2 of T21 and T22, average value T3 of T31 and T32), each heating gas amount adjusting damper By controlling the opening degree of 31 to 33, the amount of heated gas flowing through each zone Z1 to Z3 can be adjusted, and the kiln shell temperature of each zone Z1 to Z3 can be maintained at different set temperatures.

そして、上記各ゾーンZ1〜Z3の部分熱伸び量D1〜D3に基づいて、各ゾーンZ1〜Z3の換算シェル温度Ts1〜Ts3(D1/αL1〜D3/αL3、但しL1〜L3は各ゾーン長)を求め、この値と、各ゾーンZ1〜Z3のキルンシェル温度の計測値T1〜T3とを比較し、各温度差ΔT1〜ΔT3を求めることで、各ゾーンZ1〜Z3ごとの温度誤差や灰の付着状況を検知することができる。この際、先述した全熱伸び量Dからの換算シェル温度Tsと、各キルンシェル温度T11〜T32の平均値とを比較する方法を並行して実施しても良いことは勿論である。   Based on the partial thermal elongation amounts D1 to D3 of the zones Z1 to Z3, the converted shell temperatures Ts1 to Ts3 of the zones Z1 to Z3 (D1 / αL1 to D3 / αL3, where L1 to L3 are zone lengths). By comparing this value with the measured values T1 to T3 of the kiln shell temperature of each zone Z1 to Z3, and obtaining the temperature differences ΔT1 to ΔT3, the temperature error and ash adhesion for each zone Z1 to Z3 The situation can be detected. At this time, it goes without saying that the above-described method of comparing the converted shell temperature Ts from the total thermal elongation D and the average value of the kiln shell temperatures T11 to T32 may be performed in parallel.

また、各加熱ガス量調節ダンパ31〜33の開度を所定の比率に保持した状態で、いずれかのゾーン、例えば最も下流側に位置した出口ゾーンZ3のキルンシェル温度T3(T31とT32の平均値)が所定の温度域に維持されるように、誘引ファン4の回転数を制御することもできる。この場合、部分熱伸び量計測手段124を出口ゾーンZ3にのみ設けるようにしても良い。   In addition, the kiln shell temperature T3 (average value of T31 and T32) of any zone, for example, the outlet zone Z3 located on the most downstream side, with the heating gas amount adjusting dampers 31 to 33 being held at a predetermined ratio. ) Can be maintained in a predetermined temperature range so that the rotational speed of the induction fan 4 can be controlled. In this case, the partial thermal elongation measuring means 124 may be provided only in the exit zone Z3.

以上、本発明の実施の形態につき述べたが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形および変更が可能である。例えば、上記実施形態では、軸方向に6箇所の非接触式温度計126と、3箇所の部分熱伸び量計測手段124とを備えたロータリーキルンを示したが、これらの設置数は適宜設定できる。また、第2実施形態では、軸方向にキルンシェル温度に異なる3つのゾーンを備えたロータリーキルンを示したが、ゾーンの数はこれ以外でも良く、各ゾーンの長さが異なっていても良い。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, A various deformation | transformation and change are possible based on the technical idea of this invention. For example, in the above embodiment, the rotary kiln provided with the six non-contact thermometers 126 and the three partial thermal elongation measuring means 124 in the axial direction is shown, but the number of these can be set as appropriate. Moreover, in 2nd Embodiment, although the rotary kiln provided with three zones which differ in kiln shell temperature in an axial direction was shown, the number of zones may be other than this and the length of each zone may differ.

本発明第1実施形態の外熱式ロータリーキルンの概略を示す断面図である。It is sectional drawing which shows the outline of the external heating type rotary kiln of 1st Embodiment of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 外熱式ロータリーキルンの制御を示す図である。It is a figure which shows control of an external heating type rotary kiln. 本発明第2実施形態の外熱式ロータリーキルンの概略を示す断面図である。It is sectional drawing which shows the outline of the external heating type rotary kiln of 2nd Embodiment of this invention.

1、41 ロータリーキルン
2 加熱ガス燃焼炉
3、31、32、33 加熱ガス量調節ダンパ
4 誘引ファン(加熱ガス量調節手段)
5 温度制御手段
10 スクリューコンベア
11 内筒(キルンシェル)
12 外筒(マッフル)
13 可動側端部
14 固定側端部
15 シュート
114 計測手段(全熱伸び量計測手段)
124 計測手段(部分熱伸び量計測手段)
126 非接触式温度計
D 全熱伸び量
D1、D2、D3 部分熱伸び量
T11、T12、T21、T22、T31、T32 キルンシェル温度
P、P1、P2、P3 指標
DESCRIPTION OF SYMBOLS 1,41 Rotary kiln 2 Heated gas combustion furnace 3, 31, 32, 33 Heated gas amount adjustment damper 4 Induction fan (heating gas amount adjusting means)
5 Temperature control means 10 Screw conveyor 11 Inner cylinder (kiln shell)
12 outer cylinder (muffle)
13 Movable side end 14 Fixed side end 15 Chute 114 Measuring means (total thermal elongation measuring means)
124 Measuring means (partial thermal elongation measuring means)
126 Non-contact type thermometer D Total thermal elongation D1, D2, D3 Partial thermal elongation T11, T12, T21, T22, T31, T32 Kiln shell temperature P, P1, P2, P3 Index

Claims (6)

軸回りに回転するキルン内筒と、前記キルン内筒の周囲に加熱ガスを流通させる外筒とを備え、前記キルン内筒の内部で処理物を軸方向に移送しながら加熱処理を行なう外熱式ロータリーキルンにおいて、前記キルン内筒は、軸方向に移動可能な可動側端部および固定側端部において回転可能に支持され、前記キルン内筒の軸方向の熱伸び量を計測する熱伸び量計測手段と、前記キルン内筒の軸方向の複数位置のシェル温度を前記外筒の周壁部から計測する複数の非接触式温度計とを備えたことを特徴とする外熱式ロータリーキルン。   An external heat that includes a kiln inner cylinder that rotates around an axis and an outer cylinder that circulates a heating gas around the kiln inner cylinder, and that performs heat treatment while transferring a processed material in the axial direction inside the kiln inner cylinder. In the rotary kiln, the kiln inner cylinder is rotatably supported at the movable side end and the fixed side end movable in the axial direction, and measures the amount of thermal elongation in the axial direction of the kiln inner cylinder. An external heating rotary kiln comprising means and a plurality of non-contact thermometers that measure shell temperatures at a plurality of positions in the axial direction of the kiln inner cylinder from a peripheral wall portion of the outer cylinder. 前記熱伸び量計測手段が、前記キルン内筒の軸方向の全熱伸び量を計測する全熱伸び量計測手段を含むことを特徴とする請求項1に記載の外熱式ロータリーキルン。   2. The external heating rotary kiln according to claim 1, wherein the thermal elongation measuring unit includes a total thermal elongation measuring unit that measures a total thermal elongation in the axial direction of the kiln inner cylinder. 前記熱伸び量計測手段が、前記キルン内筒の軸方向の中間部分における熱伸び量を、前記外筒の周壁部から計測する少なくとも1つの部分熱伸び量計測手段を含むことを特徴とする請求項1に記載の外熱式ロータリーキルン。   The thermal elongation measurement means includes at least one partial thermal elongation measurement means for measuring a thermal elongation amount in an axial intermediate portion of the kiln inner cylinder from a peripheral wall portion of the outer cylinder. Item 2. An externally heated rotary kiln according to Item 1. 前記外筒が軸方向に複数のゾーンに区画され、該各ゾーンに前記非接触式温度計が配設されており、前記各ゾーンの加熱ガス流量を調節する加熱ガス量調節手段と、前記各ゾーンのシェル温度の計測値に基づいて前記加熱ガス量調節手段を制御する温度制御手段とをさらに備えていることを特徴とする請求項1に記載の外熱式ロータリーキルン。   The outer cylinder is divided into a plurality of zones in the axial direction, the non-contact type thermometer is disposed in each zone, and a heating gas amount adjusting means for adjusting a heating gas flow rate in each zone; The external heating type rotary kiln according to claim 1, further comprising temperature control means for controlling the heating gas amount adjusting means based on a measured value of a shell temperature of the zone. 前記熱伸び量計測手段が、前記各ゾーンにおける熱伸び量を前記外筒の周壁部から計測するゾーン熱伸び量計測手段を含むことを特徴とする請求項4に記載の外熱式ロータリーキルン。   5. The externally heated rotary kiln according to claim 4, wherein the thermal elongation measuring unit includes a zone thermal elongation measuring unit that measures a thermal elongation amount in each zone from a peripheral wall portion of the outer cylinder. 前記加熱ガス量調節手段が、1系統の加熱ガスを前記各部分に所定の流量比で配分するための加熱ガス分配手段と、前記1系統の加熱ガスの全流量を調節する加熱ガス全流量調節手段とを含むことを特徴とする請求項4または5に記載の外熱式ロータリーキルン。   The heating gas amount adjusting means adjusts the total flow rate of the heating gas for adjusting the total flow rate of the heating gas of the one system, and the heating gas distribution means for distributing the heating gas of one system to the respective parts at a predetermined flow rate ratio. The externally heated rotary kiln according to claim 4 or 5, characterized by comprising: means.
JP2007014619A 2007-01-25 2007-01-25 Externally heated rotary kiln Active JP5235308B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007014619A JP5235308B2 (en) 2007-01-25 2007-01-25 Externally heated rotary kiln
TW96140599A TWI341915B (en) 2007-01-25 2007-10-29 External heating rotary kiln and operating method therefor
CN2007101934526A CN101231144B (en) 2007-01-25 2007-11-27 External heating rotary kiln and operation method thereof
HK08110316.8A HK1114899A1 (en) 2007-01-25 2008-09-17 External heating rotary kiln and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014619A JP5235308B2 (en) 2007-01-25 2007-01-25 Externally heated rotary kiln

Publications (2)

Publication Number Publication Date
JP2008180451A JP2008180451A (en) 2008-08-07
JP5235308B2 true JP5235308B2 (en) 2013-07-10

Family

ID=39724479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014619A Active JP5235308B2 (en) 2007-01-25 2007-01-25 Externally heated rotary kiln

Country Status (4)

Country Link
JP (1) JP5235308B2 (en)
CN (1) CN101231144B (en)
HK (1) HK1114899A1 (en)
TW (1) TWI341915B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465119B2 (en) 2013-11-13 2019-11-05 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Externally heated carbonization furnace

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911203B2 (en) * 2009-07-23 2012-04-04 株式会社村田製作所 In-furnace temperature measurement method, in-furnace temperature measurement device, heat treatment device, and calcining synthesis method of ceramic raw material powder
WO2011052495A1 (en) * 2009-10-29 2011-05-05 月島機械株式会社 Rotary heat treatment apparatus
JP5911124B2 (en) 2011-09-21 2016-04-27 三菱重工環境・化学エンジニアリング株式会社 Heat treatment device
CN104422274B (en) * 2013-08-19 2016-09-28 丹东玉龙镁业有限公司 A kind of heating in medium frequency calcining furnace
CN104197698B (en) * 2014-09-17 2016-07-06 太原钢铁(集团)有限公司 A kind of cylinder of rotary kiln temp measuring method
CN104677090B (en) * 2015-01-27 2016-09-07 中钢集团马鞍山矿山研究院有限公司 A kind of external-heat high temperature reduction fuming calcination rotary kiln
JP6586797B2 (en) * 2015-07-04 2019-10-09 宇部興産株式会社 Indirect heating type rotary kiln and its operating method
US10723953B2 (en) 2015-07-30 2020-07-28 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Carbide producing method and carbide producing device
JP6375567B2 (en) 2016-02-18 2018-08-22 三菱重工環境・化学エンジニアリング株式会社 Biomass fuel production plant
KR101807077B1 (en) * 2017-01-10 2017-12-08 고등기술연구원연구조합 Indirect rotary kiln reactor
CN106949477B (en) * 2017-04-27 2018-03-02 六合峰(天津)科技股份有限公司 A kind of processing system of Biohazard Waste and its use technique
JP6904202B2 (en) * 2017-09-27 2021-07-14 住友金属鉱山株式会社 Kilnbeco occurrence detection system and kilnbeco occurrence detection method
JP6913043B2 (en) * 2018-02-22 2021-08-04 パンパシフィック・カッパー株式会社 How to operate a metal smelter
JP6525100B1 (en) * 2018-08-27 2019-06-05 宇部興産株式会社 Biomass solid fuel production method and biomass solid fuel production apparatus
CN109135778B (en) * 2018-09-06 2020-08-28 西安三瑞实业有限公司 Reaction control system and method for external heating type rotary furnace dry distillation device
CN109520286A (en) * 2018-11-06 2019-03-26 长兴新亚环保机械科技有限公司 A kind of industrial furnace convenient for heat dissipation
CN109708464B (en) * 2019-01-02 2024-01-02 宁波大学 Double-cylinder rotary kiln for smoke-gas split-flow purification
CN109800739B (en) * 2019-02-21 2023-04-25 四川中天炬矿业有限公司 Temperature detection device of electric heating rotary kiln
JP7338309B2 (en) * 2019-08-06 2023-09-05 住友金属鉱山株式会社 Method for smelting oxide ore
CN110358553B (en) * 2019-08-21 2024-05-17 海南大学 Rotary type quick gas infrared radiation carbonization furnace
CN111686468A (en) * 2020-06-24 2020-09-22 赵文庆 Explosion-proof distillation retort for chemical industry equipment
CN113154872B (en) * 2021-04-22 2022-07-19 重庆科技学院 Low-temperature plasma combined rotary kiln
CN116286053B (en) * 2023-03-20 2023-09-05 上海市农业科学院 Intelligent control system based on biochar preparation
CN116986781B (en) * 2023-09-27 2023-12-05 东营光年石油科技有限公司 Harmless treatment equipment and method for petroleum exploitation sludge

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2774131B2 (en) * 1989-03-06 1998-07-09 興亜石油株式会社 Kiln inner wall temperature detector
CN2222889Y (en) * 1995-08-25 1996-03-20 陈志成 Continuous thermometering device for rotary kiln
JP2903045B2 (en) * 1997-06-20 1999-06-07 千勝 原田 Rotary carbonization furnace
CN2317453Y (en) * 1997-12-26 1999-05-05 袁奕明 External heating rotary kiln
JP2000161859A (en) * 1998-11-30 2000-06-16 Daido Steel Co Ltd External heating rotary kiln furnace and its operation control method
JP2001208611A (en) * 2000-01-28 2001-08-03 Toshiba Corp Method and device for measuring temperature
JP2002208591A (en) * 2001-01-09 2002-07-26 Hitachi Kokusai Electric Inc Heat treatment apparatus
JP2005257218A (en) * 2004-03-15 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Waste treatment device
JP5082155B2 (en) * 2005-03-18 2012-11-28 Dowaエコシステム株式会社 Waste treatment system
CN2828698Y (en) * 2005-10-20 2006-10-18 朱东海 Rotary kiln with on-lin temp measuring device on rotary kiln

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465119B2 (en) 2013-11-13 2019-11-05 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Externally heated carbonization furnace

Also Published As

Publication number Publication date
CN101231144A (en) 2008-07-30
TWI341915B (en) 2011-05-11
TW200831828A (en) 2008-08-01
JP2008180451A (en) 2008-08-07
HK1114899A1 (en) 2008-11-14
CN101231144B (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP5235308B2 (en) Externally heated rotary kiln
JP5752212B2 (en) Externally heated carbonization furnace
JP6375567B2 (en) Biomass fuel production plant
NL2004712C2 (en) Batch-wise operated retort using buffering of heat.
JP6500305B2 (en) Method of producing carbide and carbide producing apparatus
Patisson et al. Coal pyrolysis in a rotary kiln: Part II. Overall model of the furnace
Schuler et al. TACCOS—A thermography-assisted combustion control system for waste incinerators
JP6624723B2 (en) Rotary kiln
JP4998045B2 (en) Rotary kiln type high temperature processing equipment
EP3025110B1 (en) System and method for recovering waste heat generated in internally insulated reactors
CN107025316B (en) Method for monitoring temperature of water-cooled wall gasifier
JP4234727B2 (en) In-furnace condition monitoring / control method and apparatus for melting furnace
RU2252364C1 (en) Method and device for adjusting burning mode for steam- producing plant
JP6338430B2 (en) Swirling fluidized bed furnace
JP5148884B2 (en) Method and apparatus for producing solid fuel
JP3839304B2 (en) Waste pyrolysis apparatus and control method thereof
JP3763963B2 (en) Stoker temperature control device for waste incinerator and combustion control device for waste incinerator equipped with the same
JP2008215665A (en) Method and device for adjusting basicity of slag in gasification melting furnace
JP4516319B2 (en) Thermal decomposition apparatus and control method thereof
KR101524301B1 (en) Heating apparatus of slab and heating method by using the same
JPH11267624A (en) Transporting device for high-temperature solid and method for temperature management when transporting high-temperature solid
CN113884195A (en) Monitoring device and monitoring method for thickness and temperature of refractory brick layer
JPH10141632A (en) Combustion control method for incinerator
TH36543B (en) Rotary kilns for external heating and operating methods

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5235308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250