JP4146420B2 - Blast furnace tapping temperature and hot metal / molten slag mixing ratio measurement method - Google Patents

Blast furnace tapping temperature and hot metal / molten slag mixing ratio measurement method Download PDF

Info

Publication number
JP4146420B2
JP4146420B2 JP2004373292A JP2004373292A JP4146420B2 JP 4146420 B2 JP4146420 B2 JP 4146420B2 JP 2004373292 A JP2004373292 A JP 2004373292A JP 2004373292 A JP2004373292 A JP 2004373292A JP 4146420 B2 JP4146420 B2 JP 4146420B2
Authority
JP
Japan
Prior art keywords
temperature
hot metal
molten slag
spectral
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004373292A
Other languages
Japanese (ja)
Other versions
JP2006177873A (en
Inventor
雅人 杉浦
眞六 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004373292A priority Critical patent/JP4146420B2/en
Publication of JP2006177873A publication Critical patent/JP2006177873A/en
Application granted granted Critical
Publication of JP4146420B2 publication Critical patent/JP4146420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、高炉の出銑口から流出する溶銑と溶融スラグの混合物(出銑滓)の混合比率及び温度を測定するための、高炉出銑滓の温度及び溶銑・溶融スラグ混合比率測定方法に関するものである。   The present invention relates to a method for measuring the temperature of a blast furnace discharge and a mixture ratio of molten iron / molten slag for measuring the mixing ratio and temperature of a mixture of molten iron and molten slag flowing out from the outlet of the blast furnace. Is.

高炉操業において出銑口からの流出物温度は炉内の熱状況を判断する重要な指標の一つである。この温度が変動する場合は、熱分布が不均一であることなどが考えられ、好ましくない。このため、高炉の出銑口から流出する溶銑の温度推移を測定するための種々の方法が工夫されている。   In blast furnace operation, the temperature of the effluent from the tap is one of the important indicators for judging the heat condition in the furnace. When this temperature fluctuates, it is considered that the heat distribution is not uniform, which is not preferable. For this reason, various methods for measuring the temperature transition of the hot metal flowing out from the outlet of the blast furnace have been devised.

高炉の出銑口から、溶銑と溶融スラグが混合された状態で流出し、その後スキンマー装置により溶銑と溶融スラグとが分離され、溶銑は溶銑樋に流されていく。出銑口から流出する溶銑と溶融スラグの混合物を、以下「出銑滓」という。また、出銑口から流出する出銑滓の温度を「出銑滓温度」という。   The hot metal and molten slag flow out from the blast furnace outlet, and after that, the hot metal and molten slag are separated by the skinmer device, and the molten iron flows into the molten iron. Hereinafter, the mixture of molten iron and molten slag flowing out from the outlet is referred to as “depot”. In addition, the temperature of the output flowing out from the output port is referred to as “output temperature”.

従来用いられている出銑滓温度測定方法として第1に、浸漬消耗型熱電対を用いてスキンマー装置において間欠的に溶銑温度を測定する方法が用いられている。測定精度・信頼性の高い測温が可能であるが、使い捨てにする貴金属熱電対プローブのコスト、人手入力の労力等の制約から出銑中数回の間欠的な測定に限られる。また、出銑開始から数十分間は溶銑から樋耐火物への抜熱が大きく、スキンマー装置において測温する溶銑温度は出銑時点の出銑滓温度より低い値とならざるを得ない。高炉の炉内状況を把握する上では出銑滓温度そのものが重要であり、スキンマー装置における溶銑温度と出銑口での出銑滓温度との差が誤差要因となる。   First, a method of measuring hot metal temperature intermittently in a skinmer device using an immersion consumable thermocouple is used as a method of measuring the hot metal temperature used conventionally. Although it is possible to measure temperature with high measurement accuracy and reliability, it is limited to intermittent measurement several times during output due to limitations such as the cost of the precious metal thermocouple probe to be disposable and the labor of manual input. In addition, heat removal from the hot metal to the refractory is large for several tens of minutes from the start of the brewing, and the hot metal temperature measured by the skinmer device must be lower than the brewing temperature at the time of the brewing. The output temperature itself is important in grasping the blast furnace conditions, and the difference between the hot metal temperature in the skinmer device and the output temperature at the outlet is an error factor.

高温物体の温度を非接触で測温する方法として放射測温を用いることができる。物体の放射率が既知であれば、測定した放射輝度と放射率に基づいて物体の温度を測定することができる。特定波長の放射輝度測定結果とその波長における既知の分光放射率に基づいて測定する方法、あるいは全放射エネルギと全放射率とに基づいて測定する方法がある。   Radiation temperature measurement can be used as a method for measuring the temperature of a hot object in a non-contact manner. If the emissivity of the object is known, the temperature of the object can be measured based on the measured radiance and emissivity. There are a method of measuring based on a radiance measurement result of a specific wavelength and a known spectral emissivity at that wavelength, or a method of measuring based on total radiant energy and total emissivity.

出銑口からの噴出流には溶銑と溶融スラグとが混在しており、溶銑と溶融スラグとでは放射率が異なる。そのため、高炉出銑口において放射測温を行い、溶銑の放射率を用いて溶銑温度を測定しようとした場合、溶融スラグの部分では放射率が異なるため誤った温度が測定されることとなる。   Hot metal and molten slag coexist in the spout from the outlet, and the emissivity differs between hot metal and molten slag. For this reason, when radiation temperature measurement is performed at the blast furnace outlet, and the hot metal temperature is measured using the emissivity of the hot metal, an erroneous temperature is measured because the emissivity is different in the molten slag portion.

放射率が一定でない対象について放射測温を行う場合においては、放射エネルギーが検出可能である波長範囲内において極力短い波長を用いて測温を行うことにより測温誤差が小さくなることが知られている。この点については、プランクの黒体放射理論から導き出すことができる。そのため、1400〜1600℃の出銑滓温度領域では、波長0.5〜0.9μm程度の波長帯域が放射測温に用いられている。   In the case of performing radiation temperature measurement on an object whose emissivity is not constant, it is known that the temperature measurement error is reduced by performing temperature measurement using a wavelength as short as possible within the wavelength range in which the radiant energy can be detected. Yes. This point can be derived from Planck's blackbody radiation theory. For this reason, in the temperature range of 1400 to 1600 ° C., a wavelength band of about 0.5 to 0.9 μm is used for radiation temperature measurement.

放射測温において、測温対象の放射率が変動する問題に対処するため、2つ以上の観察波長で分光放射輝度を測定する方法が知られており、二色法と呼ばれている。波長の異なる2つの分光放射率の関係が比例関係を保って変動する場合、2つの分光放射輝度の比が温度のみに依存するので正確に温度を求めることが可能となる。   In the radiation temperature measurement, a method of measuring the spectral radiance at two or more observation wavelengths is known in order to cope with the problem that the emissivity of the temperature measurement object fluctuates, and is called a two-color method. When the relationship between the two spectral emissivities having different wavelengths varies in a proportional relationship, the ratio of the two spectral radiances depends only on the temperature, so that the temperature can be accurately obtained.

ところが、出銑滓の放射温度測定として前述の二色法を用いても、出銑滓の温度を必要な精度で測定することが困難であることがわかっている。溶銑分光放射率の波長依存性と、溶融スラグ分光放射率の波長依存性とが全く異なるため、溶銑と溶融スラグの混合比率が変化する際における分光放射率の変動において、波長の異なる2つの分光放射率の関係が一定定数の比例関係になり得ないからである。   However, it has been found that even if the above-described two-color method is used for measuring the radiation temperature of the output, it is difficult to measure the temperature of the output with the necessary accuracy. Since the wavelength dependence of the hot metal spectral emissivity is completely different from the wavelength dependence of the molten slag spectral emissivity, the two spectra with different wavelengths are varied in the variation of the spectral emissivity when the mixing ratio of the hot metal and molten slag changes. This is because the emissivity relationship cannot be a constant constant proportional relationship.

スキンマー装置で溶銑と溶融スラグが分離された以降の溶銑樋において、溶銑温度を放射測温により連続的に測定する方法が知られている。しかし、溶銑樋の部位においても溶銑の上には溶融スラグなどが浮遊しており、この浮遊物が雑音源となって温度測定値の急変などが起こり、正確な温度測定が困難であった。特許文献1においては、溶銑の温度を非接触の温度計で測定する際、溶銑表面状態による特定の測温値パターンを検出分類し、パターンに応じたノイズ除去処理を行うことを特徴とする溶銑温度の検出方法が記載されている。また特許文献2には、高炉出銑樋を流れる溶銑の温度を放射温度計で測定する方法において、溶銑表面に溶銑と放射率の異なる鉱滓が存在する場合、測定データ上、溶銑と鉱滓とを区別することによって、鉱滓による測定誤差を自動的に補正し、精度良く溶銑温度を測定する方法が記載されている。   In the hot metal after the hot metal and the molten slag are separated by the skinmer apparatus, a method of continuously measuring the hot metal temperature by radiation temperature measurement is known. However, even in the hot metal part, molten slag and the like are floating on the hot metal, and the suspended matter has become a noise source, causing a sudden change in the temperature measurement value, making accurate temperature measurement difficult. In Patent Document 1, when measuring the temperature of hot metal with a non-contact thermometer, a specific temperature measurement pattern according to the hot metal surface state is detected and classified, and noise removal processing is performed according to the pattern. A temperature detection method is described. Further, in Patent Document 2, in the method of measuring the temperature of the hot metal flowing through the blast furnace tuna with a radiation thermometer, if there is a hot metal having a different emissivity from the hot metal surface, the hot metal and the hot metal are determined on the measurement data. A method is described in which the measurement error due to the iron slag is automatically corrected by distinguishing and the hot metal temperature is measured with high accuracy.

特許文献3には、出銑口から噴出する溶銑に光ファイバを浸漬して放射測温を行う方法が記載されている。光ファイバ放射温度計に接続された消耗型金属管被覆光ファイバを溶銑噴流中に送り込み、溶銑内部で直接熱放射を受光する。   Patent Document 3 describes a method of measuring radiation temperature by immersing an optical fiber in hot metal ejected from a spout. A consumable metal tube-coated optical fiber connected to an optical fiber radiation thermometer is fed into the hot metal jet and receives heat radiation directly inside the hot metal.

特許文献4には、スラグのみを流出させて放射測温を行い、別途求めた溶銑温度とスラグ温度との関係に基づき溶銑温度を推定する方法が記載されている。この方法は、混銑車の耐火物容器等に収容された溶銑の温度を測定する方法であって、容器からスラグのみを流し出すことができる場合の測温方法である。高炉の出銑口では溶銑、溶融スラグが混在した状態で流出しており、スラグあるいは溶銑を意図的に選択して流出させることはできないので、出銑口から流出する溶銑の温度を測定するためにはこの方法を適用することはできない。   Patent Document 4 describes a method of estimating the hot metal temperature based on the relationship between the hot metal temperature and the slag temperature obtained separately by causing only the slag to flow out and performing radiation temperature measurement. This method is a method for measuring the temperature of the hot metal contained in a refractory container or the like of a kneading vehicle, and is a temperature measuring method when only slag can be poured out from the container. In order to measure the temperature of the hot metal flowing out from the tap outlet, it flows out in the state where hot metal and molten slag coexist at the outlet of the blast furnace, and slag or hot metal cannot be selected intentionally. This method cannot be applied.

特開平1−233329号公報JP-A-1-233329 特開平1−185422号公報JP-A-1-185422 特開平8−82553号公報JP-A-8-82553 特開2001−115208号公報JP 2001-115208 A

従来、放射測温によって高炉の溶銑温度を測温する場合においては、溶融スラグによる測定誤差を極力排除する目的で、スキンマー装置で溶銑と溶融スラグを分離した後の溶銑樋における溶銑温度測定が行われていた。しかしこの方法では、出銑口から溶銑樋までの間で溶銑温度が降下し、この温度降下代が一定ではないため、出銑口における溶銑温度を精度良く測定することが困難であった。また、溶銑樋においても溶銑の上に溶融スラグが浮遊しており、たとえ特許文献1、2に記載の方法を用いたとしても、浮遊スラグに起因する温度測定誤差を十分に低減することは困難であった。   Conventionally, when measuring the hot metal temperature of a blast furnace by radiation temperature measurement, the hot metal temperature measurement in hot metal after separating hot metal and molten slag with a skinmer device has been performed for the purpose of eliminating measurement errors due to molten slag as much as possible. It was broken. However, with this method, the hot metal temperature drops from the hot metal outlet to the hot metal, and the temperature drop is not constant, so it is difficult to accurately measure the hot metal temperature at the hot metal outlet. Further, even in the hot metal, the molten slag is floating on the hot metal, and even if the methods described in Patent Documents 1 and 2 are used, it is difficult to sufficiently reduce the temperature measurement error caused by the floating slag. Met.

特許文献3に記載の方法においては、光ファイバ先端の昇降装置、メジャーロールからなる送り出し機構が必要であり、装置が大がかりになるとともに、出銑口からのガス噴出に起因して溶銑や溶融スラグが飛散することもあり、出銑口付近に置かれる装置の耐久性が懸念される。   The method described in Patent Document 3 requires an elevating device at the tip of an optical fiber and a delivery mechanism composed of a measure roll. The apparatus becomes large, and hot metal or molten slag is caused by gas ejection from the spout. May scatter, and there is concern about the durability of the device placed near the tap.

本発明は、高炉の出銑口から流出する出銑滓の温度を簡易にかつ連続的に正確に測温するための高炉出銑滓温度測定方法を提供することを第1の目的とする。   A first object of the present invention is to provide a blast furnace tapping temperature measuring method for simply and continuously accurately measuring the temperature of the tapping outflow from a blast furnace tapping outlet.

高炉の出銑口から流出する溶銑と溶融スラグの混合比率によって評価されるスラグ流出状況は、高炉炉底部貯銑滓層の健全性を推定する一つの指標である。従って、溶銑と溶融スラグの混合比率を測定することができれば、高炉の健全性を評価するための貴重な情報となる。   The slag outflow condition evaluated by the mixing ratio of the molten iron and molten slag flowing out from the blast furnace outlet is one index for estimating the soundness of the blast furnace bottom reservoir. Therefore, if the mixing ratio of hot metal and molten slag can be measured, it becomes valuable information for evaluating the soundness of the blast furnace.

前述のとおり、銑滓混合流はスキンマー装置で溶銑と溶融スラグに分離される。溶銑はトーピードカー(混銑車)に注入され、溶銑生成量はトーピードカーごと秤量される。一方、溶融スラグは水冷により固化して粉砕され搬出されるが、粉砕後に秤量されるため流出量がわかるまで数時間を要する。従って、出銑口から流出する出銑滓における溶銑と溶融スラグの混合比率をオンラインで知ることはできなかった。   As described above, the soot mixed stream is separated into hot metal and molten slag by a skinmer apparatus. The hot metal is poured into a torpedo car (chaotic car), and the amount of hot metal produced is weighed together with the torpedo car. On the other hand, the molten slag is solidified by water cooling and pulverized and carried out, but since it is weighed after pulverization, it takes several hours until the outflow amount is known. Therefore, it was impossible to know online the mixing ratio of hot metal and molten slag in the outflow flowing out from the outlet.

本発明は、高炉の出銑口から流出する出銑滓の溶銑と溶融スラグの混合比率を測定する方法を提供することを第2の目的とする。   The second object of the present invention is to provide a method for measuring the mixing ratio of the molten iron and molten slag flowing out from the outlet of the blast furnace.

即ち、本発明の要旨とするところは以下の通りである。
高炉出銑口から流出する出銑滓について遠赤外帯域( 以下「長波長帯域」という。) の波長で分光放射輝度を測定し、この測定分光放射輝度に基づいて溶銑と溶融スラグとの混合比率を求める高炉出銑滓の溶銑・溶融スラグ混合比率測定方法であって、
測定分光放射輝度Lmeas,LW と、1500〜1600℃の範囲におけるいずれかの温度での前記波長のプランクの黒体放射輝度L b,LW から出銑滓の長波長分光放射率εLWを求め、予め求めておいた長波長帯域での溶銑分光放射率εm,LWと溶融スラグ分光放射率εs,LWと出銑滓の長波長分光放射率εLWとから溶銑と溶融スラグとの混合比率Rを算出することを特徴とする高炉出銑滓の溶銑・溶融スラグ混合比率測定方法。
(2)測定分光放射輝度L meas,LW と、1500〜1600℃の範囲におけるいずれかの温度での前記波長のプランクの黒体放射輝度L b,LW とから出銑滓の長波長分光放射率ε L W を式(1)で求め、
ε LW = L meas,LW / L b,LW (1)
該長波長分光放射率ε LW 、溶銑の長波長分光放射率ε m,LW と溶融スラグの長波長分光放射率ε s,LW から溶銑・スラグ混合比率Rを式(2)によって、
R = (ε s,LW − ε LW )/(ε s,LW − ε m,LW ) (2)
推定することを特徴とする上記(1)記載の高炉出銑滓の溶銑・溶融スラグ混合比率測定方法。
)長波長帯域は波長8〜12μm帯域であることを特徴とする上記()又は()に記載の高炉出銑滓の溶銑・溶融スラグ混合比率測定方法。
上記(1)乃至(3)のうちの1項に記載の高炉出銑滓の溶銑・溶融スラグ混合比率測定方法によって、
長波長帯域での測定分光放射輝度Lmeas,LWに基づいて溶銑と溶融スラグとの混合比率Rを求め、求めた混合比率R、短波長帯域での溶銑の分光放射率εm,SWと溶融スラグの分光放射率εs,SW、及び短波長帯域での測定分光放射輝度Lmeas,SWに基づいて、出銑滓の温度Tを定めることを特徴とする高炉出銑滓温度測定方法。
)出銑滓の温度Tを定めるに際し、溶銑と溶融スラグとの混合比率R及び短波長帯域での溶銑の分光放射率εm,SWと溶融スラグの分光放射率εs,SWから、短波長帯域での出銑滓の分光放射率εSWを求め、これと短波長帯域での測定分光放射輝度Lmeas,SWとを対比することによって出銑滓の温度Tを定めることを特徴とする上記(4)に記載の高炉出銑滓温度測定方法。
)短波長帯域は波長0.5〜1.5μm帯域であり、長波長帯域は波長8〜12μm帯域であることを特徴とする上記(4)又は(5)に記載の高炉出銑滓温度測定方法。
That is, the gist of the present invention is as follows.
( 1 ) Spectral radiance is measured in the far-infrared band (hereinafter referred to as “long wavelength band”) for the outflow flowing out from the blast furnace outlet, and hot metal and molten slag are measured based on the measured spectral radiance. A method for measuring the mixing ratio of molten iron and molten slag in the blast furnace
Measuring spectral radiance L meas, and LW, black body radiance of Planck of the wavelength at any temperature in the range of 1,500 to 1,600 ° C. L b, the long-wavelength spectral emissivity epsilon LW of tapping slag from the LW The hot metal spectral emissivity ε m, LW and the molten slag spectral emissivity ε s, LW and the long wavelength spectral emissivity ε LW of the iron blast furnace tapping slag molten iron-molten slag mixture ratio measurement method characterized Rukoto issuing calculate the mixture ratio R.
(2) Long wavelength spectral emissivity of output from measured spectral radiance L meas, LW and plank's black body radiance L b, LW of the wavelength at any temperature in the range of 1500-1600 ° C. ε LW is obtained by equation (1),
ε LW = L meas, LW / L b, LW (1)
From the long-wavelength spectral emissivity ε LW , the long-wavelength spectral emissivity ε m, LW of the molten iron and the long-wavelength spectral emissivity ε s, LW of the molten slag,
R = (ε s, LW - ε LW) / (ε s, LW - ε m, LW) (2)
The method for measuring the hot metal / molten slag mixing ratio of the blast furnace feed described in the above (1), characterized by estimating.
( 3 ) The method for measuring the mixing ratio of molten iron / molten slag in the blast furnace as described in ( 1 ) or ( 2 ) above, wherein the long wavelength band is a wavelength band of 8 to 12 μm.
( 4 ) By the method for measuring the hot metal / molten slag mixing ratio of the blast furnace feed as described in one of (1) to (3 ) above,
Based on the measured spectral radiance L meas, LW in the long wavelength band, the mixing ratio R of the hot metal and molten slag is obtained, and the obtained mixing ratio R, the spectral emissivity ε m, SW of the hot metal in the short wavelength band and melting A method for measuring a blast furnace outlet temperature, wherein the temperature T of the slag is determined based on the spectral emissivity ε s, SW of the slag and the measured spectral radiance L meas, SW in a short wavelength band.
( 5 ) When determining the temperature T of the molten iron, from the mixing ratio R of the molten iron and molten slag and the spectral emissivity ε m, SW of the molten iron in the short wavelength band and the spectral emissivity ε s, SW of the molten slag, The output emissivity ε SW of the output in the short wavelength band is obtained, and the output temperature T is determined by comparing this with the measured spectral radiance L meas, SW in the short wavelength band. The blast furnace discharge temperature measuring method according to (4) above.
( 6 ) The blast furnace output as described in (4) or (5) above, wherein the short wavelength band is a wavelength of 0.5 to 1.5 μm and the long wavelength band is a wavelength of 8 to 12 μm. Temperature measurement method.

なお上記本発明において、短波長帯域での溶銑の分光放射率εm,SWと溶融スラグの分光放射率εs,SWについては、測定に先立って予め求めておく。 In the present invention, the spectral emissivity ε m, SW of the hot metal in the short wavelength band and the spectral emissivity ε s, SW of the molten slag are obtained in advance prior to measurement.

本発明によれば、放射測温の精度を決める放射率をオンラインで測定しつつ放射測温を行うことができるので、溶銑とスラグが未知の比率で混在するため放射率が変動する高炉出銑噴流について、精度の高い測温が可能である。   According to the present invention, it is possible to perform radiation temperature measurement while measuring the emissivity that determines the accuracy of the radiation temperature measurement on-line. Therefore, since the hot metal and slag are mixed at an unknown ratio, the emissivity varies. The temperature of the jet can be measured with high accuracy.

放射測温の特徴として、出銑口付近に装置を設置する必要がなく、離れた場所から遠隔測定するので、溶銑・スラグの熱放射、スプラッシュなどの環境対策が簡便である。また、連続的な測定が可能であり、出銑温度の変化、推移から高炉内部の熱状況を今まで以上に迅速かつ正確に把握できるようになり、高炉操業をより安定させることができる。   As a feature of radiation temperature measurement, there is no need to install a device near the tap and remote measurement is performed from a remote location, so environmental measures such as hot metal / slag thermal radiation and splash are simple. In addition, continuous measurement is possible, and it becomes possible to grasp the heat condition inside the blast furnace more quickly and accurately than the change and transition of the tapping temperature, so that the operation of the blast furnace can be made more stable.

また本発明は、高炉の出銑口から流出する溶銑と溶融スラグの混合比率をオンラインで評価することができるので、高炉炉底部貯銑滓層の健全性を精度良く推定することが可能となる。   Moreover, since the present invention can evaluate the mixing ratio of the molten iron and molten slag flowing out from the outlet of the blast furnace online, it is possible to accurately estimate the soundness of the blast furnace bottom reservoir layer. .

まず、従来の放射測温法を用いて出銑滓の温度を測定する際における問題点について説明する。   First, problems in measuring the temperature of the brewery using a conventional radiation temperature measurement method will be described.

前述のとおり、出銑口からは溶銑と溶融スラグとが混合した状態で噴出する。出銑初期と末期の短時間は溶銑あるいは溶融スラグのみであることもあるが、通常の出銑中は溶銑と溶融スラグが液体として混合された状態で流出している。溶銑と溶融スラグの混合比は常に変動し、出銑口付近においてオンラインでこの混合比を求めることもできない。前述のとおり溶銑と溶融スラグとでは放射率が異なる。そのため、放射率として溶銑の放射率を用いて放射測温を行うと、放射測温観察視野に溶融スラグが存在する瞬間には測定温度が実際の温度より高い方にずれる誤差が生じることとなる。   As described above, the molten iron and the molten slag are ejected from the tap outlet in a mixed state. Although there are cases where only the hot metal or molten slag is used for a short period of time between the beginning and the end of the brewing process, the molten iron and the molten slag flow out in a mixed state as a liquid during normal brewing. The mixing ratio of hot metal and molten slag always fluctuates, and it is not possible to obtain this mixing ratio online near the tap. As described above, the emissivity is different between hot metal and molten slag. For this reason, when radiation temperature measurement is performed using the emissivity of the hot metal as the emissivity, an error occurs in which the measured temperature deviates from the actual temperature at the moment when molten slag is present in the radiation temperature observation field of view. .

従来、溶銑と溶融スラグとの波長毎の分光放射率は詳細に調べられていなかった。特に高温溶融状態の高炉スラグの分光放射率の赤外域での波長依存性は知られていなかった。そこで本発明者は、溶銑、溶融スラグのそれぞれの分光放射率を実験によって調査した。その結果、図1に示すように、溶銑の分光放射率は波長が長くなるに従って漸減し、一方で溶融スラグの分光放射率には波長1.3μm付近に極小値があり、それより長波長側では波長が長くなるに従って漸増することが明らかになった。   Conventionally, the spectral emissivity for each wavelength of hot metal and molten slag has not been examined in detail. In particular, the wavelength dependence in the infrared region of the spectral emissivity of blast furnace slag in a high-temperature molten state has not been known. Therefore, the present inventor investigated the spectral emissivities of hot metal and molten slag by experiments. As a result, as shown in FIG. 1, the spectral emissivity of the hot metal gradually decreases as the wavelength becomes longer, while the spectral emissivity of the molten slag has a local minimum value near the wavelength of 1.3 μm and is longer than that. Then, it became clear that it gradually increased as the wavelength increased.

出銑滓の放射測温に二色法を用いても正確な温度測定ができなかった理由は、溶銑と溶融スラグとの分光放射率の波長依存性の上記特徴に起因するものであった。例えば、波長2μmを短波長側とし、波長10μmを長波長側として二色法を用いる場合を想定する。出銑滓が100%溶銑であって放射率が最も低くなる場合、短波長の分光放射率は長波長の分光放射率よりも大きな値となる。一方、出銑滓が100%溶融スラグであって放射率が最も高くなる場合、短波長の分光放射率は長波長の分光放射率よりも小さな値となる。即ち、溶銑と溶融スラグの混合比率が変動して放射率が変動するに際し、短波長側の分光放射率と長波長側の分光放射率との比が一定に保持されず、比例関係を保たないのである。これでは、出銑滓温度を二色法で測定することは不可能である。   The reason why accurate temperature measurement was not possible even when the two-color method was used for the radiation temperature measurement of the hot metal was due to the above-mentioned characteristics of the wavelength dependence of the spectral emissivity of the hot metal and molten slag. For example, it is assumed that the dichroic method is used with a wavelength of 2 μm as the short wavelength side and a wavelength of 10 μm as the long wavelength side. When the output is 100% hot metal and the emissivity is the lowest, the short wavelength spectral emissivity is larger than the long wavelength spectral emissivity. On the other hand, when the output is 100% molten slag and the emissivity is the highest, the short wavelength spectral emissivity is smaller than the long wavelength spectral emissivity. That is, when the mixing ratio of hot metal and molten slag changes and the emissivity fluctuates, the ratio between the spectral emissivity on the short wavelength side and the spectral emissivity on the long wavelength side is not kept constant, and the proportional relationship is maintained. There is no. This makes it impossible to measure the output temperature by the two-color method.

測定対象の放射率が一定でない場合においては、放射光の光量が検出可能な範囲で観察波長を極力短波長にすることで、放射測温の測温誤差が小さくなることが知られている。この点はプランクの黒体放射理論から導かれる。高炉出銑温度域が1500〜1600℃であることから、波長0.5〜0.9μm程度が放射測温に用いられていた。さらに図1から分かるように、波長1.5μm付近に溶銑と溶融スラグとの分光放射率差が最も小さい領域があることから、測温誤差の少ない測定波長範囲を波長1.5μmの範囲まで広げることができる。   When the emissivity of the measurement target is not constant, it is known that the temperature measurement error of the radiation temperature measurement is reduced by making the observation wavelength as short as possible within the range in which the amount of the emitted light can be detected. This point is derived from Planck's blackbody radiation theory. Since the blast furnace temperature range is 1500-1600 ° C., a wavelength of about 0.5-0.9 μm was used for radiation temperature measurement. Further, as can be seen from FIG. 1, since there is a region where the spectral emissivity difference between the hot metal and the molten slag is the smallest in the vicinity of the wavelength of 1.5 μm, the measurement wavelength range with little temperature measurement error is expanded to the wavelength of 1.5 μm. be able to.

しかし、短波長領域での放射測温で測温誤差が少ないといっても、高炉出銑滓の測温精度として要求される精度を実現することは困難である。図2は、波長0.6μmにおける溶銑と溶融スラグそれぞれの分光放射輝度の温度変化をプランクの黒体放射理論式に基づいて計算したグラフである。出銑滓の温度はおおよそ1500〜1600℃の範囲にあるので、この温度範囲について示している。例えば、ある瞬間に出銑滓を波長0.6μmで放射測温した分光放射輝度が1700(W/sr/μm/m2)であったとする。その瞬間における出銑滓が100%溶銑であると仮定すれば温度は1580℃と算出されるが、出銑滓が100%溶融スラグであると仮定すれば温度は1500℃と算出される。即ち、出銑滓の溶銑と溶融スラグの混合比率の想定次第で、測定温度誤差が80℃も存在することとなる。これでは、溶銑の温度を管理するのに必要な精度は得られない。 However, even if there are few temperature measurement errors in radiation temperature measurement in the short wavelength region, it is difficult to achieve the accuracy required as the temperature measurement accuracy of the blast furnace output. FIG. 2 is a graph in which the temperature change of the spectral radiance of hot metal and molten slag at a wavelength of 0.6 μm is calculated based on Planck's blackbody radiation theory. Since the temperature of the brewery is approximately in the range of 1500-1600 ° C., this temperature range is shown. For example, it is assumed that the spectral radiance obtained by measuring radiation at a wavelength of 0.6 μm at a certain moment is 1700 (W / sr / μm / m 2 ). The temperature is calculated to be 1580 ° C. if the molten iron at that moment is assumed to be 100% molten iron, but the temperature is calculated to be 1500 ° C. if the molten iron is assumed to be 100% molten slag. In other words, depending on the assumption of the mixing ratio of the molten iron slag and the molten slag, a measurement temperature error of 80 ° C. exists. This does not provide the accuracy required to control the hot metal temperature.

ところで、波長10μmの長波長領域(遠赤外域)において、図2と同様に横軸を温度(1500〜1600℃)とし、溶銑と溶融スラグそれぞれの分光放射輝度を計算して図示すると、図3のようになる。図3からは、実際の出銑滓を放射測温して放射輝度が得られたとして、その出銑滓の溶銑と溶融スラグの混合比率の想定次第で温度測定値が極めて大きく変動することが明らかである。放射率が変動する対象を放射測温するに際し、長波長領域が用いられなかったのもまさにこの理由による。   By the way, in the long wavelength region (far infrared region) having a wavelength of 10 μm, the horizontal axis is the temperature (1500 to 1600 ° C.) as in FIG. 2, and the spectral radiances of the hot metal and the molten slag are calculated and illustrated. become that way. From FIG. 3, it is assumed that the radiance is obtained by measuring the temperature of the actual brewery, and the measured temperature fluctuates greatly depending on the assumption of the mixing ratio of the molten iron and molten slag. it is obvious. This is also why the long wavelength region was not used when measuring the temperature of an object whose emissivity varies.

図3からも明らかなように、波長10μmの長波長領域では、出銑滓の温度範囲である1500〜1600℃の範囲における溶銑・溶融スラグそれぞれの放射輝度の変動はわずかであり、高々±5%以内である。それに対し、この温度領域において、出銑滓が100%溶銑である場合と100%溶融スラグである場合とでは放射輝度が大きく異なり、その差は、溶銑であって温度がこの範囲で100℃変動したときの放射輝度の差に比較してはるかに大きい。この事実から、遠赤外帯域において出銑滓(温度は1500〜1600℃の範囲内)の分光放射輝度を測定すれば、当該出銑滓の溶銑と溶融スラグの混合比率がわずかな誤差範囲で算出できることが導き出される。   As is clear from FIG. 3, in the long wavelength region with a wavelength of 10 μm, the variation in the radiance of the hot metal and molten slag in the temperature range of 1500 to 1600 ° C., which is the temperature range of the brewing, is slight, at most ± 5 %. On the other hand, in this temperature region, the radiance is greatly different between the case where the molten iron is 100% molten iron and the case where the molten iron is 100% molten slag. This is much larger than the difference in radiance. From this fact, if the spectral radiance of the ferment (temperature is in the range of 1500 to 1600 ° C.) is measured in the far-infrared band, the mixing ratio of the hot metal and molten slag is within a slight error range. It is derived that it can be calculated.

長波長帯域での放射輝度測定に基づいて上記のように出銑滓の溶銑と溶融スラグの混合比率R(以下単に「混合比率R」ともいう。)を算出することができる。これから第1に、本発明の第2の目的である、高炉の出銑口から流出する出銑滓の溶銑と溶融スラグの混合比率を測定することが可能であることが明らかである。   Based on the radiance measurement in the long wavelength band, the mixing ratio R (hereinafter also simply referred to as “mixing ratio R”) of the molten iron and molten slag can be calculated as described above. From this, it is clear that the mixing ratio of the molten iron and molten slag flowing out from the outlet of the blast furnace, which is the second object of the present invention, can be measured.

一方、短波長帯域において、溶銑の放射率と溶融スラグの放射率がそれぞれわかっているのであるから、混合比率Rがわかれば、短波長帯域での出銑滓の放射率を算出することができる。従って第2に、長波長帯域の測定の結果として算出した混合比率Rを用い、短波長帯域における出銑滓の放射率を算出し、長波長帯域の測定と同時に出銑滓の同一箇所について短波長帯域での放射輝度測定を行えば、短波長帯域における算出した出銑滓の放射率と測定した出銑滓の放射輝度測定結果とから、本発明の第1の目的である出銑滓の温度を精度良く測定できることがわかる。   On the other hand, since the emissivity of the molten iron and the emissivity of the molten slag are known in the short wavelength band, if the mixing ratio R is known, the emissivity of the molten iron in the short wavelength band can be calculated. . Therefore, secondly, using the mixing ratio R calculated as a result of the measurement of the long wavelength band, the emissivity of the output in the short wavelength band is calculated, and at the same time as the measurement of the long wavelength band, If the radiance measurement in the wavelength band is performed, the output of the output which is the first object of the present invention is calculated from the calculated emissivity of the output in the short wavelength band and the measured radiance measurement result of the output. It can be seen that the temperature can be accurately measured.

本発明は以上のような知見に基づいてなされたものであり、高炉出銑口から流出する出銑滓の温度を放射測温法で測定するに際し、可視又は近赤外帯域(短波長帯域)、および遠赤外帯域(長波長帯域)の2つの波長で分光放射輝度を測定し、長波長帯域での測定分光放射輝度Lmeas, LWに基づいて溶銑と溶融スラグとの混合比率Rを求め、求めた混合比率R、短波長帯域での溶銑の分光放射率εs,SWと溶融スラグの分光放射率εm,SW、及び短波長帯域での測定分光放射輝度Lmeas, SWに基づいて、出銑滓の温度Tを定めることを特徴とする高炉出銑滓温度測定方法である。 The present invention has been made on the basis of the above-described knowledge, and when measuring the temperature of the brewery flowing out from the blast furnace outlet by the radiation temperature measurement method, the visible or near infrared band (short wavelength band). And the spectral radiance at two wavelengths in the far-infrared band (long wavelength band), and the mixing ratio R of hot metal and molten slag is obtained based on the measured spectral radiance L meas, LW in the long wavelength band , mixing was determined ratio R, measured spectral radiance L meas in spectral emissivity epsilon s, SW spectral emissivity epsilon m, SW of molten slag, and short wavelength band of hot metal in a short wavelength band, based on the SW A method for measuring the temperature of a blast furnace discharge, characterized in that the temperature T of the discharge is determined.

また、高炉出銑口から流出する出銑滓について遠赤外帯域(長波長帯域)の波長で分光放射輝度を測定し、この測定分光放射輝度Lmeas, LWに基づいて溶銑と溶融スラグとの混合比率Rを求めることを特徴とする高炉出銑滓の溶銑・溶融スラグ混合比率測定方法である。 Spectral radiance is measured at the far-infrared band (long wavelength band) for the outflow flowing out of the blast furnace outlet , and the hot metal and molten slag are measured based on the measured spectral radiance L meas and LW . A mixing ratio R is obtained, which is a method for measuring the mixing ratio of hot metal / molten slag in the blast furnace.

ここで、短波長帯域での溶銑の分光放射率εm,SWと溶融スラグの分光放射率εs,SWについては、測定に先立って予め求めておく。 Here, the spectral emissivity ε m, SW of the hot metal in the short wavelength band and the spectral emissivity ε s, SW of the molten slag are obtained in advance prior to measurement.

以下、具体的に説明する。   This will be specifically described below.

長波長帯域での測定分光放射輝度Lmeas,LWに基づいて溶銑と溶融スラグとの混合比率Rを求めるに際し、2つの方法のいずれかを用いることができる。第1は、測定分光放射輝度Lmeas,LWから出銑滓の長波長分光放射率εLWを求め、予め求めておいた長波長帯域での溶銑分光放射率εm,LWと溶融スラグ分光放射率εs,LWと上記出銑滓の長波長分光放射率εLWとから溶銑と溶融スラグとの混合比率Rを算出する方法である。第2は、参考例であって、予め求めておいた該長波長帯域での溶銑の分光放射輝度Lm,LWと溶融スラグの分光放射輝度Ls,LWと、測定分光放射輝度Lmeas,LWとから溶銑と溶融スラグとの混合比率Rを算出する方法である。
When obtaining the mixing ratio R of the hot metal and molten slag based on the measured spectral radiance L meas, LW in the long wavelength band, one of two methods can be used. Firstly, the long-wavelength spectral emissivity ε LW of the output is obtained from the measured spectral radiance L meas, LW , and the molten iron spectral emissivity ε m, LW and the molten slag spectral radiation in the long-wavelength band obtained in advance. This is a method of calculating the mixing ratio R of hot metal and molten slag from the rate ε s, LW and the long-wavelength spectral emissivity ε LW of the above iron. The second example is a reference example, in which the spectral radiance L m, LW of the hot metal in the long wavelength band, the spectral radiance L s, LW of the molten slag , and the measured spectral radiance L meas, This is a method of calculating the mixing ratio R of hot metal and molten slag from LW .

上記第1の方法においてはまず、測定した長波長帯域の分光放射輝度Lmeas, LWから下記(1)式を用いて長波長分光放射率εLWを演算する。このとき温度は1500〜1600℃範囲におけるいずれの温度でも良いが、ここでは1500℃から1600℃の中間値である1550℃と仮定する。
εLW=Lmeas, LW/Lb,LW(1550℃) (1)
ここで、Lmeas, LW:長波長での放射輝度測定値、Lb,LW(1550℃):長波長観察波長、1550℃におけるプランクの黒体放射輝度である。
In the first method, first, the long-wavelength spectral emissivity ε LW is calculated from the measured long-wavelength spectral radiance L meas, LW using the following equation (1). At this time, the temperature may be any temperature in the range of 1500 to 1600 ° C., but here it is assumed to be 1550 ° C., which is an intermediate value from 1500 ° C. to 1600 ° C.
ε LW = L meas, LW / L b, LW (1550 ℃) (1)
Here, L meas, LW is a measured value of radiance at a long wavelength, L b, LW (1550 ° C.) is a long wavelength observation wavelength, and Planck's black body radiance at 1550 ° C.

本発明においては、出銑滓温度が1500〜1600℃の範囲内であることが予め判明しているので、長波長分光放射率εLWを演算するために用いる黒体放射輝度Lb,LWの温度を、出銑滓温度の想定範囲内における一定の温度として定めることができる。上記(1)式においては、Lb,LWの温度を1550℃としている。これにより前述した通り、出銑滓の実際の温度が上記仮定した1550℃から±50℃の範囲内で外れていたとしても、長波長分光輝度は±5%以内の変動に収まるので、長波長分光放射率についても±5%以内の精度で求めることができるので好ましい。 In the present invention, it has been known in advance that the output temperature is in the range of 1500 to 1600 ° C. Therefore, the black body radiances L b and LW used for calculating the long wavelength spectral emissivity ε LW are determined. The temperature can be defined as a constant temperature within the expected range of the output temperature. In the above formula (1) , the temperatures of L b and LW are 1550 ° C. As a result, as described above, even if the actual temperature of the output is outside the range of ± 50 ° C. from the assumed 1550 ° C., the long-wavelength spectral luminance falls within ± 5% of the fluctuation. The spectral emissivity is also preferable because it can be obtained with an accuracy within ± 5%.

出銑滓の長波長分光放射率εLWは、長波長帯域での溶銑分光放射率εm,LWと溶融スラグ分光放射率εs,LWと溶銑とスラグの混合比率Rに基づいて、
εLW=εm,LW・R+εs,LW・(1−R)
のように関係づけられる。このことから逆に、出銑滓の長波長分光放射率εLW、溶銑の長波長分光放射率εm,LWと溶融スラグの長波長分光放射率εs,LWから溶銑・スラグ混合比率Rを下記(2)式によって推定することができる。
R=(εs,LW−εLW)/(εs,LW−εm,LW) (2)
ここで、εs,LW:予め測定した長波長帯域のスラグの分光放射率、εm,LW:予め測定した長波長帯域の溶銑の分光放射率である。また、混合比率Rは、出銑滓中に溶銑が占める比率として定める。
The long-wavelength spectral emissivity ε LW of the molten iron is based on the molten iron spectral emissivity ε m, LW , the molten slag spectral emissivity ε s, LW and the mixing ratio R of the molten iron and slag in the long wavelength band,
ε LW = ε m, LW · R + ε s, LW · (1-R)
It is related as follows. Conversely, the hot metal / slag mixing ratio R is calculated from the long-wavelength spectral emissivity ε LW of the hot metal, the long-wavelength spectral emissivity ε m, LW of the hot metal, and the long-wavelength spectral emissivity ε s, LW of the molten slag. It can be estimated by the following equation (2).
R = (ε s, LW −ε LW ) / (ε s, LW −ε m, LW ) (2)
Here, ε s, LW is a spectral emissivity of slag in a long wavelength band measured in advance , and ε m, LW is a spectral emissivity of hot metal in a long wavelength band measured in advance. Further, the mixing ratio R is determined as the ratio of hot metal during the cooking.

上記第2の方法においては、まず、長波長帯域での溶銑の分光放射輝度Lm, LWと溶融スラグの分光放射輝度Ls, LWとを求めておく。これらの値は、温度が1500℃から1600℃の中間値である1550℃と仮定して、溶銑の長波長分光放射率εm,LWと溶融スラグの長波長分光放射率εs,LWから定めることができる。これらの値及び測定分光放射輝度Lmeas, LWに基づいて、溶銑・スラグ混合比率Rを下記式によって推定することができる。
R=(Ls,LW−Lmeas, LW)/(Ls,LW−Lm,LW
In the above-described second method, firstly, the spectral radiance L m of hot metal in the long wavelength band, LW spectral radiance L s of the molten slag, is obtained in advance and LW. These values, temperature assuming 1550 ° C. which is an intermediate value of 1600 ° C. from 1500 ° C., determined from the long-wavelength spectral emissivity epsilon s, LW of molten slag and the long-wavelength spectral emissivity epsilon m, LW of hot metal be able to. Based on these values and the measured spectral radiance L meas, LW , the hot metal / slag mixing ratio R can be estimated by the following equation.
R = (Ls , LW- Lmeas, LW ) / (Ls , LW- Lm , LW )

以上第1の方法又は第2の方法によって混合比率Rを求めた後、この混合比率Rと、短波長帯域での溶銑の分光放射率εm,SWと溶融スラグの分光放射率εs,SW、及び短波長帯域での測定分光放射輝度Lmeas, SWに基づいて、出銑滓の温度Tを定める。 After obtaining the mixing ratio R by the first method or the second method, the mixing ratio R, the spectral emissivity ε m, SW of the hot metal in the short wavelength band, and the spectral emissivity ε s, SW of the molten slag are obtained. And the temperature T of the output is determined based on the measured spectral radiance L meas, SW in the short wavelength band.

ここにおいて、可視または近赤外の短波長帯域においても、出銑滓の分光放射率の値は溶銑とスラグの混合比率Rで決まると考えられる。従って、出銑滓の温度Tを定めるに際し、溶銑と溶融スラグとの混合比率R及び短波長帯域での溶銑の分光放射率εm,SWと溶融スラグの分光放射率εs,SWから、短波長帯域での出銑滓の分光放射率εSWを求め、分光放射率εSWと短波長帯域での測定分光放射輝度Lmeas, SWと対比することによって出銑滓の温度Tを定めることとすると好ましい。 Here, even in the short wavelength band of visible or near infrared, it is considered that the value of the spectral emissivity of the output is determined by the mixing ratio R of hot metal and slag. Therefore, in determining the temperature T of the molten iron, the mixing ratio R of the molten iron and the molten slag and the spectral emissivity ε m, SW of the molten iron in the short wavelength band and the spectral emissivity ε s, SW of the molten slag are calculated spectral emissivity epsilon SW of tapping slag in a wavelength band, and to define the temperature T of the tapping slag measuring spectral radiance L meas in spectral emissivity epsilon SW and short wavelength band, by comparing the SW It is preferable.

すなわち、下記(3)式に基づいて短波長帯域での出銑滓の分光放射率εSWを求める。
εSW=εs,SW−R・(εs,SW−εm,SW) (3)
ここで、εs,SW:予め測定した短波長帯域の溶融スラグの分光放射率、εm,SW:予め測定した短波長帯域の溶銑の分光放射率である。
That is, the output spectral emissivity ε SW in the short wavelength band is obtained based on the following equation (3).
ε SW = ε s, SW −R ・ (ε s, SW −ε m, SW ) (3)
Here, ε s, SW is a spectral emissivity of molten slag in a short wavelength band measured in advance , and ε m, SW is a spectral emissivity of hot metal in a short wavelength band measured in advance.

短波長での分光放射輝度計測値Lmeas, SWと温度Tとの関係は以下の式で表現される。
meas, SW=εSW・Lb,SW(T) (4)
b,SW(T)=c1λSW -5・exp(−c2/λSW /T) (5)
ここで、λSW:可視または近赤外観察波長、c1:プランクの第1定数、c2:プランクの第2定数である。
The relationship between the spectral radiance measurement value L meas, SW at a short wavelength and the temperature T is expressed by the following equation.
L meas, SW = ε SW · L b, SW (T) (4)
L b, SW (T) = c 1 λ SW -5 · exp (−c 2 / λ SW / T) (5)
Here, λ SW is a visible or near-infrared observation wavelength, c 1 is a first constant of Planck, and c 2 is a second constant of Planck.

(4)、(5)式を温度Tについて解くと、
T=−(c2/λSW)/ln{(Lmeas, SW/εSW)/(c1λSW -5)} (6)
となる。
Solving equations (4) and (5) for temperature T,
T = − (c 2 / λ SW ) / ln {(L meas, SW / ε SW ) / (c 1 λ SW −5 )} (6)
It becomes.

本発明において、短波長帯域は波長0.5〜1.5μm帯域であり、長波長帯域は波長8〜12μm帯域であることとすると好ましい。短波長帯域を波長0.5〜1.5μm帯域とすれば、放射率が推定された後の測定誤差が十分に小さくなる。また、長波長帯域で分光放射率を求める際には、遠赤外の波長が長い光ほど良いが、実用上は波長8〜12μmに大気の窓と呼ばれる光路上の吸収が少ない波長域が適している。   In the present invention, the short wavelength band is preferably a wavelength band of 0.5 to 1.5 μm, and the long wavelength band is preferably a wavelength of 8 to 12 μm. If the short wavelength band is a wavelength range of 0.5 to 1.5 μm, the measurement error after the emissivity is estimated is sufficiently small. In addition, when obtaining spectral emissivity in the long wavelength band, light with a longer far-infrared wavelength is better. However, in practice, a wavelength range of 8 to 12 μm and a light absorption path on the optical path called an atmospheric window is suitable. ing.

可視または近赤外での分光放射率εSWが±5%の精度で推定できれば、温度Tの放射率起因誤差は±5℃程度になり、出銑温度管理に十分な精度を得ることができる。 If the spectral emissivity ε SW in the visible or near infrared can be estimated with an accuracy of ± 5%, the error due to the emissivity of the temperature T is about ± 5 ° C., and sufficient accuracy can be obtained for the output temperature management. .

高炉の出銑口から流出する出銑滓の温度及び出銑滓の溶銑と溶融スラグの混合比率Rを測定する目的で本発明を実施した。可視または近赤外の短波長帯域については、波長0.6μmで放射輝度を観察した。遠赤外の長波長帯域については、波長10μmで放射輝度を観察した。   The present invention was carried out for the purpose of measuring the temperature of the brewery flowing out from the blast furnace outlet and the mixing ratio R of the molten iron and molten slag. For the short wavelength band of visible or near infrared, radiance was observed at a wavelength of 0.6 μm. For the far-infrared long wavelength band, radiance was observed at a wavelength of 10 μm.

図4に示すように、出銑口1から流出する出銑滓2を横方向から観察した。波長0.6μmを検出する短波長検出放射計4と波長10μmを検出する長波長検出放射計5を並べて配置し、両者が出銑滓2の同一観察点7を捉えるように光軸をセットした。短波長検出放射計4、長波長検出放射計5それぞれの出力信号は演算装置6に入力され、ここで前述の(1)〜(5)式に基づいた放射率演算、混合比率Rの演算、温度算出が実行される。演算装置6は具体的にはパソコンを用いた。出銑滓温度Tの算出結果はパソコンの画面にグラフ表示されると共に、パソコン内部の記憶装置に保存される。   As shown in FIG. 4, the tap 2 flowing out of the tap 1 was observed from the lateral direction. A short wavelength detection radiometer 4 that detects a wavelength of 0.6 μm and a long wavelength detection radiometer 5 that detects a wavelength of 10 μm are arranged side by side, and the optical axis is set so that both capture the same observation point 7 of the output 2 . The output signals of the short wavelength detection radiometer 4 and the long wavelength detection radiometer 5 are input to the calculation device 6, where emissivity calculation based on the above-described equations (1) to (5), calculation of the mixing ratio R, Temperature calculation is performed. Specifically, the arithmetic unit 6 used a personal computer. The calculation result of the tapping temperature T is displayed in a graph on a personal computer screen and saved in a storage device inside the personal computer.

本発明方法で出銑途中の出銑滓2の温度推移を測定し、人手による浸漬消耗型熱電対を出銑口近傍で実施した測定値と比較した(図5)。本発明方法による放射測温(図中の一点鎖線)と従来方式の熱電対測定(図中の■)が良く一致することが確認された。本発明に基づく放射測温は連続的な温度推移が観察できることが特徴である。   The temperature transition of the output 2 in the middle of the output was measured by the method of the present invention, and compared with the measured value obtained by performing a manual immersion / consumable thermocouple near the output port (FIG. 5). It was confirmed that the radiation temperature measurement by the method of the present invention (dotted line in the figure) and the conventional thermocouple measurement (■ in the figure) agree well. The radiation temperature measurement according to the present invention is characterized in that a continuous temperature transition can be observed.

本発明方法で出銑途中の出銑滓2の溶銑と溶融スラグの混合比率R推移を測定し、図6に実線で示した。混合比率Rは、出銑滓の表面に現れる溶銑と溶融スラグの面積比を表しており、これは同時に、出銑滓における溶銑と溶融スラグの体積比に相当する。なお、図6中の破線は、トーピードカーに注入後に秤量した溶銑秤量値と、スラグを水冷したあとに秤量したスラグ秤量値とに基づいて、溶銑と溶融スラグの体積比を算出した結果である。質量から体積への変換は、溶銑の比重6.8、スラグの比重2.8として計算した。当然ながら、破線については1回の出銑における全出銑量の平均値であり、評価結果が判明するのは出銑から数時間経過後となる。   The transition of the mixing ratio R between the hot metal of the hot metal 2 and the molten slag in the middle of the hot spring was measured by the method of the present invention, and is shown by a solid line in FIG. The mixing ratio R represents the area ratio between the hot metal and the molten slag that appears on the surface of the molten iron, and this corresponds to the volume ratio of the molten iron and the molten slag at the same time. In addition, the broken line in FIG. 6 is the result of calculating the volume ratio of hot metal and molten slag based on the hot metal weighing value weighed after pouring into the torpedo car and the slag weighing value weighed after water cooling. The conversion from mass to volume was calculated as the specific gravity of hot metal 6.8 and the specific gravity of slag 2.8. As a matter of course, the broken line is an average value of the total amount of output in one output, and the evaluation result is found after several hours have passed since the output.

溶銑と溶融スラグの分光放射率の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the spectral emissivity of hot metal and molten slag. 波長0.6μm(短波長)、温度1500〜1600℃における溶銑とスラグの放射輝度の温度依存性を示す図である。It is a figure which shows the temperature dependence of the radiance of hot metal and slag in wavelength 0.6micrometer (short wavelength) and the temperature of 1500-1600 degreeC. 波長10μm(長波長)、温度1500〜1600℃における溶銑とスラグの放射輝度の温度依存性を示す図である。It is a figure which shows the temperature dependence of the radiance of hot metal and slag in wavelength 10micrometer (long wavelength) and the temperature of 1500-1600 degreeC. 本発明を用いて出銑滓の温度を測定する状況を示す斜視概念図である。It is a perspective conceptual diagram which shows the condition which measures the temperature of the tapping using this invention. 本発明による出銑滓の温度測定結果を示す図である。It is a figure which shows the temperature measurement result of the brewing by this invention. 本発明による出銑滓の溶銑・溶融スラグ混合比率測定結果を示す図である。It is a figure which shows the hot metal / molten slag mixing ratio measurement result of the brewery by this invention.

符号の説明Explanation of symbols

1 出銑口
2 出銑滓
3 出銑樋
4 短波長検出放射計
5 長波長検出放射計
6 演算装置
7 観察点
DESCRIPTION OF SYMBOLS 1 Outlet 2 Outlet 3 Outgoing 4 Short wavelength detection radiometer 5 Long wavelength detection radiometer 6 Arithmetic unit 7 Observation point

Claims (6)

高炉出銑口から流出する出銑滓について遠赤外帯域( 以下「長波長帯域」という。)の波長で分光放射輝度を測定し、この測定分光放射輝度に基づいて溶銑と溶融スラグとの混合比率を求める高炉出銑滓の溶銑・溶融スラグ混合比率測定方法であって、
測定分光放射輝度と、1500〜1600℃の範囲におけるいずれかの温度での前記波長のプランクの黒体放射輝度とから出銑滓の長波長分光放射率を求め、予め求めておいた長波長帯域での溶銑分光放射率と溶融スラグ分光放射率と前記出銑滓の長波長分光放射率とから溶銑と溶融スラグとの混合比率を算出することを特徴とする高炉出銑滓の溶銑・溶融スラグ混合比率測定方法。
Spectral radiance is measured at the far-infrared band (hereinafter referred to as “long wavelength band”) for the outflow flowing out from the blast furnace outlet, and the mixture of hot metal and molten slag is based on this measured spectral radiance. A method for measuring the mixing ratio of molten iron / molten slag in a blast furnace to obtain a ratio,
The long-wavelength band obtained in advance by calculating the long-wavelength spectral emissivity of the output from the measured spectral radiance and the plank black radiance of the wavelength at any temperature in the range of 1500 to 1600 ° C. hot metal blast furnace tapping slag it characterized Rukoto issuing calculate the mixing ratio of the hot metal spectral emissivity and the molten slag spectral emissivity and long wavelength spectral emissivity of the tapping slag and molten iron and molten slag in・ Measuring method of molten slag mixing ratio.
測定分光放射輝度L meas,LW と、1500〜1600℃の範囲におけるいずれかの温度での前記波長のプランクの黒体放射輝度L b,LW とから出銑滓の長波長分光放射率ε LW を式(1)で求め、
ε LW = L meas,LW / L b,LW (1)
該長波長分光放射率ε LW 、溶銑の長波長分光放射率ε m,LW と溶融スラグの長波長分光放射率ε s,LW から溶銑・スラグ混合比率Rを式(2)によって、
R = (ε s,LW − ε LW )/(ε s,LW − ε m,LW ) (2)
推定することを特徴とする請求項1に記載の高炉出銑滓の溶銑・溶融スラグ混合比率測定方法。
Measuring spectral radiance L meas, and LW, black body radiance of Planck of the wavelength at any temperature in the range of 1,500 to 1,600 ° C. L b, the long-wavelength spectral emissivity epsilon LW of tapping slag from the LW Obtained by equation (1),
ε LW = L meas, LW / L b, LW (1)
From the long-wavelength spectral emissivity ε LW , the long-wavelength spectral emissivity ε m, LW of the molten iron and the long-wavelength spectral emissivity ε s, LW of the molten slag,
R = (ε s, LW - ε LW) / (ε s, LW - ε m, LW) (2)
The method for measuring the mixing ratio of hot metal / molten slag in the blast furnace feed according to claim 1, wherein the estimation is performed.
前記長波長帯域は波長8〜12μm帯域であることを特徴とする請求項又はに記載の高炉出銑滓の溶銑・溶融スラグ混合比率測定方法。 The long wavelength band blast tapped slag molten iron-molten slag mixture ratio measuring method according to claim 1 or 2, characterized in that a wavelength 8~12μm band. 請求項1乃至3のうちの1項に記載の高炉出銑滓の溶銑・溶融スラグ混合比率測定方法によって、
長波長帯域での測定分光放射輝度に基づいて溶銑と溶融スラグとの混合比率を求め、求めた混合比率、短波長帯域での溶銑の分光放射率と溶融スラグの分光放射率、及び短波長帯域での測定分光放射輝度に基づいて、出銑滓の温度を定めることを特徴とする高炉出銑滓温度測定方法。
By the method for measuring the hot metal / molten slag mixing ratio of the blast furnace feed according to claim 1,
Obtain the mixing ratio of hot metal and molten slag based on the measured spectral radiance in the long wavelength band, find the mixing ratio, the spectral emissivity of molten iron and the spectral emissivity of the molten slag in the short wavelength band, and the short wavelength band A method for measuring a blast furnace output temperature, wherein the temperature of the output is determined on the basis of the measured spectral radiance in the furnace.
出銑滓の温度を定めるに際し、溶銑と溶融スラグとの混合比率及び短波長帯域での溶銑の分光放射率と溶融スラグの分光放射率から、短波長帯域での出銑滓の分光放射率を求め、これと前記短波長帯域での測定分光放射輝度とを対比することによって出銑滓の温度を定めることを特徴とする請求項に記載の高炉出銑滓温度測定方法。 When determining the temperature of the molten iron, the spectral emissivity of the molten iron in the short wavelength band is determined from the mixing ratio of the molten iron and molten slag, the spectral emissivity of the molten iron in the short wavelength band and the spectral emissivity of the molten slag. The method for measuring a blast furnace output temperature according to claim 4 , wherein the temperature of the output is determined by comparing the measured spectral radiance with the measured spectral radiance in the short wavelength band. 前記短波長帯域は波長0.5〜1.5μm帯域であり、前記長波長帯域は波長8〜12μm帯域であることを特徴とする請求項4又は請求項5に記載の高炉出銑滓温度測定
方法。
6. The blast furnace discharge temperature measurement according to claim 4, wherein the short wavelength band is a wavelength band of 0.5 to 1.5 μm, and the long wavelength band is a wavelength band of 8 to 12 μm. Method.
JP2004373292A 2004-12-24 2004-12-24 Blast furnace tapping temperature and hot metal / molten slag mixing ratio measurement method Active JP4146420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373292A JP4146420B2 (en) 2004-12-24 2004-12-24 Blast furnace tapping temperature and hot metal / molten slag mixing ratio measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373292A JP4146420B2 (en) 2004-12-24 2004-12-24 Blast furnace tapping temperature and hot metal / molten slag mixing ratio measurement method

Publications (2)

Publication Number Publication Date
JP2006177873A JP2006177873A (en) 2006-07-06
JP4146420B2 true JP4146420B2 (en) 2008-09-10

Family

ID=36732112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373292A Active JP4146420B2 (en) 2004-12-24 2004-12-24 Blast furnace tapping temperature and hot metal / molten slag mixing ratio measurement method

Country Status (1)

Country Link
JP (1) JP4146420B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714607B2 (en) * 2006-03-14 2011-06-29 新日本製鐵株式会社 Blast furnace outflow measurement system, blast furnace outflow measurement method, and computer program
EP2410305A1 (en) * 2010-07-21 2012-01-25 Siemens Aktiengesellschaft Method for determining the temperature of liquid metal, signal processing device and metallurgical device
KR101867715B1 (en) * 2016-12-12 2018-06-14 주식회사 포스코 Temperature measurement apparatus for tap hole of blast furnace

Also Published As

Publication number Publication date
JP2006177873A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
KR101216657B1 (en) Method of determining temperature of molten pig iron and method of operating blast furnace using same
JP4516854B2 (en) Blast furnace tapping temperature measuring method and measuring device
KR20230098852A (en) Converter operation method and converter blow control system
JP4146420B2 (en) Blast furnace tapping temperature and hot metal / molten slag mixing ratio measurement method
CA2235499C (en) Method and apparatus to determine and control the carbon content of steel in a bof vessel
Strąkowski et al. Estimation of FeO content in the steel slag using infrared imaging and artificial neural network
JPS596385B2 (en) Rapid determination method and device for the degree of graphite nodularity in molten cast iron
Sugiura et al. Simultaneous measurements of temperature and iron–slag ratio at taphole of blast furnace
Sugiura et al. Continuous temperature measurement of liquid iron and slag tapped from a blast furnace
Felice et al. Pyrometry of materials with changing, spectrally-dependent emissivity-Solid and liquid metals
JP7156550B2 (en) Converter blowing control method and converter blowing control system
WO2022004119A1 (en) Converter blowing control method and converter blowing control system
JP2005326204A (en) Method for measuring temperature in tapping gate of blast furnace
US9873926B2 (en) System and method for control of a copper melting furnace
JP4548777B2 (en) Method for predicting remaining amount of refractory and method for operating ash melting furnace using the same
JP7327318B2 (en) Method for measuring molten steel temperature under reduced pressure
Sugiura et al. Development of A New Technique for Continuous Molten Steel Temperature Measurement
KR102511007B1 (en) Apparatus for measuring molten iron temperature of blast furnace
Ren et al. Experimental Research of Continuous Temperature Measurement for Molten Metal Bath through Bottom‐Blowing Component
JPS6035409B2 (en) Method for measuring properties of molten slag in converter
JPS5848615A (en) Detection for slopping in converter
UA49344C2 (en) A method of a heating station burning through determination
JPH0219411A (en) Converter blow-refining method
Visuri OULU 2014 University of Oulu Faculty of Technology Process Metallurgy Group
Monfort et al. Journal of Applied and Laser Spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R151 Written notification of patent or utility model registration

Ref document number: 4146420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350