JPH0219411A - Converter blow-refining method - Google Patents

Converter blow-refining method

Info

Publication number
JPH0219411A
JPH0219411A JP16892288A JP16892288A JPH0219411A JP H0219411 A JPH0219411 A JP H0219411A JP 16892288 A JP16892288 A JP 16892288A JP 16892288 A JP16892288 A JP 16892288A JP H0219411 A JPH0219411 A JP H0219411A
Authority
JP
Japan
Prior art keywords
molten metal
converter
temp
temperature
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16892288A
Other languages
Japanese (ja)
Inventor
Chihiro Taki
滝 千尋
Hitoshi Kawashima
川嶋 一斗士
Junichi Fukumi
純一 福味
Akio Hatanaka
聡男 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP16892288A priority Critical patent/JPH0219411A/en
Publication of JPH0219411A publication Critical patent/JPH0219411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To accurately assume molten metal temp. during blow-refining by actually measuring the temp. of the molten metal in a converter to set initial value and on the other hand, calculating variety of the molten metal temp. with oxidizing reaction quantity, etc., grasped from the detected values of components and quantity of furnace gas. CONSTITUTION:While blowing stirring gas into the molten metal in the converter 10 through a bottom blowing nozzle 14, oxygen jet is blown on the molten metal surface from a main lance 20 to execute blow-refining. The components and quantity of the furnace gas generated during this blow-refining are detected at any time with analyzers 34, 35 and a flow meter 36 set to a duct 28. Based on this detected results, actual quantity of the oxygen component in the converter 10 at this time and further, the oxidizing reaction quantity are grasped with a process computer 40. The variety of the molten metal temp. is calculated by using a mathematical model showing the relation between the molten metal temp. and the time from this oxidizing reaction quantity. On the other hand, the temp. of the molten metal in the converter is actually measured with sub-lance method. The actually measured value is set as the initial value and based on the above temp. variety, the molten metal temp. varying at every moment during blow-refining is assumed. By this method, the blow-refining in the converter can be accurately controlled.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、転炉吹錬の終点温度を適確に把握するため
の転炉吹錬方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a converter blowing method for accurately determining the end point temperature of converter blowing.

[従来の技術] 近時、転炉吹錬において、吹錬中の各種測定情報に基づ
き吹錬条件をコンピュータ制御するダイナミックコント
ロールが採用されている。ダイナミックコントロールに
よる吹錬では、終点制御のために、吹錬中の溶湯にサブ
ランス(中間サブランス)を浸漬して、溶湯温度及び溶
湯炭素濃度[C]を直接測定し、この実測温度に基づき
吹錬条件を適宜制御して終点温度及び成分をコントロー
ルする。その後、別のサブランス(終点サブランス)を
溶湯に挿入して温度及び[C]を再度測定し、溶湯温度
が所定の出鋼温度に一致するタイミングで吹錬を終了(
吹き止め)する。
[Prior Art] Recently, in converter blowing, dynamic control has been adopted in which blowing conditions are computer-controlled based on various measurement information during blowing. In blowing using dynamic control, in order to control the end point, a sublance (intermediate sublance) is immersed in the molten metal during blowing to directly measure the molten metal temperature and molten metal carbon concentration [C], and the blowing is performed based on this measured temperature. The conditions are appropriately controlled to control the end point temperature and components. After that, another sub-lance (end point sub-lance) is inserted into the molten metal, the temperature and [C] are measured again, and the blowing is finished when the molten metal temperature matches the predetermined tapping temperature (
Stop blowing).

従来の転炉吹錬方法は、中間サブランスで得られた溶湯
温度及び[C]に基づきダイナミックモデルである脱炭
反応の推移を予測し、この脱炭反応の予測量から溶湯の
温度上昇量を推定する。そして、推定した昇温量に基づ
き吹錬終了時の溶湯温度(終点温度)が目標となる出鋼
温度範囲に入るように吹錬を適宜制御する。
The conventional converter blowing method predicts the transition of the decarburization reaction, which is a dynamic model, based on the molten metal temperature obtained in the intermediate sublance and [C], and calculates the temperature rise of the molten metal from the predicted amount of the decarburization reaction. presume. Then, blowing is appropriately controlled based on the estimated temperature rise amount so that the molten metal temperature (end point temperature) at the end of blowing falls within the target tapping temperature range.

[発明が解決しようとする課題] しかしながら、従来の転炉吹錬方法においては、吹錬初
期及び中期では[C]が高いので、脱炭反応による溶湯
の温度依存性が強いが、吹錬後期に至ると温度依存性が
弱まり、脱炭反応による予測値と実績値との間にずれが
生じやすい。このため、終点温度が出鋼温度から大きく
外れる場合が生じ、終点的中率が低下する。このため、
中間サブランス測定後においても炉内反応を直接観察す
る必要があり、吹錬時間が延長され、操業コストが上昇
するという欠点がある。
[Problem to be solved by the invention] However, in the conventional converter blowing method, [C] is high in the early and middle stages of blowing, so the temperature dependence of the molten metal due to decarburization reaction is strong; When it reaches , the temperature dependence weakens, and a discrepancy tends to occur between the predicted value due to the decarburization reaction and the actual value. For this reason, the end point temperature may deviate greatly from the tapping temperature, and the end point accuracy rate decreases. For this reason,
It is necessary to directly observe the reaction in the furnace even after the intermediate sublance measurement, which has the drawback of extending the blowing time and increasing operating costs.

この発明は、かかる事情に鑑みてなされたものであって
、中間サブランス静1定後においても炉内反応を直接観
察することなく、終点的中率を向上させることができる
転炉吹錬方法を提供することを目的とする。
This invention has been made in view of the above circumstances, and provides a converter blowing method that can improve the end point accuracy without directly observing the reaction in the furnace even after the intermediate sublance has settled down. The purpose is to provide.

[課題を解決するための手段] この発明に係る転炉吹錬方法は、転炉吹錬中に生じる炉
ガスの成分及び量を随時検出し、検出結果からそのとき
の転炉内の酸素成分の存在量を把握し、これから炉内の
酸化反応量を把握し、酸化反応量、溶湯温度並びに時間
の関係を表わす所定の数式モデルを用いて溶湯温度の変
化量を算出する一方、サブランス法により転炉内溶湯の
温度を実測してこれを初期値とし、この初期値及び前記
温度変化量とに基づき吹錬中に刻々変化する溶湯温度を
推定することを特徴とする。
[Means for Solving the Problems] The converter blowing method according to the present invention detects the components and amounts of furnace gas generated during converter blowing at any time, and determines the oxygen components in the converter at that time from the detection results. The amount of oxidation reaction in the furnace is determined, and the amount of change in molten metal temperature is calculated using a predetermined mathematical model that expresses the relationship between the amount of oxidation reaction, molten metal temperature, and time. The method is characterized in that the temperature of the molten metal in the converter is actually measured and used as an initial value, and the molten metal temperature that changes momentarily during blowing is estimated based on this initial value and the amount of temperature change.

[作用] この発明に係る転炉吹錬方法においては、炉ガスの成分
及び量を随時測定し、炉ガス中に存在する酸素量を把握
し、下記(1)式を用いてガス中の酸素存在量から炉内
の蓄積酸素量wo2を求める。
[Operation] In the converter blowing method according to the present invention, the components and amounts of the furnace gas are measured at any time, the amount of oxygen present in the furnace gas is ascertained, and the oxygen content in the gas is determined using the following formula (1). The amount of oxygen accumulated in the furnace wo2 is determined from the amount present.

・・・ (1) 但し、記号Sはサブランス時、記号tは中間サブランス
測定時からt秒後、I N P U T  O2は炉内
に入る酸素(吹付は酸素ガス、副原料、底吹きガス、侵
入空気)の総量、0UTPUT  02は炉内から出る
酸素(排ガス、噴出ガス)の総量をそれぞれ示す。
... (1) However, the symbol S is during sublance, the symbol t is t seconds after the intermediate sublance measurement, and INPUT O2 is oxygen entering the furnace (spraying is oxygen gas, auxiliary raw material, bottom blowing gas). , intruding air), and 0UTPUT 02 indicate the total amount of oxygen (exhaust gas, ejected gas) coming out of the furnace.

次に、下記(2)式を用いて蓄積酸素量変化率dWo2
/d02を求める。
Next, using the following equation (2), the rate of change in the amount of accumulated oxygen dWo2
Find /d02.

dWO2/ do2= aX 11  exp  (W
o2/ b)1・・・(2) 但し、記号a及びbはそれぞれ係数を示す。
dWO2/ do2= aX 11 exp (W
o2/b)1...(2) However, symbols a and b each indicate a coefficient.

次に、下記(3)式に示す数式モデルを用いて溶湯の昇
温量ΔTを算出する。
Next, the amount of temperature increase ΔT of the molten metal is calculated using a mathematical model shown in equation (3) below.

十B X  Ws L A Q +C1d02−D  
X  Wco  L o            −(
3)但し、記号WSLACIは初期スラグ量、記号WC
OLDは冷却剤の量、記号A、B、CDはそれぞれ係数
を示す。
10B X Ws L A Q +C1d02-D
X Wco Lo -(
3) However, the symbol WSLACI is the initial slag amount, and the symbol WC
OLD indicates the amount of coolant, and symbols A, B, and CD indicate coefficients, respectively.

一方、中間サブランス測定により溶湯温度Tsを実測し
、下記(4)式に示す関係からサブランス測定からt秒
経過後の溶湯温度TTを求める。
On the other hand, the molten metal temperature Ts is actually measured by intermediate sublance measurement, and the molten metal temperature TT after t seconds has elapsed from the sublance measurement is determined from the relationship shown in equation (4) below.

TT””TS+ΔT           −(4)そ
して、これにより温度TTが所定の出鋼温度Tに一致す
るまでの経過時間tを推定する。
TT""TS+ΔT - (4) From this, the elapsed time t until the temperature TT matches the predetermined tapping temperature T is estimated.

[実施例] 以下、添付の図面を参照してこの発明の実施例について
具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

転炉10は、底吹きノズル14を介して攪拌ガスを溶湯
12に吹込みつつ、メインランス20の酸素ジェットを
湯面に吹付けるように構成された複合吹錬炉である。底
吹きノズル14に連通する配管16及びメインランス2
oに連通する配管22にはそれぞれ流量計18及び24
が設けられ、それぞれがプロセスコンピュータ4oの入
力側に接続されている。コンピュータ4oは、入力デー
タを記憶するメモリ、種々の演算を実行する演算部、メ
モリにストアされたデータを順次呼出してデータ処理す
るCPU (中央処理装置)をそれぞれ有し、各種プロ
セスデータを集めて所定のスタティックモデル及びダイ
ナミックモデルに対応する数式モデルに基づき吹錬の最
適制御条件を求め、最適制御指令を各所の機器に発する
ようになっている。
The converter 10 is a composite blowing furnace configured to blow stirring gas into the molten metal 12 through a bottom blowing nozzle 14 and to blow an oxygen jet from a main lance 20 onto the surface of the molten metal. Piping 16 and main lance 2 communicating with bottom blowing nozzle 14
Flowmeters 18 and 24 are installed in the piping 22 communicating with o.
are provided, each connected to the input side of the process computer 4o. The computer 4o has a memory that stores input data, an arithmetic unit that executes various operations, and a CPU (central processing unit) that sequentially retrieves and processes data stored in the memory, and collects various process data. Optimum control conditions for blowing are determined based on mathematical models corresponding to predetermined static models and dynamic models, and optimal control commands are issued to various devices.

ダクト28のフード26が転炉10の装入口を覆うよう
に設けられ、転炉内で発生したガスがダクト28により
排ガス処理装置(図示せず)に導かれるようになってい
る。シュータ30が転炉装入口近傍のダクト28に取付
けられ、秤量器32で秤量された副原料がシュータ30
を介してダクト28内に切出され、更に、これが転炉内
に落下するようになっている。一方、ガス分析計34及
び質量分析計35がダクト28の最上部に取付けられ、
排ガスの成分及び質量が検出されるようになっている。
A hood 26 of a duct 28 is provided to cover the charging port of the converter 10, and gas generated within the converter is guided through the duct 28 to an exhaust gas treatment device (not shown). A chute 30 is attached to the duct 28 near the converter charging inlet, and the auxiliary raw material weighed by the weigher 32 is transferred to the chute 30.
It is cut out into the duct 28 through the duct 28, and further falls into the converter. On the other hand, a gas analyzer 34 and a mass spectrometer 35 are installed at the top of the duct 28,
The components and mass of exhaust gas are detected.

また、排ガス流量計36がダクト下部の絞りのところに
設けられ、排ガスの流量が検出されるようになっている
Further, an exhaust gas flow meter 36 is provided at the throttle at the bottom of the duct to detect the flow rate of exhaust gas.

なお、秤量器32.ガス分析計34.質量分析計35並
びに流量計36のそれぞれは、コンピュータ40の入力
側に接続されている。
In addition, the weighing device 32. Gas analyzer 34. Each of the mass spectrometer 35 and the flow meter 36 is connected to the input side of the computer 40.

また、転炉10の上方にはサブランス装置(図示せず)
が設けられ、サブランスを下降させると装入口から転炉
内にサブランス先端が挿入されて溶湯12に浸漬される
ようになっている。因みに、サブランス先端にはプロー
ブが装着されており、溶湯lH度及び炭素濃度[C]が
直ちに検出されるようになっている。
Additionally, a sublance device (not shown) is installed above the converter 10.
is provided, and when the sub-lance is lowered, the tip of the sub-lance is inserted into the converter from the charging port and immersed in the molten metal 12. Incidentally, a probe is attached to the tip of the sublance so that the molten metal's lH degree and carbon concentration [C] can be immediately detected.

次に、この実施例において終点温度を推定する場合につ
いて説明する。
Next, a case will be described in which the end point temperature is estimated in this embodiment.

吹錬末期に至り、溶湯の脱炭が進行すると、中間サブラ
ンスを降下して溶湯温度TS及び[C]をiQj定し、
これをコンピュータ40に入力する。
When the final stage of blowing is reached and decarburization of the molten metal progresses, the intermediate sublance is lowered to determine the molten metal temperature TS and [C],
This is input into the computer 40.

排ガス成分、各成分の質量、並びに排ガス流量をそれぞ
れ検出し、これらの検出値もコンピュータ40に入力す
る。これらデータから(OUTPUT  o2)量を算
出する。一方、送酸量、副原料の成分及び投入量、底吹
きガス量、並びに侵入空気の量から(IN’PUT  
o2)量を求め、これと(OUTPUT  02 )f
flから蓄積酸素量WO2を算出する。これに基づき蓄
積酸素量変化率dWO2/dO2を求める。更に、中間
サブランス時からt秒後の昇温量ΔTを求め、目標とな
る出鋼温度Tとサブランス時の実測温度Tsとの差が昇
温量ΔTに一致する時間tを算出し、サブランス時から
時間tが経過したときを終点時期と推定する。
The exhaust gas components, the mass of each component, and the exhaust gas flow rate are detected, and these detected values are also input into the computer 40. The amount of (OUTPUT o2) is calculated from these data. On the other hand, from the amount of oxygen supplied, the components and input amount of auxiliary raw materials, the amount of bottom blown gas, and the amount of intruding air, (IN'PUT
o2) Find the quantity, and (OUTPUT 02) f
The accumulated oxygen amount WO2 is calculated from fl. Based on this, the rate of change in the amount of stored oxygen dWO2/dO2 is determined. Furthermore, the amount of temperature increase ΔT after t seconds from the time of intermediate sub-lancing is calculated, and the time t at which the difference between the target tapping temperature T and the actual temperature Ts during sub-lancing matches the amount of temperature rise ΔT is calculated, and The time when time t has elapsed is estimated to be the end point time.

第2図は、横軸に実績温度をとり、縦軸に推定温度をと
って、複合吹錬炉の終点について、推定温度の的中率の
精度を調査したグラフ図である。
FIG. 2 is a graph showing the accuracy of the accuracy of the estimated temperature at the end point of a composite blowing furnace, with the actual temperature on the horizontal axis and the estimated temperature on the vertical axis.

図中の丸は、実施例の方法を用いて吹錬した各チャージ
の実績をそれぞれプロットしたものである。
The circles in the figure are plots of the results of each charge blown using the method of the example.

図から明らかなように、実績温度は推定温度のプラスマ
イナス10℃の範囲内に全て入っており、温度偏差を従
来の7〜8℃から約4.5℃にすることができ、推定の
ばらつきを小さくすることができた。このため、推定温
度のプラスマイナス10℃の範囲に入る的中率を、従来
の約94%からほぼ100%近くまで向上するができた
As is clear from the figure, all of the actual temperatures are within the range of plus or minus 10°C of the estimated temperature, and the temperature deviation can be reduced from the conventional 7 to 8°C to approximately 4.5°C. was able to be made smaller. For this reason, the accuracy rate for falling within a range of plus or minus 10 degrees Celsius of the estimated temperature has been improved from about 94% in the past to nearly 100%.

[発明の効果] この発明によれば、中間サブランス測定後においても炉
内反応を直接観察することなく、溶湯温度をオンライン
で連続的に高精度に推定することができる。このため、
終点的中率を向上させることができ、転炉操業の生産性
を向上することができる。
[Effects of the Invention] According to the present invention, the molten metal temperature can be continuously and highly accurately estimated online without directly observing the reaction in the furnace even after the intermediate sublance measurement. For this reason,
The end point accuracy rate can be improved, and the productivity of converter operation can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る転炉吹錬方法を説明す
るための模式図、第2図はこの発明の効果を示すグラフ
図である。 10;転炉、12;溶湯、14;底吹きノズル、16.
22.管、18,24.36;流量計、20;ランス、
26;フード、28;ダクト、30;シュータ、32;
秤量器、34,35;分を斤計、40;プロセスコンピ
ュータ 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a schematic diagram for explaining a converter blowing method according to an embodiment of the present invention, and FIG. 2 is a graph diagram showing the effects of the present invention. 10; converter, 12; molten metal, 14; bottom blowing nozzle, 16.
22. Pipe, 18, 24.36; Flow meter, 20; Lance,
26; Hood, 28; Duct, 30; Shooter, 32;
Weighing device, 34, 35; Minute meter, 40; Process computer applicant patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 転炉吹錬中に生じる炉ガスの成分及び量を随時検出し、
検出結果からそのときの転炉内の酸素成分の存在量を把
握し、これから炉内の酸化反応量を把握し、酸化反応量
、溶湯温度並びに時間の関係を表わす所定の数式モデル
を用いて溶湯温度の変化量を算出する一方、サブランス
法により転炉内溶湯の温度を実測してこれを初期値とし
、この初期値及び前記温度変化量とに基づき吹錬中に刻
々変化する溶湯温度を推定することを特徴とする転炉吹
錬方法。
Detects the components and amount of furnace gas generated during converter blowing at any time,
The amount of oxygen present in the converter at that time is determined from the detection results, the amount of oxidation reaction in the furnace is determined, and the molten metal is calculated using a predetermined mathematical model that expresses the relationship between the amount of oxidation reaction, molten metal temperature, and time. While calculating the amount of change in temperature, the temperature of the molten metal in the converter is actually measured using the sublance method, and this is used as the initial value, and the molten metal temperature, which changes moment by moment during blowing, is estimated based on this initial value and the amount of temperature change. A converter blowing method characterized by:
JP16892288A 1988-07-08 1988-07-08 Converter blow-refining method Pending JPH0219411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16892288A JPH0219411A (en) 1988-07-08 1988-07-08 Converter blow-refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16892288A JPH0219411A (en) 1988-07-08 1988-07-08 Converter blow-refining method

Publications (1)

Publication Number Publication Date
JPH0219411A true JPH0219411A (en) 1990-01-23

Family

ID=15877041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16892288A Pending JPH0219411A (en) 1988-07-08 1988-07-08 Converter blow-refining method

Country Status (1)

Country Link
JP (1) JPH0219411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156288A (en) * 2000-11-20 2002-05-31 Isuzu Ceramics Res Inst Co Ltd Thermocouple for smelter and temperature measuring method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156288A (en) * 2000-11-20 2002-05-31 Isuzu Ceramics Res Inst Co Ltd Thermocouple for smelter and temperature measuring method thereof

Similar Documents

Publication Publication Date Title
TWI643957B (en) Estimation method of phosphorus concentration in molten steel and converter blowing control device
TWI681059B (en) Molten metal composition estimation device, molten metal composition estimation method, and molten metal manufacturing method
US3522035A (en) Determining operation of furnace vessel
US3463631A (en) Method and arrangement for determining the oxidation reactions during refining of metals
JP6825711B2 (en) Molten component estimation device, molten metal component estimation method, and molten metal manufacturing method
JPH0219411A (en) Converter blow-refining method
JPH0219412A (en) Converter blow-refining method
JPH03229813A (en) Blowing method for converter
TW201920691A (en) Method for estimating phosphorus concentration in molten steel, converter blowing control device, program, and recording medium
US4150973A (en) Method of controlling molten steel temperature and carbon content in oxygen converter
JPH05263120A (en) Method for controlling blowing in converter
JPH0219413A (en) Converter blow-refining method
JPH0219414A (en) Converter blow-refining method
JPH06256832A (en) Blowing method of converter
TWI627284B (en) Molten pig iron preparation processing method and molten pig iron preparation processing control device
KR20000045516A (en) Method and device for predicting concentration of carbon in molten metal in electric furnace work
JPH0219416A (en) Converter blow-refining method
JPH05148526A (en) Blowing method for converter
TWI841072B (en) Furnace state estimation device, furnace state estimation method and molten steel manufacturing method
RU2817694C1 (en) Refining process control device and refining process control method
JPH0219415A (en) Converter blow-refining method
TWI732490B (en) Conversion control method and conversion control device of converter type dephosphorization refining furnace
JP7376787B2 (en) Device for estimating phosphorus concentration in molten steel, statistical model construction device, method for estimating phosphorus concentration in molten steel, statistical model construction method, and program
KR100428582B1 (en) Method for forecasting post combustion ratio of corbon in converter for top and bottom blowing process and method for forecasting carbon concentration in molten steel
SU817065A1 (en) Method of oxygen convertor process control