TWI841072B - Furnace state estimation device, furnace state estimation method and molten steel manufacturing method - Google Patents

Furnace state estimation device, furnace state estimation method and molten steel manufacturing method Download PDF

Info

Publication number
TWI841072B
TWI841072B TW111144902A TW111144902A TWI841072B TW I841072 B TWI841072 B TW I841072B TW 111144902 A TW111144902 A TW 111144902A TW 111144902 A TW111144902 A TW 111144902A TW I841072 B TWI841072 B TW I841072B
Authority
TW
Taiwan
Prior art keywords
furnace
refining
model
model parameters
refining process
Prior art date
Application number
TW111144902A
Other languages
Chinese (zh)
Other versions
TW202321468A (en
Inventor
加瀬寛人
杉野智裕
川畑涼
木村祐貴
Original Assignee
日商杰富意鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商杰富意鋼鐵股份有限公司 filed Critical 日商杰富意鋼鐵股份有限公司
Publication of TW202321468A publication Critical patent/TW202321468A/en
Application granted granted Critical
Publication of TWI841072B publication Critical patent/TWI841072B/en

Links

Abstract

本發明的爐內狀態推定裝置(1)包括:輸入部(11),輸入實績資訊及精煉處理的條件;模型決定部(14),使用自記憶有與吹煉反應相關的模型的模型參數、實績資訊及精煉處理條件的資料庫獲取的過去的模型參數,決定對象爐次的精煉處理中的模型參數;爐內狀態計算部(15),使用已決定的模型參數,計算包含熔液的溫度及成分濃度與熔渣的成分濃度的爐內的狀態量;以及模型參數計算部(13),使用包含對象爐次的精煉處理結果的實績資訊,基於包含表示精煉處理中的自特定期間的起點直至終點為止的爐內的質量平衡誤差及熱收支誤差的項的評價函數,計算對象爐次的精煉處理中的模型參數。The furnace state estimation device (1) of the present invention comprises: an input unit (11) for inputting performance information and refining process conditions; a model determination unit (14) for determining the model parameters in the refining process of the target furnace by using past model parameters obtained from a database storing model parameters of models related to the blowing reaction, performance information and refining process conditions; and a furnace state calculation unit (15) for calculating the model parameters in the refining process of the target furnace by using the determined model parameters. A model parameter calculating unit (13) calculates the state quantities in the furnace including the temperature and component concentration of the melt and the component concentration of the slag; and a model parameter calculating unit (13) uses performance information including the refining result of the target furnace to calculate the model parameters in the refining process of the target furnace based on an evaluation function including terms representing the mass balance error and heat balance error in the furnace from the start point to the end point of a specific period in the refining process.

Description

爐內狀態推定裝置、爐內狀態推定方法及鋼水製造方法Furnace state estimation device, furnace state estimation method and molten steel manufacturing method

本揭示是有關於一種爐內狀態推定裝置、爐內狀態推定方法及鋼水製造方法。本揭示尤其有關於一種推定鋼鐵業的精煉設備中的熔液中及熔渣中的成分濃度的爐內狀態推定裝置、爐內狀態推定方法及鋼水製造方法。The present disclosure relates to a furnace state estimation device, a furnace state estimation method and a molten steel manufacturing method. In particular, the present disclosure relates to a furnace state estimation device, a furnace state estimation method and a molten steel manufacturing method for estimating the component concentration in the molten metal and the slag in the refining equipment of the steel industry.

煉鐵廠中,在預處理設備、轉爐及二次精煉設備等精煉設備中,對自高爐流出的熔鐵的成分及溫度進行調整。轉爐是藉由向爐內吹入氧而進行熔液中的雜質去除及升溫的製程,在鋼的品質管理及精煉成本合理化等方面起到非常重要的作用。此處,在轉爐中的熔液成分及熔液溫度的控制中,例如使用頂吹氧的流量及速度、頂吹噴槍的高度、底吹氣體的流量等作為操作量。而且,使用石灰、鐵礦石等輔助原料的投入量及投入時機、對熔液進行採樣的時機、結束吹煉的時機等作為操作量。該些操作量應根據熔液溫度和熔液成分及熔渣成分等爐內狀態而最佳化。為了高精度地推定爐內狀態並將操作量適配化,提出下述方法:使用包含可在精煉處理中連續測量的廢氣測量值的、關於精煉設備的測量資訊,進行爐內的質量平衡及熱收支計算。此方法通常可高精度且即時地推定熔液溫度與熔液成分及熔渣成分。但存在如下問題,即,由於精煉設備中的爐內耐火物的損耗、投入輔助原料的成分變動、測量精度的降低等精煉設備環境的變動,狀態推定模型的精度經常會發生劣化。In an iron smelter, the composition and temperature of the molten iron flowing out of the blast furnace are adjusted in the refining equipment such as the pre-treatment equipment, converter and secondary refining equipment. The converter is a process that removes impurities in the molten metal and raises the temperature by blowing oxygen into the furnace, and plays a very important role in steel quality management and rationalization of refining costs. Here, in the control of the composition and temperature of the molten metal in the converter, for example, the flow rate and speed of the top blowing oxygen, the height of the top blowing gun, the flow rate of the bottom blowing gas, etc. are used as operating variables. In addition, the amount and timing of the input of auxiliary raw materials such as lime and iron ore, the timing of sampling the molten metal, the timing of ending the blowing, etc. are used as operating variables. These operating quantities should be optimized according to the furnace conditions such as the melt temperature and the melt and slag composition. In order to estimate the furnace conditions with high accuracy and adapt the operating quantities, the following method is proposed: mass balance and heat balance calculations in the furnace are performed using measurement information about the refining equipment, including exhaust gas measurement values that can be continuously measured during the refining process. This method can usually estimate the melt temperature and the melt and slag composition with high accuracy and in real time. However, there is a problem that the accuracy of the state estimation model often deteriorates due to changes in the refining equipment environment, such as the wear of refractories in the furnace of the refining equipment, changes in the composition of the auxiliary raw materials fed in, and a decrease in measurement accuracy.

作為將模型參數最佳化以保持此種模型精度的方法,例如專利文獻1提出一種方法:自過去的實績資訊中提取處理條件類似的實績而算出轉爐的獨立的模型式中的參數值。As a method of optimizing model parameters to maintain such model accuracy, Patent Document 1, for example, proposes a method of extracting performance with similar processing conditions from past performance information and calculating parameter values in an independent model formula for a converter.

而且,例如專利文獻2提出一種方法:藉由求出以熱收支平衡的方式設定的聯立方程式的近似解而決定二次精煉設備中的熔液溫度推定模型的多個參數。 [現有技術文獻] [專利文獻] Furthermore, for example, Patent Document 2 proposes a method for determining multiple parameters of a melt temperature estimation model in a secondary refining device by finding an approximate solution to a simultaneous equation set in a heat balance manner. [Prior Art Document] [Patent Document]

專利文獻1:日本專利特開2005-036289號公報 專利文獻2:日本專利特開2004-360044號公報 Patent document 1: Japanese Patent Publication No. 2005-036289 Patent document 2: Japanese Patent Publication No. 2004-360044

[發明所欲解決之課題] 此處,專利文獻1以模型式的形式將獨立的物理反應模型或一次結合模型作為對象。因此,專利文獻1的技術難以應用於如基於爐內的質量平衡及熱收支計算的狀態推定模型般,爐內反應量及升溫量複雜地相互作用的模型。 [Problems to be solved by the invention] Here, Patent Document 1 takes an independent physical reaction model or a one-time combined model as an object in the form of a model. Therefore, the technology of Patent Document 1 is difficult to apply to a model in which the reaction amount and temperature rise amount in the furnace interact in a complex manner, such as a state estimation model based on mass balance and heat balance calculation in the furnace.

在專利文獻2中,提出一種方法:針對多個模型式與參數相互作用般的溫度推定模型式,求出以熱收支平衡的方式設定的聯立方程式的近似解。但是,專利文獻2在爐內的反應量計算中,關於使用包含廢氣測量值的測量資訊的爐內質量平衡計算未進行記載。因此,專利文獻2的技術難以應用於除熱收支以外,爐內質量平衡亦相互作用般的模型。Patent document 2 proposes a method of obtaining an approximate solution to a simultaneous equation set in a heat balance manner for a temperature estimation model in which a plurality of model equations and parameters interact. However, Patent document 2 does not describe the calculation of the mass balance in the furnace using the measurement information including the exhaust gas measurement value in the calculation of the reaction amount in the furnace. Therefore, the technology of Patent document 2 is difficult to apply to a model in which the mass balance in the furnace interacts with each other in addition to the heat balance.

因此,尋求一種即便對於爐內的質量平衡及熱收支複雜地相互作用般的模型亦有效的模型參數決定方法。Therefore, a method for determining model parameters that is effective even for a model in which the mass balance and heat budget in a furnace interact in a complex manner is sought.

鑒於所述情況而成的本揭示的目的在於提供一種能夠高精度且連續地推定熔液中及熔渣中的成分濃度的爐內狀態推定裝置、爐內狀態推定方法及鋼水製造方法。 [解決課題之手段] The present disclosure made in view of the above circumstances aims to provide a furnace state estimation device, a furnace state estimation method and a molten steel manufacturing method capable of estimating the component concentration in the molten metal and the slag with high accuracy and continuously. [Means for solving the problem]

(1)本揭示的一實施方式的爐內狀態推定裝置包括: 輸入部,輸入實績資訊及精煉處理的條件,所述實績資訊包含精煉設備中的所述精煉處理開始前或處理中的熔液溫度及成分濃度與熔渣的成分濃度的測量結果、以及包含自所述精煉設備排出的廢氣的流量及成分濃度的關於精煉設備的測量結果; 模型決定部,使用自記憶有與所述精煉設備中的吹煉反應相關的模型的模型參數、所述實績資訊及所述精煉處理條件的資料庫獲取的過去的所述模型參數,決定對象爐次的所述精煉處理中的所述模型參數; 爐內狀態計算部,使用已決定的所述模型參數,計算包含所述熔液的溫度及成分濃度與熔渣的成分濃度的爐內的狀態量;以及 模型參數計算部,使用包含所述對象爐次的所述精煉處理結果的所述實績資訊,基於包含表示所述精煉處理中的自特定期間的起點直至終點為止的所述爐內的質量平衡誤差及熱收支誤差的項的評價函數,計算所述對象爐次的所述精煉處理中的所述模型參數。 (1) A furnace state estimation device according to an embodiment of the present disclosure includes: an input unit for inputting performance information and refining treatment conditions, wherein the performance information includes measurement results of the temperature and component concentration of the melt and the component concentration of the slag in the refining equipment before or during the refining treatment, and measurement results of the refining equipment including the flow rate and component concentration of the exhaust gas discharged from the refining equipment; a model determination unit for determining the model parameters in the refining treatment of the target furnace by using the model parameters of the model related to the blowing reaction in the refining equipment, the performance information, and the past model parameters obtained from a database storing the refining treatment conditions; A furnace state calculation unit calculates the state quantity in the furnace including the temperature and component concentration of the molten metal and the component concentration of the slag using the determined model parameters; and a model parameter calculation unit calculates the model parameters in the refining process of the target furnace using the performance information including the refining process result of the target furnace, based on an evaluation function including terms representing the mass balance error and heat balance error in the furnace from the start point to the end point of the specific period in the refining process.

(2)作為本揭示的一實施方式,在(1)中, 所述模型決定部藉由將記憶於所述資料庫的過去的所述模型參數中的、與所述對象爐次的所述精煉處理條件類似的過去的所述精煉處理的所述模型參數進行平均,而決定所述對象爐次的所述精煉處理中的所述模型參數。 (2) As an embodiment of the present disclosure, in (1), the model determination unit determines the model parameters in the refining process of the target furnace by averaging the model parameters of the past refining process that are similar to the refining process conditions of the target furnace among the past model parameters stored in the database.

(3)作為本揭示的一實施方式,在(1)中, 所述模型決定部將記憶於所述資料庫的過去的所述模型參數、與包含所述精煉處理中的處理次數、處理日期時間、精煉設備的使用次數中的至少一個的精煉處理條件的關係進行模型化,並根據所述模型來決定所述對象爐次的所述精煉處理中的所述參數。 (3) As an embodiment of the present disclosure, in (1), the model determination unit models the relationship between the past model parameters stored in the database and the refining process conditions including at least one of the number of times the refining process is performed, the processing date and time, and the number of times the refining equipment is used, and determines the parameters in the refining process of the target furnace according to the model.

(4)作為本揭示的一實施方式,在(1)至(3)的任一項中, 所述模型參數包含對投入至所述爐內的碳量的特定期間的累計量、排出至爐外的碳量的特定期間的累計量、投入至所述爐內的氧量、排出至所述爐外的氧量、用於所述熔液中的各種金屬雜質氧化的氧量及由所述爐內的熱量變化引起的熔液溫度變化量的特定期間的累計量中的至少一個進行修正的係數或常數項。 (4) As an embodiment of the present disclosure, in any one of (1) to (3), the model parameter includes a coefficient or constant term for correcting at least one of the cumulative amount of carbon input into the furnace during a specific period, the cumulative amount of carbon discharged out of the furnace during a specific period, the amount of oxygen input into the furnace, the amount of oxygen discharged out of the furnace, the amount of oxygen used to oxidize various metal impurities in the melt, and the cumulative amount of melt temperature change caused by heat change in the furnace during a specific period.

(5)作為本揭示的一實施方式,在(1)至(4)的任一項中, 所述評價函數包含表示碳收支平衡的項、表示氧收支平衡的項與表示熱收支平衡的項的加權和。 (5) As an embodiment of the present disclosure, in any one of (1) to (4), the evaluation function includes a weighted sum of a term representing carbon balance, a term representing oxygen balance, and a term representing heat balance.

(6)關於本揭示的一實施方式的爐內狀態推定方法, 是由爐內狀態推定裝置所執行,所述爐內狀態推定方法包括: 輸入步驟,輸入實績資訊及精煉處理的條件,所述實績資訊包含精煉設備中的所述精煉處理開始前或處理中的熔液的溫度及成分濃度與熔渣的成分濃度的測量結果、以及包含自所述精煉設備排出的廢氣的流量及成分濃度的關於精煉設備的測量結果; 模型決定步驟,使用自記憶有與所述精煉設備中的吹煉反應相關的模型的模型參數、所述實績資訊及所述精煉處理條件的資料庫獲取的過去的所述模型參數,決定對象爐次的所述精煉處理中的所述模型參數; 爐內狀態計算步驟,使用已決定的所述模型參數,計算包含所述熔液的溫度及成分濃度與熔渣的成分濃度的爐內的狀態量;以及 模型參數計算步驟,使用包含所述對象爐次的所述精煉處理結果的所述實績資訊,基於包含表示所述精煉處理中的自特定期間的起點直至終點為止的所述爐內的質量平衡誤差及熱收支誤差的項的評價函數,計算所述對象爐次的所述精煉處理中的所述模型參數。 (6) A method for estimating the state of a furnace in an embodiment of the present disclosure is performed by a device for estimating the state of a furnace in an embodiment of the present disclosure, and the method for estimating the state of a furnace in an embodiment of the present disclosure comprises: an input step for inputting performance information and refining treatment conditions, wherein the performance information comprises the measurement results of the temperature and component concentration of the molten metal and the component concentration of the slag in the refining equipment before or during the refining treatment, and the measurement results of the refining equipment including the flow rate and component concentration of the exhaust gas discharged from the refining equipment; A model determination step, using the model parameters of the model related to the blowing reaction in the refining equipment, the performance information and the past model parameters obtained from the database of the refining treatment conditions to determine the model parameters in the refining treatment of the target furnace; A furnace state calculation step, using the determined model parameters to calculate the state quantity in the furnace including the temperature and component concentration of the melt and the component concentration of the slag; and The model parameter calculation step uses the performance information including the refining result of the target furnace to calculate the model parameters in the refining process of the target furnace based on an evaluation function including terms representing the mass balance error and heat balance error in the furnace from the start point to the end point of the specific period in the refining process.

(7)作為本揭示的一實施方式,在(6)中, 所述模型決定步驟藉由將記憶於所述資料庫的過去的所述模型參數中的、與所述對象爐次的所述精煉處理條件類似的過去的所述精煉處理的所述模型參數進行平均,而決定所述對象爐次的所述精煉處理中的所述模型參數。 (7) As an embodiment of the present disclosure, in (6), the model determination step determines the model parameters in the refining process of the target furnace by averaging the model parameters of the past refining process similar to the refining process conditions of the target furnace among the past model parameters stored in the database.

(8)作為本揭示的一實施方式,在(6)中, 所述模型決定步驟將記憶於所述資料庫的過去的所述模型參數、與包含所述精煉處理中的處理次數、處理日期時間、精煉設備的使用次數中的至少一個的精煉處理條件的關係進行模型化,並根據所述模型來決定所述對象爐次的所述精煉處理中的所述參數。 (8) As an embodiment of the present disclosure, in (6), the model determination step models the relationship between the past model parameters stored in the database and the refining process conditions including at least one of the number of times the refining process is performed, the processing date and time, and the number of times the refining equipment is used, and determines the parameters in the refining process of the target furnace according to the model.

(9)關於本揭示的一實施方式的鋼水製造方法, 基於藉由如(6)至(8)中任一項的爐內狀態推定方法而推定的所述熔液的溫度及成分濃度與熔渣的成分濃度,決定頂吹氧的流量及速度、頂吹噴槍的高度、底吹氣體的流量、石灰、鐵礦石等輔助原料的投入量及投入時機、對所述熔液進行採樣的時機以及結束吹煉的時機中的至少一個而進行精煉操作,以製造鋼水。 [發明的效果] (9) Regarding a method for producing molten steel in an embodiment of the present disclosure, Based on the temperature and composition concentration of the molten steel and the composition concentration of the slag estimated by the furnace state estimation method as described in any one of (6) to (8), at least one of the flow rate and speed of top blowing oxygen, the height of the top blowing nozzle, the flow rate of bottom blowing gas, the amount and timing of adding auxiliary raw materials such as lime and iron ore, the timing of sampling the molten steel, and the timing of ending the blowing is determined to perform a refining operation to produce molten steel. [Effect of the Invention]

根據本揭示,可提供一種能夠高精度且連續地推定熔液中及熔渣中的成分濃度的爐內狀態推定裝置、爐內狀態推定方法及鋼水製造方法。According to the present disclosure, a furnace state estimating device, a furnace state estimating method, and a molten steel manufacturing method capable of estimating the component concentrations in the molten metal and the slag with high accuracy and continuously can be provided.

以下,參照圖式說明本揭示的一實施方式的爐內狀態推定裝置、爐內狀態推定方法及鋼水製造方法。Hereinafter, a furnace state estimating device, a furnace state estimating method, and a molten steel manufacturing method according to an embodiment of the present disclosure will be described with reference to the drawings.

[爐內狀態推定裝置的結構] 圖1是表示本揭示的一實施方式的爐內狀態推定裝置1的結構的示意圖。在本實施方式中,爐內狀態推定裝置1用作鋼鐵業中製造鋼水的設備的一部分。製造鋼水的設備包括精煉設備2、以及包含爐內狀態推定裝置1的吹煉控制系統。 [Structure of furnace state estimation device] FIG. 1 is a schematic diagram showing the structure of a furnace state estimation device 1 of an embodiment of the present disclosure. In this embodiment, the furnace state estimation device 1 is used as a part of a facility for producing molten steel in the steel industry. The facility for producing molten steel includes a refining facility 2 and a blowing control system including the furnace state estimation device 1.

如圖1所示,精煉設備2包括轉爐100、噴槍102及管道104。噴槍102配置於轉爐100內的熔液101上。自噴槍102的前端朝向下方的熔液101噴出高壓氧。藉由所述高壓氧將熔液101內的雜質氧化而送入熔渣103內(精煉處理)。管道104為廢氣導煙用的煙道設備,設置於轉爐100的上部。As shown in FIG1 , the refining equipment 2 includes a converter 100, a spray gun 102, and a pipe 104. The spray gun 102 is disposed on the molten metal 101 in the converter 100. High-pressure oxygen is sprayed from the front end of the spray gun 102 toward the molten metal 101 below. The impurities in the molten metal 101 are oxidized by the high-pressure oxygen and sent into the slag 103 (refining treatment). The pipe 104 is a flue device for exhaust gas fume conduction, which is arranged at the upper part of the converter 100.

在管道104的內部配置有廢氣檢測部105。廢氣檢測部105檢測隨著精煉處理而排出的廢氣的流量及成分濃度(例如CO、CO 2、O 2、N 2、Ar等的濃度)。作為廢氣測量,廢氣檢測部105例如基於設於管道104內的文氏管的前後差壓而測量管道104內的廢氣的流量。而且,作為廢氣測量,廢氣檢測部105測量廢氣中的各成分的濃度[%]。廢氣的流量及成分濃度例如以數秒週期進行測量。表示廢氣檢測部105的檢測結果的訊號發送至控制終端10。 An exhaust gas detection unit 105 is disposed inside the duct 104. The exhaust gas detection unit 105 detects the flow rate and component concentration (e.g., the concentration of CO, CO 2 , O 2 , N 2 , Ar, etc.) of the exhaust gas discharged in the course of the refining process. As exhaust gas measurement, the exhaust gas detection unit 105 measures the flow rate of the exhaust gas in the duct 104 based on, for example, the differential pressure before and after the venturi provided in the duct 104. Furthermore, as exhaust gas measurement, the exhaust gas detection unit 105 measures the concentration [%] of each component in the exhaust gas. The flow rate and component concentration of the exhaust gas are measured, for example, in a cycle of several seconds. A signal indicating the detection result of the exhaust gas detection unit 105 is sent to the control terminal 10.

經由形成於轉爐100底部的通氣孔106向轉爐100內的熔液101中吹入攪拌氣體。攪拌氣體為Ar等的惰性氣體。吹入的攪拌氣體攪拌熔液101,促進高壓氧與熔液101的反應。流量計107測量吹入至轉爐100的攪拌氣體的流量。在即將開始吹煉前及吹煉後,進行熔液101的溫度及成分濃度的分析。而且,在吹煉過程中測量一次或多次熔液101的溫度及成分濃度,基於所測量的溫度及成分濃度決定高壓氧的供給量(送氧量)及速度(送氧速度)以及攪拌氣體的流量(攪拌氣體流量)等。A stirring gas is blown into the melt 101 in the converter 100 through a vent hole 106 formed at the bottom of the converter 100. The stirring gas is an inert gas such as Ar. The blown stirring gas stirs the melt 101 and promotes the reaction between the high-pressure oxygen and the melt 101. The flow meter 107 measures the flow rate of the stirring gas blown into the converter 100. The temperature and component concentration of the melt 101 are analyzed just before and after the blowing. In addition, the temperature and component concentration of the melt 101 are measured once or multiple times during the blowing process, and the supply amount (oxygen supply amount) and speed (oxygen supply speed) of high-pressure oxygen and the flow rate (stirring gas flow rate) of the stirring gas are determined based on the measured temperature and component concentration.

吹煉控制系統包括控制終端10、顯示裝置20及爐內狀態推定裝置1作為主要構成元件。控制終端10可包含個人電腦或工作站等資訊處理裝置。控制終端10以熔液101的溫度及成分濃度成為所需範圍內的方式控制送氧量、送氧速度及攪拌氣體流量,並且收集送氧量、送氧速度及攪拌氣體流量的實績值資料。顯示裝置20例如可包含液晶顯示器(Liquid Crystal Display,LCD)或陰極射線管(Cathode Ray Tube,CRT)顯示器。顯示裝置20可顯示自爐內狀態推定裝置1輸出的計算結果等。The blowing control system includes a control terminal 10, a display device 20, and a furnace state estimation device 1 as main components. The control terminal 10 may include an information processing device such as a personal computer or a workstation. The control terminal 10 controls the oxygen supply amount, oxygen supply speed, and stirring gas flow rate in such a way that the temperature and component concentration of the melt 101 are within the required range, and collects performance value data of the oxygen supply amount, oxygen supply speed, and stirring gas flow rate. The display device 20 may include, for example, a liquid crystal display (LCD) or a cathode ray tube (CRT) display. The display device 20 may display the calculation results output from the furnace state estimation device 1, etc.

爐內狀態推定裝置1是推定由精煉設備2處理的熔液101的溫度及成分濃度與熔渣103的成分濃度的裝置。爐內狀態推定裝置1包含個人電腦或工作站等資訊處理裝置。爐內狀態推定裝置1包括輸入部11、資料庫12、模型參數計算部13、模型決定部14、爐內狀態計算部15及輸出部16。The furnace state estimation device 1 is a device for estimating the temperature and component concentration of the molten metal 101 and the component concentration of the slag 103 processed by the refining equipment 2. The furnace state estimation device 1 includes an information processing device such as a personal computer or a workstation. The furnace state estimation device 1 includes an input unit 11, a database 12, a model parameter calculation unit 13, a model determination unit 14, a furnace state calculation unit 15, and an output unit 16.

輸入部11是輸入與精煉設備2相關的各種測量結果即實績資訊(實績資料)等的輸入用介面。輸入部11例如可為鍵盤、滑鼠、指向裝置、資料接收裝置及圖形用戶介面(Graphical User Interface,GUI)等的至少一種。在本實施方式中,輸入部11自外部接受實績資訊、參數設定值等,進行所述資訊向資料庫12的寫入及向爐內狀態計算部15的發送。實績資訊自控制終端10輸入至輸入部11。實績資訊包含由廢氣檢測部105測量的關於廢氣的流量及成分濃度的資訊、送氧量及送氧速度的資訊、攪拌氣體流量的資訊、原料(主原料、輔助原料)投入量的資訊、熔液101的溫度及成分濃度與熔渣103的成分濃度等。該些資訊對應於下述圖2的實績資訊中的項目1~項目M。而且,輸入部11例如可由精煉設備2的操作員等手動進行資料輸入(手動輸入)。藉由手動輸入,可輸入模型式(以下亦簡稱為「模型」)的參數設定值。在本實施方式中,輸入部11亦接受下述精煉處理的條件及操作量資訊。而且,輸入部11亦可在精煉處理開始前或處理中或處理結束後獲取實績資訊等。The input unit 11 is an input interface for inputting various measurement results related to the refining equipment 2, i.e., performance information (performance data). The input unit 11 may be, for example, at least one of a keyboard, a mouse, a pointing device, a data receiving device, and a graphical user interface (GUI). In the present embodiment, the input unit 11 receives performance information, parameter setting values, etc. from the outside, writes the information to the database 12, and sends it to the furnace state calculation unit 15. The performance information is input to the input unit 11 from the control terminal 10. The performance information includes information on the flow rate and component concentration of the exhaust gas measured by the exhaust gas detection unit 105, information on the oxygen supply amount and oxygen supply speed, information on the flow rate of the stirring gas, information on the amount of raw materials (main raw materials, auxiliary raw materials) input, the temperature and component concentration of the melt 101, and the component concentration of the slag 103. These information correspond to items 1 to M in the performance information of FIG. 2 described below. In addition, the input unit 11 can manually input data (manual input) by, for example, an operator of the refining equipment 2. By manual input, parameter setting values of the model formula (hereinafter also referred to as "model") can be input. In this embodiment, the input unit 11 also receives the conditions and operation amount information of the refining process described below. Furthermore, the input unit 11 can also obtain performance information before, during, or after the refinement process begins.

資料庫12記憶與精煉設備2中的吹煉反應相關的模型的資訊、精煉處理的實績資訊及爐內狀態推定裝置1的計算結果。資料庫12例如包含記憶體及硬碟驅動器等的記憶裝置。記憶裝置可進而記憶電腦程式。資料庫12記憶模型式及模型式的參數(以下稱為「模型參數」)作為與吹煉反應相關的模型的資訊。模型參數由模型參數計算部13計算。而且,資料庫12中可記憶有輸入至輸入部11的各種資訊、由爐內狀態計算部15計算的吹煉實績中的計算、分析結果。The database 12 stores information on the model related to the blowing reaction in the refining equipment 2, information on the performance of the refining process, and calculation results of the in-furnace state estimation device 1. The database 12 includes, for example, a storage device such as a memory and a hard disk drive. The storage device can further store a computer program. The database 12 stores model formulas and parameters of the model formulas (hereinafter referred to as "model parameters") as information on the model related to the blowing reaction. The model parameters are calculated by the model parameter calculation unit 13. In addition, the database 12 can store various information input to the input unit 11, and calculation and analysis results in the blowing performance calculated by the in-furnace state calculation unit 15.

圖2是表示資料庫12的結構例的圖。在本實施方式中,資料庫12將N次(N爐次)精煉處理中的條件、實績資訊及作為計算結果的模型參數與爐次的識別編號建立關聯而記憶。N例如為2以上的整數。在圖2的例中,最左欄表示爐次的識別編號。例如在第N次精煉處理中,資料庫12記憶過去的N-1次精煉處理中的實績資訊及模型參數。在第N次精煉處理中,在模型決定部14按下述方式決定模型參數的情況下,記憶於資料庫12的過去的N-1次精煉處理的資訊用作候補。而且,當第N次精煉處理結束時,將第N次精煉處理中的實績資訊及計算結果追加至資料庫12(參照圖2的粗框部分)。其後,在第N+1次精煉處理中,在模型決定部14決定模型參數的情況下,記憶於資料庫12的過去的N次精煉處理的資訊用作候補。FIG2 is a diagram showing a structural example of the database 12. In the present embodiment, the database 12 stores conditions, performance information, and model parameters as calculation results in N times (N furnaces) of refining processing by associating them with the identification number of the furnace. N is, for example, an integer greater than 2. In the example of FIG2 , the leftmost column represents the identification number of the furnace. For example, in the Nth refining processing, the database 12 stores the performance information and model parameters in the past N-1 refining processings. In the Nth refining processing, when the model determination unit 14 determines the model parameters as follows, the information of the past N-1 refining processings stored in the database 12 is used as a backup. Furthermore, when the Nth refinement process is completed, the performance information and calculation results in the Nth refinement process are added to the database 12 (refer to the bold frame portion in FIG. 2 ). Thereafter, in the N+1th refinement process, when the model determination unit 14 determines the model parameters, the information of the past N refinement processes stored in the database 12 is used as a candidate.

模型參數計算部13、模型決定部14及爐內狀態計算部15例如包含中央處理單元(Central Processing Unit,CPU)等運算處理裝置。模型參數計算部13、模型決定部14及爐內狀態計算部15例如可藉由運算處理裝置讀取並執行電腦程式而實現。而且,模型參數計算部13、模型決定部14及爐內狀態計算部15可具有專用的運算裝置或運算電路。The model parameter calculation unit 13, the model decision unit 14, and the furnace state calculation unit 15 include, for example, a central processing unit (CPU) or other computing device. The model parameter calculation unit 13, the model decision unit 14, and the furnace state calculation unit 15 can be realized by, for example, the computing device reading and executing a computer program. Furthermore, the model parameter calculation unit 13, the model decision unit 14, and the furnace state calculation unit 15 can have a dedicated computing device or computing circuit.

模型參數計算部13基於爐內的質量平衡及熱收支,以收支誤差最小的方式計算與吹煉反應相關的模型的模型參數,並記憶於資料庫12。模型參數計算部13在一次精煉處理結束後,使用作為所述精煉處理結果的實績資訊進行質量平衡及熱收支的計算。The model parameter calculation unit 13 calculates the model parameters of the model related to the blowing reaction in a manner that minimizes the balance error based on the mass balance and heat balance in the furnace, and stores them in the database 12. After a refining process is completed, the model parameter calculation unit 13 calculates the mass balance and heat balance using the performance information as the result of the refining process.

質量平衡計算對各成分在轉爐100內的投入量及來自轉爐100的各成分的排出量進行計算。各成分的投入量根據對轉爐100的主原料及輔助原料投入量、來自噴槍102的供給氧及來自轉爐100外的捲入空氣量而計算。各成分的排出量根據廢氣流量及廢氣成分濃度而計算。The mass balance calculation calculates the input amount of each component into the converter 100 and the discharge amount of each component from the converter 100. The input amount of each component is calculated based on the input amount of the main raw material and auxiliary raw material into the converter 100, the oxygen supplied from the spray gun 102, and the amount of air entrained from outside the converter 100. The discharge amount of each component is calculated based on the exhaust gas flow rate and exhaust gas component concentration.

熱收支計算對轉爐100的爐內的輸入熱量及排出熱量進行計算。輸入熱量根據裝入至轉爐100的主原料的顯熱、由在爐內發生的反應引起的反應熱、投入至轉爐100的輔助原料的熔解熱等而計算。排出熱量根據來自爐體表面的散熱、來自爐口部的輻射熱、由攪拌氣體引起的排熱、排出至爐外的熔渣103、排出氣體的顯熱等而計算。The heat balance calculation calculates the input heat and exhaust heat in the converter 100. The input heat is calculated based on the sensible heat of the main raw material charged into the converter 100, the reaction heat caused by the reaction in the furnace, the melting heat of the auxiliary raw material charged into the converter 100, etc. The exhaust heat is calculated based on the heat dissipated from the furnace surface, the radiation heat from the furnace mouth, the exhaust heat caused by the stirring gas, the slag 103 discharged to the outside of the furnace, the sensible heat of the exhaust gas, etc.

模型決定部14獲取記憶於資料庫12的過去的模型參數。模型決定部14使用過去的模型參數,決定爐內狀態計算部15中要利用的模型參數,發送至爐內狀態計算部15。The model determination unit 14 obtains the past model parameters stored in the database 12. The model determination unit 14 uses the past model parameters to determine the model parameters to be used in the furnace state calculation unit 15, and sends them to the furnace state calculation unit 15.

爐內狀態計算部15基於由模型決定部14決定的模型參數、輸入部11所收集的實績資訊及參數設定值等,計算(推定)包含熔液101的溫度及成分濃度與熔渣103的成分濃度的轉爐100內的狀態量。所推定的轉爐100內的狀態量發送至輸出部16。The furnace state calculation unit 15 calculates (estimates) state quantities in the converter 100 including the temperature and component concentration of the melt 101 and the component concentration of the slag 103 based on the model parameters determined by the model determination unit 14, the performance information and parameter setting values collected by the input unit 11, etc. The estimated state quantities in the converter 100 are sent to the output unit 16.

輸出部16將由爐內狀態推定裝置1計算的轉爐100內的狀態量發送至控制終端10。在精煉處理中,基於自爐內狀態推定裝置1輸出的計算結果進行各種操作量的決定及操作條件的變更。而且,輸出部16亦具有將由爐內狀態推定裝置1計算的資訊發送至顯示裝置20的功能,可顯示自爐內狀態推定裝置1輸出的計算結果。The output unit 16 sends the state quantity in the converter 100 calculated by the furnace state estimation device 1 to the control terminal 10. In the refining process, various operation quantities are determined and the operation conditions are changed based on the calculation results output from the furnace state estimation device 1. In addition, the output unit 16 also has a function of sending the information calculated by the furnace state estimation device 1 to the display device 20, and can display the calculation results output from the furnace state estimation device 1.

具有此種結構的爐內狀態推定裝置1藉由執行以下說明的爐內狀態推定方法的處理,高精度地推定包含熔液101中的溫度及成分濃度與熔渣103中的成分濃度等的轉爐100內的狀態量。以下,參照圖3所示的流程圖,說明執行爐內狀態推定方法時的爐內狀態推定裝置1的動作。The furnace state estimating device 1 having such a structure estimates the state quantity in the converter 100 including the temperature and component concentration in the melt 101 and the component concentration in the slag 103 with high accuracy by executing the furnace state estimating method described below. The operation of the furnace state estimating device 1 when executing the furnace state estimating method will be described below with reference to the flowchart shown in FIG.

[爐內狀態推定方法] 圖3是表示本揭示的一實施方式的爐內狀態推定方法的處理的流程圖。圖3所示的流程圖在精煉處理開始前的任意時機開始。即,在精煉處理開始前的任意時機,爐內狀態推定處理進入步驟S1的處理。 [Method for estimating the state in the furnace] FIG. 3 is a flowchart showing the processing of the method for estimating the state in the furnace according to an embodiment of the present disclosure. The flowchart shown in FIG. 3 starts at any time before the start of the refining process. That is, at any time before the start of the refining process, the processing for estimating the state in the furnace enters the processing of step S1.

在步驟S1的處理中,輸入部11獲取精煉處理的條件。在本實施方式中,精煉處理的條件包含精煉形態、輔助原料投入預定量、熔液101及熔渣103的成分濃度及溫度的目標值、處理次數、處理日期時間、包含爐、噴槍及測量機器的設備的使用次數等。輸入部11將獲取的精煉處理的條件發送至資料庫12及爐內狀態計算部15。藉此,步驟S1的處理完成,爐內狀態推定處理進入步驟S2的處理。步驟S1對應於「輸入步驟」的一部分。在步驟S1中輸入的資料用於模型決定部14的處理。In the processing of step S1, the input unit 11 obtains the conditions of the refining treatment. In the present embodiment, the conditions of the refining treatment include the refining morphology, the predetermined amount of auxiliary raw materials to be fed, the target values of the component concentration and temperature of the melt 101 and the slag 103, the number of treatments, the date and time of treatment, the number of times the equipment including the furnace, the spray gun and the measuring machine are used, etc. The input unit 11 sends the obtained conditions of the refining treatment to the database 12 and the furnace state calculation unit 15. Thereby, the processing of step S1 is completed, and the furnace state estimation processing enters the processing of step S2. Step S1 corresponds to a part of the "input step". The data input in step S1 is used for the processing of the model determination unit 14.

在步驟S2的處理中,模型決定部14使用記憶於資料庫12的過去的模型參數,基於精煉處理的條件,決定爐內狀態計算部15中要利用的模型參數。步驟S2對應於「模型決定步驟」。詳細而言,步驟S2的處理中決定的模型參數可基於與已經記憶於資料庫12的過去的精煉處理對應的模型參數,藉由計算或選擇而獲得。如上所述,例如在第N次精煉處理中,模型決定部14使用記憶於資料庫12的過去的N-1次精煉處理的資訊決定模型參數。在需要花費時間才能獲取精煉處理結果等過去的N-1次模型參數或精煉處理條件的資料不全的情況下,可提取所需的模型參數或精煉處理條件的資料齊全的實績資訊而決定模型參數。有時將此例情況下的第N次精煉處理即當前執行中的精煉處理稱為對象爐次的精煉處理。In the processing of step S2, the model determination unit 14 uses the past model parameters stored in the database 12 to determine the model parameters to be used in the furnace state calculation unit 15 based on the conditions of the refining process. Step S2 corresponds to the "model determination step". In detail, the model parameters determined in the processing of step S2 can be obtained by calculation or selection based on the model parameters corresponding to the past refining processes that have been stored in the database 12. As described above, for example, in the Nth refining process, the model determination unit 14 uses the information of the past N-1 refining processes stored in the database 12 to determine the model parameters. In the case where it takes time to obtain the refinement results and the data of the past N-1 model parameters or refinement conditions are incomplete, the model parameters can be determined by extracting the performance information of the required model parameters or refinement conditions with complete data. In this case, the Nth refinement process, that is, the refinement process currently being executed, is sometimes called the refinement process of the target furnace.

模型決定部14例如藉由提取記憶於資料庫12的模型參數中精煉處理條件與對象爐次的條件類似的模型參數,將提取的模型參數進行平均而決定。模型決定部14可僅提取最近的規定數量的爐次中的模型參數,即將舊模型參數自提取對象中排除,進行平均化。對象爐次的精煉處理中的條件與過去實績的相似度(Ds)例如可藉由按以下式(1)所示計算歐式距離而評價。The model determination unit 14 extracts model parameters whose refining process conditions are similar to the conditions of the target furnace from the model parameters stored in the database 12, and averages the extracted model parameters to determine the model parameters. The model determination unit 14 may extract only the model parameters of the most recent specified number of furnaces, that is, exclude old model parameters from the extraction targets and average them. The similarity (Ds) between the conditions in the refining process of the target furnace and the past performance can be evaluated by calculating the Euclidean distance as shown in the following formula (1), for example.

[數1] [Number 1]

其中,k為精煉處理的條件數。CA k表示過去實績中的條件。CP k表示對象爐次的精煉處理中的條件。G k是用於進行各精煉處理條件的加權的參數。作為精煉處理條件,例如可列舉精煉處理日期時間、裝入熔鐵重量、裝入廢料重量、熔鐵溫度、熔鐵中以C、Si、Mn、P為代表的成分濃度、精煉爐及頂吹噴槍的使用次數等。而且,例如可列舉之前實施的精煉處理中的處理後的熔液溫度及來自處理後的經過時間、遺留的熔渣重量及成分、精煉處理開始前投入的每一輔助原料品種的投入重量、每一廢料品種的投入重量等。該些條件對應於圖2的精煉處理條件中的項目1~項目L。而且,在評價相似度的情況下,可僅以正在使用的精煉爐的形態、頂吹噴槍的形態、底吹噴嘴的形態等一致的實績作為對象。此處,相似度不限於式(1)所示的歐式距離,亦可藉由評價城市街區距離、明氏距離、馬氏距離、以餘弦相似度為代表的k維向量間的距離的方法進行評價。此處,相似度高與所計算的k維向量間的距離短同義。過去的精煉處理實績的提取可提取所計算的相似度較設定的臨限值高的實績,或可提取相似度高的上位任意數的過去實績。而且,作為相似實績的提取方法,可為如下方法,即,關於精煉處理的條件k各自的項目,對計算對象處理條件與過去實績條件的差進行計算,提取k個差分別小於設定臨限值的實績。 Here, k is the number of refining conditions. CA k represents the conditions in the past performance. CP k represents the conditions in the refining of the target furnace. G k is a parameter used to weight each refining condition. As refining conditions, for example, the refining date and time, the weight of the charged molten iron, the weight of the charged scrap, the molten iron temperature, the concentration of components represented by C, Si, Mn, and P in the molten iron, the number of times the refining furnace and the top blowing gun are used, etc. can be listed. Furthermore, for example, the melt temperature after the refining treatment performed previously and the time elapsed after the treatment, the weight and composition of the remaining slag, the input weight of each auxiliary raw material type input before the start of the refining treatment, the input weight of each waste material type, etc. can be listed. These conditions correspond to items 1 to L in the refining treatment conditions of Figure 2. Moreover, when evaluating the similarity, only the consistent performance of the shape of the refining furnace in use, the shape of the top blowing nozzle, the shape of the bottom blowing nozzle, etc. can be used as the object. Here, the similarity is not limited to the Euclidean distance shown in formula (1), and can also be evaluated by evaluating the distance between urban blocks, Minkowski distance, Mahalanobis distance, and distances between k-dimensional vectors represented by cosine similarity. Here, high similarity is synonymous with short distances between the calculated k-dimensional vectors. The extraction of past refined processing results can extract results whose calculated similarity is higher than a set threshold value, or can extract any upper arbitrary number of past results with high similarity. Moreover, as a method for extracting similar results, the following method can be used, that is, for each item of the refined processing condition k, the difference between the calculation object processing condition and the past performance condition is calculated, and k results whose differences are less than the set threshold value are extracted.

而且,模型決定部14可將記憶於資料庫12的模型參數、與包含精煉處理中的處理次數、處理日期時間、包含爐、噴槍及測量機器的精煉設備的使用次數等的精煉處理條件的關係進行模型化。並且,模型決定部14可藉由模型計算根據對象爐次的精煉處理條件輸入值算出最佳參數。模型決定部14將已決定的模型參數發送至爐內狀態計算部15。藉此,步驟S2的處理完成,爐內狀態推定處理進入步驟S3的處理。Furthermore, the model determination unit 14 can model the relationship between the model parameters stored in the database 12 and the refining process conditions including the number of times of refining process, the date and time of the refining process, the number of times the refining equipment including the furnace, the spray gun and the measuring machine is used, etc. Furthermore, the model determination unit 14 can calculate the optimal parameters according to the input values of the refining process conditions of the target furnace by model calculation. The model determination unit 14 sends the determined model parameters to the furnace state calculation unit 15. Thus, the processing of step S2 is completed, and the furnace state estimation processing enters the processing of step S3.

步驟S3及步驟S4的處理在一次精煉處理開始的時機開始,在精煉處理中以任意週期重覆實施。在步驟S3的處理中,輸入部11獲取精煉處理的操作量資訊及轉爐100中的測量資訊。操作量資訊例如為噴槍102的高度、送氧速度、攪拌氣體流量、輔助原料的投入量等操作量的資訊。測量資訊例如為廢氣的流量及成分濃度等的測量值。此處,測量值並不限於測量所得的值本身,亦可包含分析後的結果(分析值)。操作量資訊、測量資訊以任意週期收集。當操作量資訊與測量資訊之間存在大的時間延遲時,考慮此延遲而創建資料。而且,在測量資訊包含大量雜訊的情況下,可利用進行移動平均計算等平滑化處理而得的值替換測量值。步驟S3對應於「輸入步驟」的一部分。步驟S3中輸入的資料用於爐內狀態計算部15的處理。The processing of step S3 and step S4 starts at the start of a refining process and is repeated at any cycle in the refining process. In the processing of step S3, the input unit 11 obtains the operating quantity information of the refining process and the measurement information in the converter 100. The operating quantity information is, for example, information on operating quantities such as the height of the spray gun 102, the oxygen supply speed, the stirring gas flow rate, and the input amount of auxiliary raw materials. The measurement information is, for example, the measured values of the flow rate and component concentration of the exhaust gas. Here, the measured value is not limited to the measured value itself, but may also include the result of the analysis (analysis value). The operating quantity information and the measurement information are collected at any cycle. When there is a large time delay between the operating quantity information and the measurement information, the data is created taking this delay into consideration. Furthermore, when the measurement information contains a large amount of noise, the measurement value may be replaced by a value obtained by performing a smoothing process such as a moving average calculation. Step S3 corresponds to a part of the "input step". The data input in step S3 is used for processing in the furnace state calculation unit 15.

在步驟S4的處理中,爐內狀態計算部15使用具有輸入部11所獲取的資訊及模型決定部14所決定的模型參數的模型,計算轉爐100內的狀態量。狀態量例如可列舉熔液101中的碳濃度、熔渣103中的Fe tO濃度等。步驟S4對應於「爐內狀態計算步驟」。 In the processing of step S4, the furnace state calculation unit 15 calculates the state quantity in the converter 100 using the model having the information obtained by the input unit 11 and the model parameters determined by the model determination unit 14. The state quantity may be, for example, the carbon concentration in the molten metal 101, the Fe t O concentration in the slag 103, etc. Step S4 corresponds to the "furnace state calculation step".

熔液101中的碳濃度例如藉由計算轉爐100內殘存的碳量而求出。投入至轉爐100內的碳量及排出至轉爐100外的碳量分別可表示為以下所示的式(2)及式(3)。假設自投入碳量減去排出碳量而得的轉爐100內殘存的碳量相當於熔液101中的碳量,藉此可計算熔液101中的碳濃度。此處,假設熔液101的進出碳量與總裝入量相比而言微少。而且,除非另有說明,則「%」及各種流量表示「質量%(mass%)」及流量原單位。The carbon concentration in the melt 101 is obtained, for example, by calculating the amount of carbon remaining in the converter 100. The amount of carbon fed into the converter 100 and the amount of carbon discharged from the converter 100 can be expressed as the following equations (2) and (3), respectively. Assuming that the amount of carbon remaining in the converter 100 obtained by subtracting the amount of carbon discharged from the amount of carbon fed is equivalent to the amount of carbon in the melt 101, the carbon concentration in the melt 101 can be calculated. Here, it is assumed that the amount of carbon fed into and out of the melt 101 is small compared to the total amount fed. In addition, unless otherwise specified, "%" and various flow rates indicate "mass % (mass %)" and the original unit of flow rate.

[數2] [Number 2]

[數3] [Number 3]

此處,作為投入碳量的C in[%]為主原料中的碳量與投入輔助原料中的碳量的和的熔液101中的濃度換算值。ρ pig[%]為裝入熔鐵中的碳濃度。ρ i Cscr[%]為裝入廢料(品種i)中的碳濃度。ρ j Caux[%]為投入輔助原料(品種j)中的碳濃度。W pig[t]為裝入熔鐵重量。W i scr[t]為裝入廢料(品種i)的重量。W j aux[t]為投入輔助原料(品種j)的投入累計重量。W charge[t]為裝入至轉爐100的熔液重量。裝入廢料的品種i及投入輔助原料的品種j中的碳濃度(ρ i Cscr、ρ j Caux)記憶於資料庫12,爐內狀態計算部15獲取關於按對象爐次利用的品種的資訊。作為排出碳量的C out[%]為廢氣中包含的碳量的熔液101中的濃度換算值。V CO OG[Nm 3/t]、V CO2 OG[Nm 3/t]分別為直至廢氣中的CO、CO 2的計算時刻的累計流量。 Here, C in [%] as the input carbon amount is a value converted to the concentration in the melt 101 of the sum of the carbon amount in the main raw material and the carbon amount in the input auxiliary raw material. ρ pig [%] is the carbon concentration in the charged molten iron. ρ i Cscr [%] is the carbon concentration in the charged scrap (variety i). ρ j Caux [%] is the carbon concentration in the charged auxiliary raw material (variety j). W pig [t] is the weight of the charged molten iron. W i scr [t] is the weight of the charged scrap (variety i). W j aux [t] is the cumulative weight of the input auxiliary raw materials (variety j). W charge [t] is the weight of the melt charged to the converter 100. The carbon concentrations ( ρi Cscr , ρj Caux ) in the type i of the charged waste material and the type j of the input auxiliary raw material are stored in the database 12, and the furnace state calculation unit 15 obtains information on the types used in each target furnace. Cout [%], which is the amount of discharged carbon, is a value converted from the concentration of the amount of carbon contained in the exhaust gas to the melt 101. VCO OG [ Nm3 /t] and VCO2 OG [ Nm3 /t] are the cumulative flow rates of CO and CO2 in the exhaust gas, respectively, up to the calculation time.

熔渣103中的Fe tO濃度可假設自投入氧量減去排出氧量而得的量相當於轉爐100內殘存的氧量而進行計算。例如,可將投入至轉爐100內的氧量及排出至轉爐100外的氧量分別表示為以下所示的式(4)及式(5)。 The FetO concentration in the slag 103 can be calculated by assuming that the amount obtained by subtracting the amount of discharged oxygen from the amount of input oxygen is equivalent to the amount of oxygen remaining in the converter 100. For example, the amount of oxygen input into the converter 100 and the amount of oxygen discharged out of the converter 100 can be expressed as the following equations (4) and (5), respectively.

[數4] [Number 4]

[數5] [Number 5]

此處,作為投入氧量的O 2 in[Nm 3/t]為來自噴槍102的頂吹氧累計量V O2 blow[Nm 3/t]、投入輔助原料中的氧累計量及自轉爐100外捲入爐內的空氣中的氧累計量的和。ρ i Oscr[%]為裝入廢料(品種i)中的氧含量的換算值。ρ j Oaux[(Nm 3/t)/t]為投入輔助原料(品種j)中的氧含量的換算值。裝入廢料的品種i及投入輔助原料的品種j中的氧含量(ρ i Oaux、ρ j Oaux)記憶於資料庫12,爐內狀態計算部15獲取關於按對象爐次利用的品種的資訊。關於ρ i Oscr[%]及W j aux[t],可包含關於自前爐次遺留的熔渣103的成分及重量的分析值或計算值。而且,在投入氧量的計算中,例如如本實施例所示,在未獲得N 2濃度、Ar濃度作為廢氣測量的情況下,被捲入的空氣中的氧量可按式(4)的第四項的方式計算。此處,在式(4)的第四項中,假設自作為廢氣中除O 2、CO、CO 2以外的未分析廢氣量的V rem OG[Nm 3/t]減去作為底吹氣體流量的V bot[Nm 3/t]而得的量相當於捲入空氣中的N 2、Ar。 Here, O2in [ Nm3 /t] as the input oxygen amount is the sum of the top blow oxygen cumulative amount VO2 blow [ Nm3 /t] from the lance 102, the oxygen cumulative amount in the input auxiliary raw material, and the oxygen cumulative amount in the air swept into the furnace from the rotary furnace 100. ρiOscr [%] is the converted value of the oxygen content in the charged waste material (variety i). ρjOaux [ ( Nm3 /t)/t] is the converted value of the oxygen content in the input auxiliary raw material (variety j). The oxygen contents ( ρiOaux , ρjOaux ) in the variety i of the charged waste material and the variety j of the input auxiliary raw material are stored in the database 12, and the furnace state calculation unit 15 obtains information on the variety used in each target furnace. Regarding ρ i Oscr [%] and W j aux [t], the analyzed value or calculated value regarding the composition and weight of the slag 103 left over from the forehearth may be included. In addition, in the calculation of the amount of oxygen input, for example, as shown in the present embodiment, when the N 2 concentration and the Ar concentration are not obtained as exhaust gas measurements, the amount of oxygen in the air drawn in may be calculated as in the fourth term of formula (4). Here, in the fourth term of formula (4), it is assumed that the amount obtained by subtracting V bot [Nm 3 /t] as the bottom blowing gas flow rate from V rem OG [Nm 3 /t] as the amount of unanalyzed exhaust gas excluding O 2 , CO , and CO 2 in the exhaust gas is equivalent to N 2 and Ar drawn in the air.

作為排出氧量的O 2 out[Nm 3/t]根據廢氣中所包含的氧量而計算。V O2 OG[Nm 3/t]為直至廢氣中的O 2的計算時刻的累計流量。V CO OG[Nm 3/t]、V CO2 OG[Nm 3/t]與式(3)相同。自投入氧量減去排出氧量而得的量為轉爐100內殘存的氧量。轉爐100內殘存的氧用於熔液101中的Si、Mn、P等金屬雜質的氧化及鐵的氧化。其中,關於金屬雜質的氧化量,使用記憶於資料庫12的模型中的雜質金屬的氧化反應模型而計算。例如作為用於熔液101中的Si氧化的氧量的V O2 Si[Nm 3/t]表示為以下所示的式(6)。 O 2 out [Nm 3 /t], which is the amount of oxygen discharged, is calculated from the amount of oxygen contained in the exhaust gas. V O2 OG [Nm 3 /t] is the cumulative flow rate of O 2 in the exhaust gas up to the time of calculation. V CO OG [Nm 3 /t] and V CO2 OG [Nm 3 /t] are the same as in formula (3). The amount obtained by subtracting the amount of oxygen discharged from the amount of oxygen input is the amount of oxygen remaining in the converter 100. The oxygen remaining in the converter 100 is used for oxidation of metal impurities such as Si, Mn, and P in the melt 101 and oxidation of iron. The oxidation amount of metal impurities is calculated using the oxidation reaction model of impurity metals in the model stored in the database 12. For example, V O 2 Si [Nm 3 /t], which is the amount of oxygen used for oxidation of Si in the melt 101 , is represented by the following formula (6).

[數6] [Number 6]

此處,ρ pig Si[%]為裝入熔鐵中的Si濃度。ρ i Siscr[%]為裝入廢料(品種i)中的Si濃度。ρ j Siaux[%]為投入輔助原料(品種j)中的Si濃度。K Si為Si的氧化反應速度常數。而且,與式(6)同樣地,可計算Mn、P等熔液101中的各種金屬雜質的氧化所使用的氧量。此處,Si、Mn、P等熔液101中的各種金屬雜質的氧化所使用的氧量合計為V O2 met[Nm 3/t]。可假設熔渣103中的Fe tO量相當於自投入氧量減去排出氧量並自所得的量再減去V O2 met而得的量而進行計算。 Here, ρ pig Si [%] is the Si concentration in the charged molten iron. ρ i Siscr [%] is the Si concentration in the charged scrap (variety i). ρ j Siaux [%] is the Si concentration in the charged auxiliary raw material (variety j). K Si is the oxidation reaction rate constant of Si. In addition, the amount of oxygen used for oxidation of various metal impurities such as Mn and P in the melt 101 can be calculated in the same manner as in equation (6). Here, the total amount of oxygen used for oxidation of various metal impurities such as Si, Mn, and P in the melt 101 is V O2 met [Nm 3 /t]. The Fe t O amount in the slag 103 can be calculated by assuming that the amount of Fe t O in the slag 103 is equivalent to the amount obtained by subtracting the amount of discharged oxygen from the amount of input oxygen and then subtracting V O2 met from the obtained amount.

在一次精煉處理(所述對象爐次的精煉處理)結束的時機結束步驟S3及步驟S4的處理(步驟S5的是(Yes)),爐內狀態推定處理進入步驟S6的處理。在一次精煉處理未結束的情況下(步驟S5的否(No)),爐內狀態推定處理返回步驟S3及步驟S4的處理。When one refining process (the refining process of the target furnace) is completed, the processes of step S3 and step S4 are completed (step S5 is Yes), and the furnace state estimation process enters the process of step S6. If one refining process is not completed (step S5 is No), the furnace state estimation process returns to the processes of step S3 and step S4.

在步驟S6的處理中,輸入部11獲取精煉處理的結果作為實績資訊。在本實施方式中,精煉處理結果包含熔液101的溫度及成分濃度、熔渣103的成分濃度以及廢氣的流量及成分濃度。輸入部11將獲取的精煉處理結果記憶於資料庫12。藉此,步驟S6的處理完成,爐內狀態推定處理進入步驟S7的處理。步驟S6對應於「輸入步驟」的一部分。步驟S6中輸入的資料用於模型參數計算部13的處理。In the processing of step S6, the input unit 11 obtains the result of the refining treatment as performance information. In the present embodiment, the refining treatment result includes the temperature and component concentration of the melt 101, the component concentration of the slag 103, and the flow rate and component concentration of the exhaust gas. The input unit 11 stores the obtained refining treatment result in the database 12. Thereby, the processing of step S6 is completed, and the furnace state estimation processing enters the processing of step S7. Step S6 corresponds to a part of the "input step". The data input in step S6 is used for processing in the model parameter calculation unit 13.

在步驟S7的處理中,模型參數計算部13基於爐內的質量平衡及熱收支,以收支誤差最小的方式計算與吹煉反應相關的模型的模型參數,並記憶於資料庫12。步驟S7對應於「模型參數計算步驟」。如上所述,爐內狀態計算部15使用由模型決定部14決定的模型參數,推定對象爐次的精煉處理中的轉爐100內的狀態量。模型參數計算部13使用對象爐次的精煉處理的結果(實績資訊)修正爐內狀態計算部15所使用的模型參數。並且,模型參數計算部13將修正後的進一步準確的模型參數記憶於資料庫12。換言之,與對象爐次建立關聯而記憶於資料庫12的模型參數並非爐內狀態計算部15用於計算(推定)的模型的模型參數。與對象爐次建立關聯而記憶於資料庫12的模型參數是由模型參數計算部13基於對象爐次的精煉處理的實績資訊進行計算(修正)的模型參數。In the processing of step S7, the model parameter calculation unit 13 calculates the model parameters of the model related to the blowing reaction in a manner that minimizes the balance error based on the mass balance and heat balance in the furnace, and stores them in the database 12. Step S7 corresponds to the "model parameter calculation step". As described above, the furnace state calculation unit 15 uses the model parameters determined by the model determination unit 14 to estimate the state quantity in the converter 100 during the refining process of the target furnace. The model parameter calculation unit 13 uses the results (performance information) of the refining process of the target furnace to correct the model parameters used by the furnace state calculation unit 15. In addition, the model parameter calculation unit 13 stores the corrected more accurate model parameters in the database 12. In other words, the model parameters stored in the database 12 in association with the target furnace are not the model parameters of the model used for calculation (estimation) by the furnace state calculation unit 15. The model parameters stored in the database 12 in association with the target furnace are the model parameters calculated (corrected) by the model parameter calculation unit 13 based on the performance information of the refining process of the target furnace.

模型參數計算部13可計算修正用的係數作為模型參數。修正用的係數例如可包含廢氣的流量的測量值的修正係數A、廢氣的成分濃度的測量值的修正係數B。修正用的係數例如亦可包含熔液101的成分濃度的測量值的修正係數ΔC、熔液101的溫度的測量值的修正係數D、與裝入廢料的爐內反應良率相關的常數E、與投入的輔助原料的爐內反應良率相關的常數F。修正用的係數亦可包含伴隨熔液101中的成分的氧化反應、熔渣103中的成分的還原反應、輔助原料的熔解等爐內的各種反應的關於升熱及吸熱量的係數H。而且,修正用的係數亦可包含氣體及熔渣103的顯熱、來自爐口及爐體的散熱量等關於熱損失的係數I。The model parameter calculation unit 13 can calculate the correction coefficient as the model parameter. The correction coefficient may include, for example, a correction coefficient A for the measured value of the exhaust gas flow rate and a correction coefficient B for the measured value of the component concentration of the exhaust gas. The correction coefficient may include, for example, a correction coefficient ΔC for the measured value of the component concentration of the melt 101, a correction coefficient D for the measured value of the temperature of the melt 101, a constant E related to the furnace reaction yield of the charged waste material, and a constant F related to the furnace reaction yield of the charged auxiliary raw material. The correction coefficient may also include a coefficient H related to the heat rise and heat absorption accompanying various reactions in the furnace, such as the oxidation reaction of the components in the melt 101, the reduction reaction of the components in the slag 103, and the melting of the auxiliary raw material. Furthermore, the correction coefficient may include a coefficient I related to heat loss, such as the sensible heat of the gas and slag 103, and the heat dissipated from the furnace mouth and the furnace body.

模型參數計算部13例如可添加如上所述的係數作為如式(7)那樣的評價函數的變量,求出將評價函數最小化的模型參數。此處,在本實施方式中,模型參數計算部13將評價函數最小化,但亦可使用在適當的模型參數的情況下進行最大化的評價函數。即,模型參數計算部13可求出將評價函數最小化或最大化的模型參數。The model parameter calculation unit 13 can, for example, add the coefficients described above as variables of the evaluation function such as equation (7) to obtain the model parameters that minimize the evaluation function. Here, in this embodiment, the model parameter calculation unit 13 minimizes the evaluation function, but an evaluation function that is maximized under appropriate model parameters can also be used. That is, the model parameter calculation unit 13 can obtain the model parameters that minimize or maximize the evaluation function.

[數7] [Number 7]

C in為投入至轉爐100內的碳量的特定期間的累計量。C out為由於廢氣等而排出至轉爐100外的碳量的特定期間的累計量。O 2 in為投入至轉爐100內的氧量。O 2 out為由於廢氣及熔渣103的排出等而排出至轉爐100外的氧量。V O2 met為Si、Mn、P等熔液101中的各種金屬雜質氧化所使用的氧量。ΔT是由包含由於轉爐100內的反應而產生的反應熱、由排出至爐外的廢氣及熔渣103等引起的排熱以及來自爐體的散熱及來自爐口的輻射散熱等的轉爐100內的熱量變化所引起的熔液溫度變化量的特定期間的累計量。T ini為精煉處理中的特定期間的起點處的熔液101的溫度測量值。而且,[C]、V O2 FetO、T fin分別為精煉處理中的特定期間的終點處的熔液101中的碳量測量值、根據熔渣103中的Fe tO量測量值計算的Fe tO生成所使用的氧量、熔液101溫度測量值。σ C 2、σ O 2、σ T 2為可任意設定的常數。而且,A~I及ΔC對應於圖2的第一參數~第K參數。在本實施方式中,模型參數包含對式(7)中所使用的所述累計量及氧量中的至少一個進行修正的係數或常數項。 C in is the cumulative amount of carbon input into the converter 100 during a specific period. C out is the cumulative amount of carbon discharged to the outside of the converter 100 due to exhaust gas, etc. during a specific period. O 2 in is the amount of oxygen input into the converter 100. O 2 out is the amount of oxygen discharged to the outside of the converter 100 due to the discharge of exhaust gas and slag 103, etc. V O2 met is the amount of oxygen used for oxidation of various metal impurities in the melt 101 such as Si, Mn, and P. ΔT is the cumulative amount of the amount of change in melt temperature caused by heat change in the converter 100 including reaction heat generated by the reaction in the converter 100, exhaust heat caused by exhaust gas and slag 103 discharged to the outside of the furnace, heat dissipated from the furnace body, and radiation heat dissipated from the furnace mouth during a specific period. T ini is a measured value of the temperature of the melt 101 at the start of a specific period in the refining process. [C], V O2 FetO , and T fin are respectively a measured value of the carbon amount in the melt 101 at the end of a specific period in the refining process, an amount of oxygen used for Fe t O generation calculated from a measured value of Fe t O in the slag 103, and a measured value of the temperature of the melt 101. σ C 2 , σ O 2 , and σ T 2 are constants that can be set arbitrarily. A to I and ΔC correspond to the first parameter to the Kth parameter in FIG. 2 . In the present embodiment, the model parameters include a coefficient or a constant term for correcting at least one of the cumulative amount and the oxygen amount used in equation (7).

其中,ΔR m為關於熔液101中的成分的氧化反應、熔渣103中的成分的還原反應、輔助原料的熔解等爐內的各種反應m的反應量。ΔL n為關於氣體及熔渣103的顯熱、來自爐口及爐體的散熱量等熔液101中的熱損失路徑n的熱損失量。 Here, ΔRm is the reaction amount of various reactions m in the furnace, such as oxidation reaction of components in the melt 101, reduction reaction of components in the slag 103, melting of auxiliary raw materials, etc. ΔLn is the heat loss amount of heat loss path n in the melt 101, such as sensible heat of gas and slag 103, heat dissipation from the furnace mouth and furnace body.

式(7)所示的評價函數J成為以下三個項的加權和。在評價函數J中,第一項及第二項為表示質量平衡誤差的項,第三項為表示熱收支誤差的項。第一項為自投入碳量減去排出碳量而得的轉爐100內殘留的碳量、與熔液101中的碳量測量值的差的平方值。此項成為0表示在轉爐100內保持碳收支平衡。第二項為自投入氧量減去排出氧量及雜質金屬氧化使用氧量而得的量、與根據熔渣103中的Fe tO測量值而計算的熔液101中的鐵氧化所使用的氧量的差的平方值。此項成為0表示在轉爐100內保持氧收支平衡。第三項為精煉處理中自特定期間的起點直至終點為止的熔液101溫度變化量測量值、與根據轉爐100內的反應熱及排熱等而計算的熔液101溫度變化量計算值的差的平方值。此項接近0表示在轉爐100內保持熱收支平衡。關於所述式(7)的說明中的「特定期間」可在三項各者中設定不同的期間。 The evaluation function J shown in formula (7) is a weighted sum of the following three terms. In the evaluation function J, the first and second terms are terms representing mass balance errors, and the third term is a term representing heat balance errors. The first term is the square value of the difference between the amount of carbon remaining in the converter 100 obtained by subtracting the amount of carbon discharged from the amount of carbon input and the measured value of the carbon amount in the melt 101. If this term is 0, it means that the carbon balance is maintained in the converter 100. The second term is the square value of the difference between the amount obtained by subtracting the amount of oxygen discharged and the amount of oxygen used for oxidation of impurities from the amount of oxygen input and the amount of oxygen used for oxidation of iron in the melt 101 calculated based on the FetO measured value in the slag 103. If this term is 0, it means that the oxygen balance is maintained in the converter 100. The third term is the square value of the difference between the measured value of the temperature change of the melt 101 from the start point to the end point of the specific period in the refining process and the calculated value of the temperature change of the melt 101 calculated based on the reaction heat and exhaust heat in the converter 100. This term is close to 0, which means that the heat balance is maintained in the converter 100. The "specific period" in the description of the above formula (7) can be set to a different period in each of the three terms.

處於評價函數J的各項的分母的加權因子(σ C 2、σ O 2、σ T 2)例如由用戶設定。在基於限制條件將評價函數J最小化的非線性計劃問題中提出多種算法,可藉由公知的方法執行求出模型參數的計算。 The weighting factors (σ C 2 , σ O 2 , σ T 2 ) in the denominator of each term of the evaluation function J are set by the user, for example. Various algorithms have been proposed for the nonlinear planning problem of minimizing the evaluation function J under constraints, and the calculation of the model parameters can be performed by a known method.

由模型參數計算部13計算的模型參數記憶於資料庫12,用於下一次以後的精煉處理中的爐內狀態推定處理。藉此,步驟S7的處理完成,爐內狀態推定處理完成精煉處理中的處理。The model parameters calculated by the model parameter calculation unit 13 are stored in the database 12 and used for the furnace state estimation process in the next refining process. Thus, the process of step S7 is completed, and the furnace state estimation process completes the process in the refining process.

基於由所述爐內狀態推定方法的處理推定的熔液101的溫度及成分濃度與熔渣103的成分濃度,決定操作量,實施精煉操作,而製造良好的鋼水。決定最佳的頂吹氧的流量及速度、頂吹噴槍的高度、底吹氣體的流量、石灰、鐵礦石等輔助原料的投入量及投入時機、對熔液進行採樣的時機以及結束吹煉的時機中的至少一個作為操作量。如此,基於由所述爐內狀態推定方法計算的爐內狀態,可實現良好的鋼水製造方法。Based on the temperature and component concentration of the molten metal 101 and the component concentration of the slag 103 estimated by the method for estimating the state in the furnace, the operation amount is determined, and the refining operation is performed to produce good molten steel. At least one of the optimal flow rate and speed of top blowing oxygen, the height of the top blowing lance, the flow rate of bottom blowing gas, the amount and timing of adding auxiliary raw materials such as lime and iron ore, the timing of sampling the molten metal, and the timing of ending the blowing is determined as the operation amount. In this way, based on the state in the furnace calculated by the method for estimating the state in the furnace, a good method for producing molten steel can be realized.

如以上所示,本實施方式的爐內狀態推定裝置1、爐內狀態推定方法及鋼水製造方法藉由所述結構及工序,基於包含表示爐內的質量平衡誤差及熱收支誤差的項的評價函數將模型參數最佳化後記憶於資料庫12。並且,在精煉處理中的爐內狀態推定中,可使用保存在資料庫12的過去的最佳化的模型參數,因此可提高熔液101的溫度及成分濃度與熔渣103的成分濃度等的推定精度。As described above, the furnace state estimation device 1, the furnace state estimation method, and the molten steel manufacturing method of the present embodiment optimize the model parameters based on the evaluation function including the terms representing the mass balance error and the heat balance error in the furnace by the above-mentioned structure and process, and store them in the database 12. In addition, in the estimation of the furnace state in the refining process, the past optimized model parameters stored in the database 12 can be used, so the estimation accuracy of the temperature and component concentration of the melt 101 and the component concentration of the slag 103 can be improved.

在本揭示的實施方式中,基於各圖式及實施例進行了說明,但應注意業者容易基於本揭示而進行各種變形或修正。因此,應留意該些變形或修正包含於本揭示的範圍內。例如,各結構部或各步驟等中包含的功能等可按邏輯上不矛盾的方式進行再配置,可將多個結構部或步驟等組合成一個,或者進行分割。本揭示的實施方式亦可作為由裝置所包含的處理器執行的程式或記錄程式的記憶媒體實現。應理解該些亦包含在本揭示的範圍內。In the embodiments of the present disclosure, the description is based on various figures and embodiments, but it should be noted that the industry can easily make various modifications or corrections based on the present disclosure. Therefore, it should be noted that these modifications or corrections are included in the scope of the present disclosure. For example, the functions included in each structural part or each step can be reconfigured in a logically non-contradictory manner, and multiple structural parts or steps can be combined into one, or divided. The embodiments of the present disclosure can also be implemented as a program executed by a processor included in the device or a storage medium that records the program. It should be understood that these are also included in the scope of the present disclosure.

例如,決定的模型參數的種類及模型參數的數量、最小化的評價函數的形式並不限於所述實施方式中列舉的例子,只要是能將爐內的質量平衡誤差及熱收支誤差進行最小化的形式,便發揮相同的效果。而且,模型並不限於所述實施方式中如式(2)~式(6)那樣例示的例子,亦可使用熔液溫度推定模型、廢料熔解模型、輔助原料熔解、良率模型、脫碳效率模型、脫磷模型、Fe tO的生成還原模型等。而且,在本實施方式中表示以轉爐100為對象的爐內狀態推定裝置1及爐內狀態推定方法,但在二次精煉設備或預處理設備中,對基於爐內的質量平衡及熱收支進行計算的模型參數計算亦有效。 For example, the type of model parameters to be determined, the number of model parameters, and the form of the evaluation function to be minimized are not limited to the examples listed in the above embodiment. As long as the form can minimize the mass balance error and heat balance error in the furnace, the same effect can be exerted. In addition, the model is not limited to the examples shown in the above embodiment such as equations (2) to (6), and a melt temperature estimation model, a waste material melting model, an auxiliary raw material melting, a yield model, a decarburization efficiency model, a dephosphorization model, a FetO generation reduction model, etc. can also be used. In addition, in the present embodiment, the furnace state estimation device 1 and the furnace state estimation method for the converter 100 are shown, but the model parameter calculation based on the mass balance and heat balance in the furnace is also effective in the secondary refining equipment or the pretreatment equipment.

1:爐內狀態推定裝置 2:精煉設備 10:控制終端 11:輸入部 12:資料庫 13:模型參數計算部 14:模型決定部 15:爐內狀態計算部 16:輸出部 20:顯示裝置 100:轉爐 101:熔液 102:噴槍 103:熔渣 104:管道 105:廢氣檢測部 106:通氣孔 107:流量計 1: Furnace state estimation device 2: Refining equipment 10: Control terminal 11: Input unit 12: Database 13: Model parameter calculation unit 14: Model determination unit 15: Furnace state calculation unit 16: Output unit 20: Display device 100: Converter 101: Melt 102: Spray gun 103: Slag 104: Pipeline 105: Exhaust gas detection unit 106: Vent hole 107: Flow meter

圖1是表示作為本揭示的一實施方式的爐內狀態推定裝置的結構的示意圖。 圖2是表示資料庫的結構例的圖。 圖3是表示作為本揭示的一實施方式的爐內狀態推定方法的處理的流程圖。 FIG1 is a schematic diagram showing the structure of a furnace state estimation device as an embodiment of the present disclosure. FIG2 is a diagram showing an example of the structure of a database. FIG3 is a flow chart showing the processing of a furnace state estimation method as an embodiment of the present disclosure.

1:爐內狀態推定裝置 1: Furnace status estimation device

2:精煉設備 2: Refining equipment

10:控制終端 10: Control terminal

11:輸入部 11: Input section

12:資料庫 12: Database

13:模型參數計算部 13: Model parameter calculation department

14:模型決定部 14: Model determination department

15:爐內狀態計算部 15: Furnace status calculation unit

16:輸出部 16: Output section

20:顯示裝置 20: Display device

100:轉爐 100: Converter

101:熔液 101: Melt

102:噴槍 102: Spray gun

103:熔渣 103: Slag

104:管道 104: Pipeline

105:廢氣檢測部 105: Exhaust gas detection department

106:通氣孔 106: Ventilation hole

107:流量計 107: Flow meter

Claims (10)

一種爐內狀態推定裝置,包括:輸入部,被輸入實績資訊及精煉處理的條件,所述實績資訊包含精煉設備中的所述精煉處理開始前或處理中的熔液的溫度及成分濃度與熔渣的成分濃度的測量結果、以及包含自所述精煉設備排出的廢氣的流量及成分濃度的關於精煉設備的測量結果;模型決定部,使用自記憶有與所述精煉設備中的吹煉反應相關的模型的模型參數、所述實績資訊及所述精煉處理的條件的資料庫獲取的過去的所述模型參數,決定對象爐次的所述精煉處理中的所述模型參數;爐內狀態計算部,使用已決定的所述模型參數,計算包含所述熔液的溫度及成分濃度與熔渣的成分濃度的爐內的狀態量;以及模型參數計算部,使用包含所述對象爐次的所述精煉處理的結果的所述實績資訊,基於包含表示所述精煉處理中的自特定期間的起點直至終點為止的所述爐內的質量平衡誤差及熱收支誤差的項的評價函數,計算所述對象爐次的所述精煉處理中的所述模型參數。 A furnace state estimation device comprises: an input unit to which performance information and refining treatment conditions are input, wherein the performance information includes measurement results of the temperature and component concentration of the melt and the component concentration of the slag in the refining equipment before the start of the refining treatment or during the treatment, and measurement results related to the refining equipment including the flow rate and component concentration of exhaust gas discharged from the refining equipment; and a model determination unit, which uses model parameters of a model related to a blowing reaction in the refining equipment, the performance information, and past model parameters obtained from a database storing the performance information and the refining treatment conditions. The model parameters in the refining process of the target furnace are determined; the furnace state calculation unit uses the determined model parameters to calculate the state quantity in the furnace including the temperature and component concentration of the molten metal and the component concentration of the slag; and the model parameter calculation unit uses the performance information including the result of the refining process of the target furnace to calculate the model parameters in the refining process of the target furnace based on an evaluation function including terms representing the mass balance error and heat balance error in the furnace from the start point to the end point of the specific period in the refining process. 如請求項1所述的爐內狀態推定裝置,其中所述模型決定部藉由將記憶於所述資料庫的過去的所述模型參數中的、與所述對象爐次的所述精煉處理的條件類似的過去的所述精煉處理的所述模型參數進行平均,而決定所述對象爐次的 所述精煉處理中的所述模型參數。 The furnace state estimation device as described in claim 1, wherein the model determination unit determines the model parameters in the refining process of the target furnace by averaging the model parameters of the past refining process that are similar to the conditions of the refining process of the target furnace among the past model parameters stored in the database. 如請求項1所述的爐內狀態推定裝置,其中所述模型決定部將記憶於所述資料庫的過去的所述模型參數、與包含所述精煉處理中的處理次數、處理日期時間、精煉設備的使用次數中的至少一個的精煉處理的條件的關係進行模型化,並根據所述模型來決定所述對象爐次的所述精煉處理中的所述參數。 The furnace state estimation device as described in claim 1, wherein the model determination unit models the relationship between the past model parameters stored in the database and the refining process conditions including at least one of the number of times the refining process is performed, the processing date and time, and the number of times the refining equipment is used, and determines the parameters in the refining process of the target furnace according to the model. 如請求項1至請求項3中任一項所述的爐內狀態推定裝置,其中所述模型參數包含對投入至所述爐內的碳量的特定期間的累計量、排出至爐外的碳量的特定期間的累計量、投入至所述爐內的氧量、排出至所述爐外的氧量、用於所述熔液中的各種金屬雜質氧化的氧量及由所述爐內的熱量變化引起的熔液溫度變化量的特定期間的累計量中的至少一個進行修正的係數或常數項。 A furnace state estimation device as described in any one of claim 1 to claim 3, wherein the model parameter includes a coefficient or constant term for correcting at least one of the cumulative amount of carbon input into the furnace during a specific period, the cumulative amount of carbon discharged out of the furnace during a specific period, the amount of oxygen input into the furnace, the amount of oxygen discharged out of the furnace, the amount of oxygen used to oxidize various metal impurities in the molten metal, and the cumulative amount of the temperature change of the molten metal caused by the heat change in the furnace during a specific period. 如請求項1至請求項3中任一項所述的爐內狀態推定裝置,其中所述評價函數包含表示碳收支平衡的項、表示氧收支平衡的項與表示熱收支平衡的項的加權和。 A furnace state estimation device as described in any one of claim 1 to claim 3, wherein the evaluation function includes a weighted sum of a term representing carbon balance, a term representing oxygen balance, and a term representing heat balance. 如請求項4所述的爐內狀態推定裝置,其中所述評價函數包含表示碳收支平衡的項、表示氧收支平衡的項與表示熱收支平衡的項的加權和。 A furnace state estimation device as described in claim 4, wherein the evaluation function includes a weighted sum of a term representing carbon balance, a term representing oxygen balance, and a term representing heat balance. 一種爐內狀態推定方法,由爐內狀態推定裝置所執 行,所述爐內狀態推定方法包括:輸入步驟,輸入實績資訊及精煉處理的條件,所述實績資訊包含精煉設備中的所述精煉處理開始前或處理中的熔液的溫度及成分濃度與熔渣的成分濃度的測量結果、以及包含自所述精煉設備排出的廢氣的流量及成分濃度的關於精煉設備的測量結果;模型決定步驟,使用自記憶有與所述精煉設備中的吹煉反應相關的模型的模型參數、所述實績資訊及所述精煉處理的條件的資料庫獲取的過去的所述模型參數,決定對象爐次的所述精煉處理中的所述模型參數;爐內狀態計算步驟,使用已決定的所述模型參數,計算包含所述熔液的溫度及成分濃度與熔渣的成分濃度的爐內的狀態量;以及模型參數計算步驟,使用包含所述對象爐次的所述精煉處理的結果的所述實績資訊,基於包含表示所述精煉處理中的自特定期間的起點直至終點為止的所述爐內的質量平衡誤差及熱收支誤差的項的評價函數,計算所述對象爐次的所述精煉處理中的所述模型參數。 A method for estimating a state in a furnace is performed by a device for estimating a state in a furnace. The method comprises: an input step of inputting performance information and refining treatment conditions, wherein the performance information includes measurement results of the temperature and component concentration of the melt and the component concentration of the slag in the refining equipment before or during the refining treatment, and measurement results of the refining equipment including the flow rate and component concentration of exhaust gas discharged from the refining equipment; a model determination step of obtaining a model parameter of a model related to the blowing reaction in the refining equipment, the performance information and the database of the refining treatment conditions; The model parameters in the refining process of the target furnace are determined by taking the model parameters of the past; a furnace state calculation step is to calculate the state quantity in the furnace including the temperature and component concentration of the molten metal and the component concentration of the slag using the determined model parameters; and a model parameter calculation step is to use the performance information including the result of the refining process of the target furnace to calculate the model parameters in the refining process of the target furnace based on an evaluation function including terms representing the mass balance error and heat balance error in the furnace from the start point to the end point of the specific period in the refining process. 如請求項7所述的爐內狀態推定方法,其中所述模型決定步驟藉由將記憶於所述資料庫的過去的所述模型參數中的、與所述對象爐次的所述精煉處理的條件類似的過去的所述精煉處理的所述模型參數進行平均,而決定所述對象爐次的所述精煉處理中的所述模型參數。 A method for estimating the state of a furnace as described in claim 7, wherein the model determination step determines the model parameters in the refining process of the target furnace by averaging the model parameters of the past refining process that are similar to the conditions of the refining process of the target furnace among the past model parameters stored in the database. 如請求項7所述的爐內狀態推定方法,其中所述模型決定步驟將記憶於所述資料庫的過去的所述模型參數、與包含所述精煉處理中的處理次數、處理日期時間、精煉設備的使用次數中的至少一個的精煉處理的條件的關係進行模型化,並根據所述模型來決定所述對象爐次的所述精煉處理中的所述參數。 The method for estimating the state of a furnace as described in claim 7, wherein the model determination step models the relationship between the past model parameters stored in the database and the refining process conditions including at least one of the number of times the refining process is performed, the processing date and time, and the number of times the refining equipment is used, and determines the parameters in the refining process of the target furnace according to the model. 一種鋼水製造方法,基於藉由如請求項7至請求項9中任一項所述的爐內狀態推定方法而推定的所述熔液的溫度及成分濃度與熔渣的成分濃度,來決定頂吹氧的流量及速度、頂吹噴槍的高度、底吹氣體的流量、包含選自由石灰及鐵礦石所組成的群組中的至少一種的輔助原料的投入量及投入時機、對所述熔液進行採樣的時機以及結束吹煉的時機中的至少一個而進行精煉操作,以製造鋼水。 A method for producing molten steel, based on the temperature and component concentration of the molten steel and the component concentration of the slag estimated by the furnace state estimation method as described in any one of claim 7 to claim 9, determines at least one of the flow rate and speed of top blowing oxygen, the height of the top blowing lance, the flow rate of bottom blowing gas, the amount and timing of adding auxiliary raw materials including at least one selected from the group consisting of lime and iron ore, the timing of sampling the molten steel, and the timing of ending blowing, and performs refining operation to produce molten steel.
TW111144902A 2021-11-29 2022-11-24 Furnace state estimation device, furnace state estimation method and molten steel manufacturing method TWI841072B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021193655 2021-11-29
JP2021-193655 2021-11-29

Publications (2)

Publication Number Publication Date
TW202321468A TW202321468A (en) 2023-06-01
TWI841072B true TWI841072B (en) 2024-05-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181562A1 (en) 2018-03-19 2019-09-26 Jfeスチール株式会社 Molten metal component estimation device, molten metal component estimation method, and molten metal production method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181562A1 (en) 2018-03-19 2019-09-26 Jfeスチール株式会社 Molten metal component estimation device, molten metal component estimation method, and molten metal production method

Similar Documents

Publication Publication Date Title
JP6573035B2 (en) Method for estimating phosphorus concentration in molten steel and converter blowing control device
JP6583594B1 (en) Molten metal component estimation device, molten metal component estimation method, and molten metal manufacturing method
JP6579136B2 (en) Refining process state estimation device, refining process state estimation method, and molten metal manufacturing method
JP6687080B2 (en) Molten metal temperature correction device, molten metal temperature correction method, and molten metal manufacturing method
JP6376200B2 (en) Molten state estimation device, molten state estimation method, and molten metal manufacturing method
TWI841072B (en) Furnace state estimation device, furnace state estimation method and molten steel manufacturing method
JP6825711B2 (en) Molten component estimation device, molten metal component estimation method, and molten metal manufacturing method
JP7392897B2 (en) Furnace state estimation device, furnace state estimation method, and molten steel manufacturing method
JP6658804B2 (en) Initial component concentration correction device, initial component concentration correction method, refining process state estimation method, and converter operation method
KR20240090437A (en) Furnace state estimation device, in-furnace state estimation method, and molten steel manufacturing method
JPH06256832A (en) Blowing method of converter
JP6516906B1 (en) Wind blow calculation method, blow blow calculation program
JP2007238982A (en) Method for controlling blowing end-point in converter
JP6160283B2 (en) Slapping prediction method in converter blowing.
JP7156560B2 (en) Refining process control device and refining process control method
TWI732490B (en) Conversion control method and conversion control device of converter type dephosphorization refining furnace
JP7405312B1 (en) Vacuum degassing treatment state estimation method, operation method, molten steel manufacturing method, and vacuum degassing treatment state estimation device
JPWO2017163902A1 (en) Hot metal pretreatment method and hot metal pretreatment control device
KR100428582B1 (en) Method for forecasting post combustion ratio of corbon in converter for top and bottom blowing process and method for forecasting carbon concentration in molten steel