TW202321468A - Intra-furnace state inference device, intra-furnace state inference method, and molten steel manufacturing method - Google Patents

Intra-furnace state inference device, intra-furnace state inference method, and molten steel manufacturing method Download PDF

Info

Publication number
TW202321468A
TW202321468A TW111144902A TW111144902A TW202321468A TW 202321468 A TW202321468 A TW 202321468A TW 111144902 A TW111144902 A TW 111144902A TW 111144902 A TW111144902 A TW 111144902A TW 202321468 A TW202321468 A TW 202321468A
Authority
TW
Taiwan
Prior art keywords
furnace
refining process
refining
model
model parameters
Prior art date
Application number
TW111144902A
Other languages
Chinese (zh)
Other versions
TWI841072B (en
Inventor
加瀬寛人
杉野智裕
川畑涼
木村祐貴
Original Assignee
日商杰富意鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商杰富意鋼鐵股份有限公司 filed Critical 日商杰富意鋼鐵股份有限公司
Publication of TW202321468A publication Critical patent/TW202321468A/en
Application granted granted Critical
Publication of TWI841072B publication Critical patent/TWI841072B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00

Abstract

An intra-furnace state inference device (1) comprises: an input unit (11) to which past record information and a refining process condition are inputted; a model determination unit (14) for, by using a past model parameter acquired from a database in which a model parameter of a model concerning blowing reaction, past record information, and a refining process condition are stored, determining a model parameter in a refining process for a target charge; and an intra-furnace state calculation unit (15) for, by using the determined model parameter, calculating an intra-furnace state amount that includes the temperature and component concentration of molten metal and component concentration of slug; and a model parameter calculation unit (13) for, by using the past record information including a result of the refining process of the target charge, calculating a model parameter in the refining process for the target charge on the basis of an evaluation function that includes terms indicating a material balance error and heat balance error in a furnace from a start point to an end point of a specific period in the refining process.

Description

爐內狀態推定裝置、爐內狀態推定方法及鋼水製造方法Device for estimating state in furnace, method for estimating state in furnace, and method for manufacturing molten steel

本揭示是有關於一種爐內狀態推定裝置、爐內狀態推定方法及鋼水製造方法。本揭示尤其有關於一種推定鋼鐵業的精煉設備中的熔液中及熔渣中的成分濃度的爐內狀態推定裝置、爐內狀態推定方法及鋼水製造方法。The disclosure relates to a furnace state estimation device, a furnace state estimation method, and a molten steel manufacturing method. In particular, the present disclosure relates to a furnace state estimation device, a furnace state estimation method, and a molten steel manufacturing method for estimating component concentrations in molten metal and slag in refining facilities in the iron and steel industry.

煉鐵廠中,在預處理設備、轉爐及二次精煉設備等精煉設備中,對自高爐流出的熔鐵的成分及溫度進行調整。轉爐是藉由向爐內吹入氧而進行熔液中的雜質去除及升溫的製程,在鋼的品質管理及精煉成本合理化等方面起到非常重要的作用。此處,在轉爐中的熔液成分及熔液溫度的控制中,例如使用頂吹氧的流量及速度、頂吹噴槍的高度、底吹氣體的流量等作為操作量。而且,使用石灰、鐵礦石等輔助原料的投入量及投入時機、對熔液進行採樣的時機、結束吹煉的時機等作為操作量。該些操作量應根據熔液溫度和熔液成分及熔渣成分等爐內狀態而最佳化。為了高精度地推定爐內狀態並將操作量適配化,提出下述方法:使用包含可在精煉處理中連續測量的廢氣測量值的、關於精煉設備的測量資訊,進行爐內的質量平衡及熱收支計算。此方法通常可高精度且即時地推定熔液溫度與熔液成分及熔渣成分。但存在如下問題,即,由於精煉設備中的爐內耐火物的損耗、投入輔助原料的成分變動、測量精度的降低等精煉設備環境的變動,狀態推定模型的精度經常會發生劣化。In ironworks, the composition and temperature of molten iron flowing out of the blast furnace are adjusted in refining facilities such as pretreatment facilities, converters, and secondary refining facilities. The converter is a process that removes impurities in the melt and raises the temperature by blowing oxygen into the furnace. It plays a very important role in the quality control of steel and the rationalization of refining costs. Here, in the control of the melt composition and melt temperature in the converter, for example, the flow rate and speed of top-blown oxygen, the height of the top-blown lance, the flow rate of bottom-blown gas, etc. are used as operating variables. In addition, the input amount and input timing of auxiliary raw materials such as lime and iron ore, the timing of sampling the melt, the timing of finishing blowing, and the like are used as operation quantities. These operating quantities should be optimized according to the state of the furnace such as the temperature of the molten metal and the components of the molten metal and slag. In order to estimate the state of the furnace with high precision and adapt the operating volume, a method is proposed that uses measurement information about the refining facility, including exhaust gas measurement values that can be continuously measured during the refining process, to perform mass balance in the furnace and Calculation of thermal budget. This method can usually estimate the melt temperature, melt composition and slag composition with high accuracy and in real time. However, there is a problem that the accuracy of the state estimation model often deteriorates due to changes in the refinery environment, such as loss of refractories in the furnace in the refinery, changes in the composition of auxiliary raw materials to be fed, and a decrease in measurement accuracy.

作為將模型參數最佳化以保持此種模型精度的方法,例如專利文獻1提出一種方法:自過去的實績資訊中提取處理條件類似的實績而算出轉爐的獨立的模型式中的參數值。As a method of optimizing model parameters to maintain such model accuracy, for example, Patent Document 1 proposes a method of extracting actual results with similar processing conditions from past actual performance information to calculate parameter values in an independent model expression of the converter.

而且,例如專利文獻2提出一種方法:藉由求出以熱收支平衡的方式設定的聯立方程式的近似解而決定二次精煉設備中的熔液溫度推定模型的多個參數。 [現有技術文獻] [專利文獻] Furthermore, for example, Patent Document 2 proposes a method of determining a plurality of parameters of a melt temperature estimation model in a secondary refining facility by obtaining an approximate solution of simultaneous equations set in a heat budget balance. [Prior art literature] [Patent Document]

專利文獻1:日本專利特開2005-036289號公報 專利文獻2:日本專利特開2004-360044號公報 Patent Document 1: Japanese Patent Laid-Open No. 2005-036289 Patent Document 2: Japanese Patent Laid-Open No. 2004-360044

[發明所欲解決之課題] 此處,專利文獻1以模型式的形式將獨立的物理反應模型或一次結合模型作為對象。因此,專利文獻1的技術難以應用於如基於爐內的質量平衡及熱收支計算的狀態推定模型般,爐內反應量及升溫量複雜地相互作用的模型。 [Problem to be Solved by the Invention] Here, Patent Document 1 targets an independent physical reaction model or a primary binding model in a model form. Therefore, it is difficult to apply the technique of Patent Document 1 to a model in which the amount of reaction in the furnace and the amount of temperature rise interact in a complex manner, such as a state estimation model based on the mass balance and heat balance calculation in the furnace.

在專利文獻2中,提出一種方法:針對多個模型式與參數相互作用般的溫度推定模型式,求出以熱收支平衡的方式設定的聯立方程式的近似解。但是,專利文獻2在爐內的反應量計算中,關於使用包含廢氣測量值的測量資訊的爐內質量平衡計算未進行記載。因此,專利文獻2的技術難以應用於除熱收支以外,爐內質量平衡亦相互作用般的模型。Patent Document 2 proposes a method of obtaining an approximate solution of simultaneous equations set so as to balance the heat budget with respect to a temperature estimation model equation in which a plurality of model equations interact with parameters. However, Patent Document 2 does not describe the calculation of the mass balance in the furnace using measurement information including the measured value of exhaust gas in the calculation of the amount of reaction in the furnace. Therefore, it is difficult to apply the technique of patent document 2 to the model which interacts with mass balance in a furnace in addition to heat balance.

因此,尋求一種即便對於爐內的質量平衡及熱收支複雜地相互作用般的模型亦有效的模型參數決定方法。Therefore, a method of determining model parameters that is effective even for a model in which the mass balance and heat budget in the furnace interact in a complex manner is sought.

鑒於所述情況而成的本揭示的目的在於提供一種能夠高精度且連續地推定熔液中及熔渣中的成分濃度的爐內狀態推定裝置、爐內狀態推定方法及鋼水製造方法。 [解決課題之手段] An object of the present disclosure made in view of the above circumstances is to provide a furnace state estimation device, a furnace state estimation method, and a molten steel manufacturing method capable of accurately and continuously estimating component concentrations in molten metal and slag. [Means to solve the problem]

(1)本揭示的一實施方式的爐內狀態推定裝置包括: 輸入部,輸入實績資訊及精煉處理的條件,所述實績資訊包含精煉設備中的所述精煉處理開始前或處理中的熔液溫度及成分濃度與熔渣的成分濃度的測量結果、以及包含自所述精煉設備排出的廢氣的流量及成分濃度的關於精煉設備的測量結果; 模型決定部,使用自記憶有與所述精煉設備中的吹煉反應相關的模型的模型參數、所述實績資訊及所述精煉處理條件的資料庫獲取的過去的所述模型參數,決定對象爐次的所述精煉處理中的所述模型參數; 爐內狀態計算部,使用已決定的所述模型參數,計算包含所述熔液的溫度及成分濃度與熔渣的成分濃度的爐內的狀態量;以及 模型參數計算部,使用包含所述對象爐次的所述精煉處理結果的所述實績資訊,基於包含表示所述精煉處理中的自特定期間的起點直至終點為止的所述爐內的質量平衡誤差及熱收支誤差的項的評價函數,計算所述對象爐次的所述精煉處理中的所述模型參數。 (1) A furnace state estimation device according to an embodiment of the present disclosure includes: The input unit is configured to input actual performance information including measurement results of molten temperature, component concentration, and slag component concentration in the refining facility before or during the refining process, and conditions of the refining process, and the conditions of the refining process. the results of refinery-related measurements of the flow rate and component concentrations of the off-gases from said refinery; The model determining unit determines the target furnace using the past model parameters obtained from a database storing model parameters related to the blowing reaction in the refining facility, the actual performance information, and the refining process conditions. the model parameters in the refining process of times; A furnace state calculation unit calculates a state quantity in the furnace including the temperature and component concentration of the molten metal and the component concentration of the molten slag by using the determined model parameters; and The model parameter calculation unit uses the actual performance information including the refining process result of the target heat, based on a mass balance error in the furnace representing a mass balance error in the refining process from a start point to an end point of a specific period in the refining process. and an evaluation function of a term of a heat balance error, and calculate the model parameters in the refining process of the target heat.

(2)作為本揭示的一實施方式,在(1)中, 所述模型決定部藉由將記憶於所述資料庫的過去的所述模型參數中的、與所述對象爐次的所述精煉處理條件類似的過去的所述精煉處理的所述模型參數進行平均,而決定所述對象爐次的所述精煉處理中的所述模型參數。 (2) As one embodiment of the present disclosure, in (1), The model determination unit performs the process by storing the model parameters of the past refining process similar to the refining process conditions of the target heat, among the past model parameters stored in the database. The model parameters in the refining process of the target heat are determined on average.

(3)作為本揭示的一實施方式,在(1)中, 所述模型決定部將記憶於所述資料庫的過去的所述模型參數、與包含所述精煉處理中的處理次數、處理日期時間、精煉設備的使用次數中的至少一個的精煉處理條件的關係進行模型化,並根據所述模型來決定所述對象爐次的所述精煉處理中的所述參數。 (3) As one embodiment of the present disclosure, in (1), The model determining unit stores a relationship between the past model parameters stored in the database and refining processing conditions including at least one of the number of times of processing in the refining process, the date and time of processing, and the number of times of use of refining facilities. Modeling is performed, and the parameters in the refining process of the target heat are determined based on the model.

(4)作為本揭示的一實施方式,在(1)至(3)的任一項中, 所述模型參數包含對投入至所述爐內的碳量的特定期間的累計量、排出至爐外的碳量的特定期間的累計量、投入至所述爐內的氧量、排出至所述爐外的氧量、用於所述熔液中的各種金屬雜質氧化的氧量及由所述爐內的熱量變化引起的熔液溫度變化量的特定期間的累計量中的至少一個進行修正的係數或常數項。 (4) As an embodiment of the present disclosure, in any one of (1) to (3), The model parameters include the cumulative amount of carbon charged into the furnace for a specific period, the cumulative amount of carbon discharged outside the furnace for a specific period, the amount of oxygen charged into the furnace, and the amount of carbon discharged to the furnace. At least one of the amount of oxygen outside the furnace, the amount of oxygen used to oxidize various metal impurities in the melt, and the cumulative amount of the melt temperature change caused by the heat change in the furnace for a specific period is corrected. Coefficient or constant term.

(5)作為本揭示的一實施方式,在(1)至(4)的任一項中, 所述評價函數包含表示碳收支平衡的項、表示氧收支平衡的項與表示熱收支平衡的項的加權和。 (5) As an embodiment of the present disclosure, in any one of (1) to (4), The evaluation function includes a weighted sum of a term representing the carbon balance, a term representing the oxygen balance, and a term representing the heat balance.

(6)關於本揭示的一實施方式的爐內狀態推定方法, 是由爐內狀態推定裝置所執行,所述爐內狀態推定方法包括: 輸入步驟,輸入實績資訊及精煉處理的條件,所述實績資訊包含精煉設備中的所述精煉處理開始前或處理中的熔液的溫度及成分濃度與熔渣的成分濃度的測量結果、以及包含自所述精煉設備排出的廢氣的流量及成分濃度的關於精煉設備的測量結果; 模型決定步驟,使用自記憶有與所述精煉設備中的吹煉反應相關的模型的模型參數、所述實績資訊及所述精煉處理條件的資料庫獲取的過去的所述模型參數,決定對象爐次的所述精煉處理中的所述模型參數; 爐內狀態計算步驟,使用已決定的所述模型參數,計算包含所述熔液的溫度及成分濃度與熔渣的成分濃度的爐內的狀態量;以及 模型參數計算步驟,使用包含所述對象爐次的所述精煉處理結果的所述實績資訊,基於包含表示所述精煉處理中的自特定期間的起點直至終點為止的所述爐內的質量平衡誤差及熱收支誤差的項的評價函數,計算所述對象爐次的所述精煉處理中的所述模型參數。 (6) Regarding the furnace state estimation method according to one embodiment of the present disclosure, is performed by the furnace state estimation device, and the furnace state estimation method includes: An input step of inputting actual performance information and refining treatment conditions, the actual performance information including the temperature and component concentration of the molten metal before or during the refining treatment in the refining facility, and the measurement results of the component concentration of the molten slag, and the results of refinery-related measurements of the flow rate and component concentrations of the off-gases exiting said refinery; In the model determining step, the target furnace is determined using the past model parameters acquired from a database storing model parameters related to the blowing reaction in the refining facility, the actual performance information, and the refining treatment conditions. the model parameters in the refining process of times; a step of calculating the state in the furnace, using the determined model parameters, to calculate a state quantity in the furnace including the temperature and component concentration of the molten metal and the component concentration of the molten slag; and The model parameter calculation step is based on using the actual performance information including the refining process result of the target heat, based on including a mass balance error in the furnace indicating from a start point to an end point of a specific period in the refining process and an evaluation function of a term of a heat balance error, and calculate the model parameters in the refining process of the target heat.

(7)作為本揭示的一實施方式,在(6)中, 所述模型決定步驟藉由將記憶於所述資料庫的過去的所述模型參數中的、與所述對象爐次的所述精煉處理條件類似的過去的所述精煉處理的所述模型參數進行平均,而決定所述對象爐次的所述精煉處理中的所述模型參數。 (7) As an embodiment of the present disclosure, in (6), The model determining step is performed by storing the model parameters of the past refining process similar to the refining process conditions of the target heat, among the past model parameters stored in the database. The model parameters in the refining process of the target heat are determined on average.

(8)作為本揭示的一實施方式,在(6)中, 所述模型決定步驟將記憶於所述資料庫的過去的所述模型參數、與包含所述精煉處理中的處理次數、處理日期時間、精煉設備的使用次數中的至少一個的精煉處理條件的關係進行模型化,並根據所述模型來決定所述對象爐次的所述精煉處理中的所述參數。 (8) As an embodiment of the present disclosure, in (6), In the model determining step, the relationship between the past model parameters stored in the database and refining processing conditions including at least one of the number of times of processing in the refining process, the date and time of processing, and the number of times of use of refining equipment Modeling is performed, and the parameters in the refining process of the target heat are determined based on the model.

(9)關於本揭示的一實施方式的鋼水製造方法, 基於藉由如(6)至(8)中任一項的爐內狀態推定方法而推定的所述熔液的溫度及成分濃度與熔渣的成分濃度,決定頂吹氧的流量及速度、頂吹噴槍的高度、底吹氣體的流量、石灰、鐵礦石等輔助原料的投入量及投入時機、對所述熔液進行採樣的時機以及結束吹煉的時機中的至少一個而進行精煉操作,以製造鋼水。 [發明的效果] (9) Regarding the molten steel manufacturing method of one embodiment of the present disclosure, Based on the temperature and component concentration of the melt and the component concentration of the molten slag estimated by the method of estimating the state in the furnace as in any one of (6) to (8), the flow rate and speed of the top-blown oxygen, and the top-blown oxygen are determined. At least one of the height of the blowing lance, the flow rate of bottom blowing gas, the input amount and input timing of auxiliary raw materials such as lime and iron ore, the timing of sampling the melt, and the timing of ending the blowing are used to carry out the refining operation, to make molten steel. [Effect of the invention]

根據本揭示,可提供一種能夠高精度且連續地推定熔液中及熔渣中的成分濃度的爐內狀態推定裝置、爐內狀態推定方法及鋼水製造方法。According to the present disclosure, it is possible to provide a furnace state estimation device, a furnace state estimation method, and a molten steel manufacturing method capable of accurately and continuously estimating the concentration of components in molten metal and slag.

以下,參照圖式說明本揭示的一實施方式的爐內狀態推定裝置、爐內狀態推定方法及鋼水製造方法。Hereinafter, a furnace state estimation device, a furnace state estimation method, and a molten steel manufacturing method according to an embodiment of the present disclosure will be described with reference to the drawings.

[爐內狀態推定裝置的結構] 圖1是表示本揭示的一實施方式的爐內狀態推定裝置1的結構的示意圖。在本實施方式中,爐內狀態推定裝置1用作鋼鐵業中製造鋼水的設備的一部分。製造鋼水的設備包括精煉設備2、以及包含爐內狀態推定裝置1的吹煉控制系統。 [Structure of Furnace State Estimation Device] FIG. 1 is a schematic diagram showing the configuration of a furnace state estimation device 1 according to an embodiment of the present disclosure. In the present embodiment, the furnace state estimation device 1 is used as a part of facilities for producing molten steel in the iron and steel industry. The facility for producing molten steel includes a refining facility 2 and a blowing control system including a furnace state estimation device 1 .

如圖1所示,精煉設備2包括轉爐100、噴槍102及管道104。噴槍102配置於轉爐100內的熔液101上。自噴槍102的前端朝向下方的熔液101噴出高壓氧。藉由所述高壓氧將熔液101內的雜質氧化而送入熔渣103內(精煉處理)。管道104為廢氣導煙用的煙道設備,設置於轉爐100的上部。As shown in FIG. 1 , the refining equipment 2 includes a converter 100 , a spray gun 102 and a pipeline 104 . The spray gun 102 is arranged on the melt 101 in the converter 100 . High-pressure oxygen is sprayed from the tip of the spray gun 102 toward the melt 101 below. The impurities in the melt 101 are oxidized by the high-pressure oxygen and sent into the slag 103 (refining treatment). The pipe 104 is a flue device for flue gas conduction, and is arranged on the upper part of the converter 100 .

在管道104的內部配置有廢氣檢測部105。廢氣檢測部105檢測隨著精煉處理而排出的廢氣的流量及成分濃度(例如CO、CO 2、O 2、N 2、Ar等的濃度)。作為廢氣測量,廢氣檢測部105例如基於設於管道104內的文氏管的前後差壓而測量管道104內的廢氣的流量。而且,作為廢氣測量,廢氣檢測部105測量廢氣中的各成分的濃度[%]。廢氣的流量及成分濃度例如以數秒週期進行測量。表示廢氣檢測部105的檢測結果的訊號發送至控制終端10。 An exhaust gas detection unit 105 is disposed inside the duct 104 . The exhaust gas detector 105 detects the flow rate and component concentration (for example, the concentration of CO, CO 2 , O 2 , N 2 , Ar, etc.) of the exhaust gas discharged along with the refining process. As exhaust gas measurement, the exhaust gas detector 105 measures the flow rate of the exhaust gas in the duct 104 based on, for example, the differential pressure across the venturi provided in the duct 104 . Furthermore, as exhaust gas measurement, the exhaust gas detection unit 105 measures the concentration [%] of each component in the exhaust gas. The flow rate and component concentration of the exhaust gas are measured, for example, at a cycle of several seconds. A signal indicating the detection result of the exhaust gas detection unit 105 is sent to the control terminal 10 .

經由形成於轉爐100底部的通氣孔106向轉爐100內的熔液101中吹入攪拌氣體。攪拌氣體為Ar等的惰性氣體。吹入的攪拌氣體攪拌熔液101,促進高壓氧與熔液101的反應。流量計107測量吹入至轉爐100的攪拌氣體的流量。在即將開始吹煉前及吹煉後,進行熔液101的溫度及成分濃度的分析。而且,在吹煉過程中測量一次或多次熔液101的溫度及成分濃度,基於所測量的溫度及成分濃度決定高壓氧的供給量(送氧量)及速度(送氧速度)以及攪拌氣體的流量(攪拌氣體流量)等。Stirring gas is blown into the melt 101 in the converter 100 through vent holes 106 formed in the bottom of the converter 100 . The stirring gas is an inert gas such as Ar. The blown stirring gas stirs the melt 101 to promote the reaction between the high pressure oxygen and the melt 101 . The flow meter 107 measures the flow rate of the stirring gas blown into the converter 100 . The temperature and component concentrations of the melt 101 were analyzed immediately before blowing and after blowing. Moreover, the temperature and component concentration of the melt 101 are measured one or more times during the blowing process, and the supply amount (oxygen supply amount) and speed (oxygen supply rate) of high pressure oxygen and the stirring gas are determined based on the measured temperature and component concentration. The flow rate (stirring gas flow rate), etc.

吹煉控制系統包括控制終端10、顯示裝置20及爐內狀態推定裝置1作為主要構成元件。控制終端10可包含個人電腦或工作站等資訊處理裝置。控制終端10以熔液101的溫度及成分濃度成為所需範圍內的方式控制送氧量、送氧速度及攪拌氣體流量,並且收集送氧量、送氧速度及攪拌氣體流量的實績值資料。顯示裝置20例如可包含液晶顯示器(Liquid Crystal Display,LCD)或陰極射線管(Cathode Ray Tube,CRT)顯示器。顯示裝置20可顯示自爐內狀態推定裝置1輸出的計算結果等。The blowing control system includes a control terminal 10, a display device 20, and a furnace state estimation device 1 as main components. The control terminal 10 may include an information processing device such as a personal computer or a workstation. The control terminal 10 controls the oxygen supply amount, oxygen supply rate, and stirring gas flow rate so that the temperature and component concentration of the melt 101 fall within a desired range, and collects actual performance value data of the oxygen supply amount, oxygen supply rate, and stirring gas flow rate. The display device 20 may include, for example, a liquid crystal display (Liquid Crystal Display, LCD) or a cathode ray tube (Cathode Ray Tube, CRT) display. The display device 20 can display calculation results output from the furnace state estimating device 1 and the like.

爐內狀態推定裝置1是推定由精煉設備2處理的熔液101的溫度及成分濃度與熔渣103的成分濃度的裝置。爐內狀態推定裝置1包含個人電腦或工作站等資訊處理裝置。爐內狀態推定裝置1包括輸入部11、資料庫12、模型參數計算部13、模型決定部14、爐內狀態計算部15及輸出部16。The furnace state estimation device 1 is a device for estimating the temperature and component concentration of the melt 101 processed by the refining facility 2 and the component concentration of the molten slag 103 . The furnace state estimation device 1 includes an information processing device such as a personal computer or a workstation. The furnace state estimation device 1 includes an input unit 11 , a database 12 , a model parameter calculation unit 13 , a model determination unit 14 , a furnace state calculation unit 15 , and an output unit 16 .

輸入部11是輸入與精煉設備2相關的各種測量結果即實績資訊(實績資料)等的輸入用介面。輸入部11例如可為鍵盤、滑鼠、指向裝置、資料接收裝置及圖形用戶介面(Graphical User Interface,GUI)等的至少一種。在本實施方式中,輸入部11自外部接受實績資訊、參數設定值等,進行所述資訊向資料庫12的寫入及向爐內狀態計算部15的發送。實績資訊自控制終端10輸入至輸入部11。實績資訊包含由廢氣檢測部105測量的關於廢氣的流量及成分濃度的資訊、送氧量及送氧速度的資訊、攪拌氣體流量的資訊、原料(主原料、輔助原料)投入量的資訊、熔液101的溫度及成分濃度與熔渣103的成分濃度等。該些資訊對應於下述圖2的實績資訊中的項目1~項目M。而且,輸入部11例如可由精煉設備2的操作員等手動進行資料輸入(手動輸入)。藉由手動輸入,可輸入模型式(以下亦簡稱為「模型」)的參數設定值。在本實施方式中,輸入部11亦接受下述精煉處理的條件及操作量資訊。而且,輸入部11亦可在精煉處理開始前或處理中或處理結束後獲取實績資訊等。The input unit 11 is an input interface for inputting various measurement results related to the refining facility 2 , that is, performance information (performance data), and the like. The input unit 11 can be, for example, at least one of a keyboard, a mouse, a pointing device, a data receiving device, and a Graphical User Interface (GUI). In the present embodiment, the input unit 11 receives actual performance information, parameter setting values, and the like from the outside, and writes the information into the database 12 and transmits the information to the furnace state calculation unit 15 . Performance information is input to the input unit 11 from the control terminal 10 . The actual performance information includes information on the flow rate and component concentration of the exhaust gas measured by the exhaust gas detection unit 105, information on the oxygen supply amount and oxygen supply speed, information on the flow rate of the stirring gas, information on the input amount of raw materials (main raw materials, auxiliary raw materials), melting The temperature and component concentration of the liquid 101 and the component concentration of the molten slag 103 and the like. These pieces of information correspond to item 1 to item M in the performance information of FIG. 2 described below. Furthermore, in the input unit 11 , for example, an operator of the refining facility 2 can manually input data (manual input). By manual input, it is possible to input parameter setting values of a model formula (hereinafter also referred to simply as "model"). In the present embodiment, the input unit 11 also receives conditions and operation amount information of refining processing described below. Furthermore, the input unit 11 may acquire performance information and the like before the refinement process starts, during the process, or after the process ends.

資料庫12記憶與精煉設備2中的吹煉反應相關的模型的資訊、精煉處理的實績資訊及爐內狀態推定裝置1的計算結果。資料庫12例如包含記憶體及硬碟驅動器等的記憶裝置。記憶裝置可進而記憶電腦程式。資料庫12記憶模型式及模型式的參數(以下稱為「模型參數」)作為與吹煉反應相關的模型的資訊。模型參數由模型參數計算部13計算。而且,資料庫12中可記憶有輸入至輸入部11的各種資訊、由爐內狀態計算部15計算的吹煉實績中的計算、分析結果。The database 12 stores model information related to blowing reactions in the refining facility 2 , actual performance information of refining processes, and calculation results of the furnace state estimating device 1 . The database 12 includes storage devices such as a memory and a hard disk drive, for example. The memory device can further store computer programs. The database 12 stores model formulas and model formula parameters (hereinafter referred to as "model parameters") as information of the model related to the blowing reaction. The model parameters are calculated by the model parameter calculation unit 13 . In addition, various information input to the input unit 11 , calculation and analysis results in actual blowing results calculated by the furnace state calculation unit 15 can be stored in the database 12 .

圖2是表示資料庫12的結構例的圖。在本實施方式中,資料庫12將N次(N爐次)精煉處理中的條件、實績資訊及作為計算結果的模型參數與爐次的識別編號建立關聯而記憶。N例如為2以上的整數。在圖2的例中,最左欄表示爐次的識別編號。例如在第N次精煉處理中,資料庫12記憶過去的N-1次精煉處理中的實績資訊及模型參數。在第N次精煉處理中,在模型決定部14按下述方式決定模型參數的情況下,記憶於資料庫12的過去的N-1次精煉處理的資訊用作候補。而且,當第N次精煉處理結束時,將第N次精煉處理中的實績資訊及計算結果追加至資料庫12(參照圖2的粗框部分)。其後,在第N+1次精煉處理中,在模型決定部14決定模型參數的情況下,記憶於資料庫12的過去的N次精煉處理的資訊用作候補。FIG. 2 is a diagram showing a configuration example of the database 12 . In this embodiment, the database 12 associates and memorizes the conditions in N times (N heat) refining processes, the actual performance information, and the model parameters which are calculation results, and the identification number of the heat. N is, for example, an integer of 2 or more. In the example of FIG. 2, the leftmost column shows the identification number of a heat. For example, in the N-time refining process, the database 12 memorizes the actual performance information and model parameters in the past N-1 refining processes. In the N-time refining process, when the model determination unit 14 determines the model parameters as follows, the information of the past N-1 refining processes stored in the database 12 is used as a candidate. Then, when the N-th refinement process ends, the actual performance information and calculation results in the N-th refinement process are added to the database 12 (see the thick framed portion in FIG. 2 ). Thereafter, in the N+1th refinement process, when the model determination unit 14 determines model parameters, the information of the past N refinement processes stored in the database 12 is used as a candidate.

模型參數計算部13、模型決定部14及爐內狀態計算部15例如包含中央處理單元(Central Processing Unit,CPU)等運算處理裝置。模型參數計算部13、模型決定部14及爐內狀態計算部15例如可藉由運算處理裝置讀取並執行電腦程式而實現。而且,模型參數計算部13、模型決定部14及爐內狀態計算部15可具有專用的運算裝置或運算電路。The model parameter calculation unit 13 , the model determination unit 14 , and the furnace state calculation unit 15 include, for example, arithmetic processing devices such as a central processing unit (Central Processing Unit, CPU). The model parameter calculation unit 13, the model determination unit 14, and the furnace state calculation unit 15 can be realized by, for example, reading and executing a computer program by an arithmetic processing device. Moreover, the model parameter calculation part 13, the model determination part 14, and the furnace state calculation part 15 may have a dedicated calculation device or a calculation circuit.

模型參數計算部13基於爐內的質量平衡及熱收支,以收支誤差最小的方式計算與吹煉反應相關的模型的模型參數,並記憶於資料庫12。模型參數計算部13在一次精煉處理結束後,使用作為所述精煉處理結果的實績資訊進行質量平衡及熱收支的計算。Based on the mass balance and heat balance in the furnace, the model parameter calculation unit 13 calculates the model parameters of the model related to the blowing reaction so that the balance error is minimized, and stores them in the database 12 . The model parameter calculation unit 13 calculates the mass balance and heat balance by using the actual performance information as a result of the refining process after the primary refining process is completed.

質量平衡計算對各成分在轉爐100內的投入量及來自轉爐100的各成分的排出量進行計算。各成分的投入量根據對轉爐100的主原料及輔助原料投入量、來自噴槍102的供給氧及來自轉爐100外的捲入空氣量而計算。各成分的排出量根據廢氣流量及廢氣成分濃度而計算。The mass balance calculation calculates the input amount of each component into the converter 100 and the discharge amount of each component from the converter 100 . The input amount of each component was calculated based on the input amount of the main raw material and the auxiliary raw material to the converter 100 , the oxygen supply from the lance 102 , and the amount of air entrainment from outside the converter 100 . The discharge amount of each component is calculated based on the exhaust gas flow rate and the exhaust gas component concentration.

熱收支計算對轉爐100的爐內的輸入熱量及排出熱量進行計算。輸入熱量根據裝入至轉爐100的主原料的顯熱、由在爐內發生的反應引起的反應熱、投入至轉爐100的輔助原料的熔解熱等而計算。排出熱量根據來自爐體表面的散熱、來自爐口部的輻射熱、由攪拌氣體引起的排熱、排出至爐外的熔渣103、排出氣體的顯熱等而計算。The heat balance calculation calculates the input heat and the exhaust heat in the furnace of the converter 100 . The heat input is calculated from the sensible heat of the main raw material charged into the converter 100 , the reaction heat due to the reaction in the furnace, the fusion heat of the auxiliary raw material charged into the converter 100 , and the like. The exhaust heat is calculated from heat radiation from the furnace body surface, radiant heat from the furnace mouth, exhaust heat caused by stirring gas, molten slag 103 discharged outside the furnace, sensible heat of exhaust gas, and the like.

模型決定部14獲取記憶於資料庫12的過去的模型參數。模型決定部14使用過去的模型參數,決定爐內狀態計算部15中要利用的模型參數,發送至爐內狀態計算部15。The model determination unit 14 acquires past model parameters stored in the database 12 . The model determination unit 14 determines model parameters to be used in the furnace state calculation unit 15 using past model parameters, and sends the model parameters to the furnace state calculation unit 15 .

爐內狀態計算部15基於由模型決定部14決定的模型參數、輸入部11所收集的實績資訊及參數設定值等,計算(推定)包含熔液101的溫度及成分濃度與熔渣103的成分濃度的轉爐100內的狀態量。所推定的轉爐100內的狀態量發送至輸出部16。The furnace state calculation unit 15 calculates (estimates) the temperature and component concentration of the molten metal 101 and the composition of the slag 103 based on the model parameters determined by the model determination unit 14 , the actual performance information collected by the input unit 11 and parameter setting values, etc. A state quantity inside the converter 100 of the concentration. The estimated state quantity in the converter 100 is sent to the output unit 16 .

輸出部16將由爐內狀態推定裝置1計算的轉爐100內的狀態量發送至控制終端10。在精煉處理中,基於自爐內狀態推定裝置1輸出的計算結果進行各種操作量的決定及操作條件的變更。而且,輸出部16亦具有將由爐內狀態推定裝置1計算的資訊發送至顯示裝置20的功能,可顯示自爐內狀態推定裝置1輸出的計算結果。The output unit 16 transmits the state quantity in the converter 100 calculated by the furnace state estimating device 1 to the control terminal 10 . In the refining process, various operating quantities are determined and operating conditions are changed based on calculation results output from the furnace state estimation device 1 . Furthermore, the output unit 16 also has a function of transmitting the information calculated by the furnace state estimating device 1 to the display device 20 and can display the calculation result output from the furnace state estimating device 1 .

具有此種結構的爐內狀態推定裝置1藉由執行以下說明的爐內狀態推定方法的處理,高精度地推定包含熔液101中的溫度及成分濃度與熔渣103中的成分濃度等的轉爐100內的狀態量。以下,參照圖3所示的流程圖,說明執行爐內狀態推定方法時的爐內狀態推定裝置1的動作。The furnace state estimating device 1 having such a structure estimates the temperature and component concentration in the molten metal 101 and the component concentration in the molten slag 103 with high accuracy by executing the processing of the furnace state estimating method described below. The state quantity within 100. Hereinafter, the operation of the furnace state estimation device 1 when executing the furnace state estimation method will be described with reference to the flowchart shown in FIG. 3 .

[爐內狀態推定方法] 圖3是表示本揭示的一實施方式的爐內狀態推定方法的處理的流程圖。圖3所示的流程圖在精煉處理開始前的任意時機開始。即,在精煉處理開始前的任意時機,爐內狀態推定處理進入步驟S1的處理。 [How to estimate the state in the furnace] FIG. 3 is a flowchart showing processing of a method for estimating a state in a furnace according to an embodiment of the present disclosure. The flowchart shown in FIG. 3 starts at an arbitrary timing before the refining process starts. That is, at an arbitrary timing before the start of the refining process, the furnace state estimation process proceeds to the process of step S1.

在步驟S1的處理中,輸入部11獲取精煉處理的條件。在本實施方式中,精煉處理的條件包含精煉形態、輔助原料投入預定量、熔液101及熔渣103的成分濃度及溫度的目標值、處理次數、處理日期時間、包含爐、噴槍及測量機器的設備的使用次數等。輸入部11將獲取的精煉處理的條件發送至資料庫12及爐內狀態計算部15。藉此,步驟S1的處理完成,爐內狀態推定處理進入步驟S2的處理。步驟S1對應於「輸入步驟」的一部分。在步驟S1中輸入的資料用於模型決定部14的處理。In the process of step S1, the input unit 11 acquires the conditions of the refining process. In this embodiment, the conditions of the refining treatment include the refining form, the predetermined amount of auxiliary raw materials to be added, the target values of the component concentrations and temperatures of the molten metal 101 and the slag 103, the number of times of treatment, the date and time of the treatment, including furnaces, spray guns, and measuring equipment. The number of times the equipment is used, etc. The input unit 11 transmits the obtained refining process conditions to the database 12 and the furnace state calculation unit 15 . Thereby, the process of step S1 is completed, and the furnace state estimation process proceeds to the process of step S2. Step S1 corresponds to a part of the "input step". The data input in step S1 are used in the processing of the model determination unit 14 .

在步驟S2的處理中,模型決定部14使用記憶於資料庫12的過去的模型參數,基於精煉處理的條件,決定爐內狀態計算部15中要利用的模型參數。步驟S2對應於「模型決定步驟」。詳細而言,步驟S2的處理中決定的模型參數可基於與已經記憶於資料庫12的過去的精煉處理對應的模型參數,藉由計算或選擇而獲得。如上所述,例如在第N次精煉處理中,模型決定部14使用記憶於資料庫12的過去的N-1次精煉處理的資訊決定模型參數。在需要花費時間才能獲取精煉處理結果等過去的N-1次模型參數或精煉處理條件的資料不全的情況下,可提取所需的模型參數或精煉處理條件的資料齊全的實績資訊而決定模型參數。有時將此例情況下的第N次精煉處理即當前執行中的精煉處理稱為對象爐次的精煉處理。In the process of step S2 , the model determination unit 14 determines model parameters to be used by the furnace state calculation unit 15 based on the conditions of the refining process using the past model parameters stored in the database 12 . Step S2 corresponds to the "model determination step". Specifically, the model parameters determined in the process of step S2 can be obtained by calculation or selection based on model parameters corresponding to past refining processes already stored in the database 12 . As described above, for example, in the Nth refining process, the model determination unit 14 determines model parameters using the information of the past N−1 refining processes stored in the database 12 . When it takes time to obtain the refining process results and other past N-1 model parameters or refining process condition data are incomplete, the model parameters can be determined by extracting the required model parameters or refining process condition data from the actual performance information . The Nth refining process in this example, that is, the currently executing refining process may be referred to as the refining process of the target heat.

模型決定部14例如藉由提取記憶於資料庫12的模型參數中精煉處理條件與對象爐次的條件類似的模型參數,將提取的模型參數進行平均而決定。模型決定部14可僅提取最近的規定數量的爐次中的模型參數,即將舊模型參數自提取對象中排除,進行平均化。對象爐次的精煉處理中的條件與過去實績的相似度(Ds)例如可藉由按以下式(1)所示計算歐式距離而評價。The model determining unit 14 determines, for example, by extracting model parameters having refining processing conditions similar to those of the target heat among model parameters stored in the database 12 , and averaging the extracted model parameters. The model determination unit 14 may extract only model parameters in the latest predetermined number of heats, that is, exclude old model parameters from extraction targets, and perform averaging. The degree of similarity (Ds) between the conditions in the refining process of the target heat and the past performance can be evaluated by calculating the Euclidean distance as shown in the following formula (1), for example.

[數1]

Figure 02_image001
[number 1]
Figure 02_image001

其中,k為精煉處理的條件數。CA k表示過去實績中的條件。CP k表示對象爐次的精煉處理中的條件。G k是用於進行各精煉處理條件的加權的參數。作為精煉處理條件,例如可列舉精煉處理日期時間、裝入熔鐵重量、裝入廢料重量、熔鐵溫度、熔鐵中以C、Si、Mn、P為代表的成分濃度、精煉爐及頂吹噴槍的使用次數等。而且,例如可列舉之前實施的精煉處理中的處理後的熔液溫度及來自處理後的經過時間、遺留的熔渣重量及成分、精煉處理開始前投入的每一輔助原料品種的投入重量、每一廢料品種的投入重量等。該些條件對應於圖2的精煉處理條件中的項目1~項目L。而且,在評價相似度的情況下,可僅以正在使用的精煉爐的形態、頂吹噴槍的形態、底吹噴嘴的形態等一致的實績作為對象。此處,相似度不限於式(1)所示的歐式距離,亦可藉由評價城市街區距離、明氏距離、馬氏距離、以餘弦相似度為代表的k維向量間的距離的方法進行評價。此處,相似度高與所計算的k維向量間的距離短同義。過去的精煉處理實績的提取可提取所計算的相似度較設定的臨限值高的實績,或可提取相似度高的上位任意數的過去實績。而且,作為相似實績的提取方法,可為如下方法,即,關於精煉處理的條件k各自的項目,對計算對象處理條件與過去實績條件的差進行計算,提取k個差分別小於設定臨限值的實績。 Among them, k is the condition number of the refining process. CA k represents a condition in the past results. CP k represents the conditions in the refining process of the target heat. G k is a parameter for weighting each refining treatment condition. Refining treatment conditions include, for example, the date and time of refining treatment, the weight of charged molten iron, the weight of charged scrap, molten iron temperature, the concentration of components represented by C, Si, Mn, and P in molten iron, refining furnace and top blowing. The number of times the spray gun is used, etc. In addition, for example, the melt temperature after the treatment and the elapsed time from the treatment in the refining treatment carried out before, the weight and composition of the remaining slag, the input weight of each auxiliary raw material type input before the refining treatment, and each 1. Input weight of waste types, etc. These conditions correspond to item 1 to item L in the refining treatment conditions of FIG. 2 . In addition, when evaluating the similarity, it is possible to target only the actual results that match the form of the refining furnace in use, the form of the top-blowing lance, and the form of the bottom-blowing nozzle. Here, the similarity is not limited to the Euclidean distance shown in formula (1), but can also be performed by evaluating the distance between city block distances, Mingshi distance, Mahalanobis distance, and k-dimensional vectors represented by cosine similarity evaluate. Here, a high similarity is synonymous with a short distance between the calculated k-dimensional vectors. Extraction of the past results of refining processing can extract the results whose calculated similarity is higher than the set threshold value, or can extract the past results of an upper arbitrary number with a higher similarity. In addition, as a method of extracting similar actual results, a method may be used in which, with respect to each item of condition k of the refining process, the difference between the calculation target processing condition and the past actual performance condition is calculated, and k differences are each smaller than a set threshold value. performance.

而且,模型決定部14可將記憶於資料庫12的模型參數、與包含精煉處理中的處理次數、處理日期時間、包含爐、噴槍及測量機器的精煉設備的使用次數等的精煉處理條件的關係進行模型化。並且,模型決定部14可藉由模型計算根據對象爐次的精煉處理條件輸入值算出最佳參數。模型決定部14將已決定的模型參數發送至爐內狀態計算部15。藉此,步驟S2的處理完成,爐內狀態推定處理進入步驟S3的處理。Furthermore, the model determination unit 14 can establish the relationship between the model parameters stored in the database 12 and the refining treatment conditions including the number of times of treatment in the refining treatment, the date and time of the treatment, the number of times of use of refining equipment including furnaces, spray guns, and measuring equipment, etc. Do the modeling. In addition, the model determination unit 14 may calculate the optimum parameters from the input value of the refining process condition of the target heat by model calculation. The model determination unit 14 sends the determined model parameters to the furnace state calculation unit 15 . Thereby, the process of step S2 is completed, and the furnace state estimation process proceeds to the process of step S3.

步驟S3及步驟S4的處理在一次精煉處理開始的時機開始,在精煉處理中以任意週期重覆實施。在步驟S3的處理中,輸入部11獲取精煉處理的操作量資訊及轉爐100中的測量資訊。操作量資訊例如為噴槍102的高度、送氧速度、攪拌氣體流量、輔助原料的投入量等操作量的資訊。測量資訊例如為廢氣的流量及成分濃度等的測量值。此處,測量值並不限於測量所得的值本身,亦可包含分析後的結果(分析值)。操作量資訊、測量資訊以任意週期收集。當操作量資訊與測量資訊之間存在大的時間延遲時,考慮此延遲而創建資料。而且,在測量資訊包含大量雜訊的情況下,可利用進行移動平均計算等平滑化處理而得的值替換測量值。步驟S3對應於「輸入步驟」的一部分。步驟S3中輸入的資料用於爐內狀態計算部15的處理。The processing of step S3 and step S4 is started at the timing of the start of one refining process, and is repeatedly performed at an arbitrary cycle during the refining process. In the process of step S3 , the input unit 11 acquires the operation amount information of the refining process and the measurement information in the converter 100 . The operation amount information is, for example, the height of the spray gun 102 , the speed of oxygen supply, the flow rate of the stirring gas, the input amount of auxiliary raw materials and other operation amount information. The measurement information is, for example, measured values such as the flow rate and component concentration of the exhaust gas. Here, the measured value is not limited to the measured value itself, but may also include an analysis result (analysis value). Operation amount information and measurement information are collected at any period. When there is a large time delay between operation amount information and measurement information, data is created taking this delay into account. Furthermore, when the measurement information contains a lot of noise, the measurement value can be replaced with a value obtained by performing smoothing processing such as moving average calculation. Step S3 corresponds to a part of the "input step". The data input in step S3 are used for processing by the furnace state calculation unit 15 .

在步驟S4的處理中,爐內狀態計算部15使用具有輸入部11所獲取的資訊及模型決定部14所決定的模型參數的模型,計算轉爐100內的狀態量。狀態量例如可列舉熔液101中的碳濃度、熔渣103中的Fe tO濃度等。步驟S4對應於「爐內狀態計算步驟」。 In the process of step S4 , the furnace state calculation unit 15 calculates the state quantity in the converter 100 using a model having the information acquired by the input unit 11 and the model parameters determined by the model determination unit 14 . The state quantities include, for example, the carbon concentration in the melt 101 , the Fe t O concentration in the slag 103 , and the like. Step S4 corresponds to the "furnace state calculation step".

熔液101中的碳濃度例如藉由計算轉爐100內殘存的碳量而求出。投入至轉爐100內的碳量及排出至轉爐100外的碳量分別可表示為以下所示的式(2)及式(3)。假設自投入碳量減去排出碳量而得的轉爐100內殘存的碳量相當於熔液101中的碳量,藉此可計算熔液101中的碳濃度。此處,假設熔液101的進出碳量與總裝入量相比而言微少。而且,除非另有說明,則「%」及各種流量表示「質量%(mass%)」及流量原單位。The carbon concentration in the melt 101 is obtained, for example, by calculating the amount of carbon remaining in the converter 100 . The amount of carbon charged into the converter 100 and the amount of carbon discharged out of the converter 100 can be represented by Equation (2) and Equation (3) shown below, respectively. Assuming that the amount of carbon remaining in the converter 100 obtained by subtracting the amount of discharged carbon from the amount of input carbon is equivalent to the amount of carbon in the melt 101 , the carbon concentration in the melt 101 can be calculated. Here, it is assumed that the amount of carbon entering and leaving the melt 101 is small compared to the total charge amount. Moreover, unless otherwise specified, "%" and various flow rates represent "mass%" and the original unit of flow rate.

[數2]

Figure 02_image003
[number 2]
Figure 02_image003

[數3]

Figure 02_image005
[number 3]
Figure 02_image005

此處,作為投入碳量的C in[%]為主原料中的碳量與投入輔助原料中的碳量的和的熔液101中的濃度換算值。ρ pig[%]為裝入熔鐵中的碳濃度。ρ i Cscr[%]為裝入廢料(品種i)中的碳濃度。ρ j Caux[%]為投入輔助原料(品種j)中的碳濃度。W pig[t]為裝入熔鐵重量。W i scr[t]為裝入廢料(品種i)的重量。W j aux[t]為投入輔助原料(品種j)的投入累計重量。W charge[t]為裝入至轉爐100的熔液重量。裝入廢料的品種i及投入輔助原料的品種j中的碳濃度(ρ i Cscr、ρ j Caux)記憶於資料庫12,爐內狀態計算部15獲取關於按對象爐次利用的品種的資訊。作為排出碳量的C out[%]為廢氣中包含的碳量的熔液101中的濃度換算值。V CO OG[Nm 3/t]、V CO2 OG[Nm 3/t]分別為直至廢氣中的CO、CO 2的計算時刻的累計流量。 Here, C in [%], which is the amount of carbon input, is the concentration conversion value in the melt 101 of the sum of the amount of carbon in the main raw material and the amount of carbon in the auxiliary raw material. ρ pig [%] is the carbon concentration charged into the molten iron. ρ i Cscr [%] is the carbon concentration charged into the waste (type i). ρ j Caux [%] is the carbon concentration input into the auxiliary raw material (species j). W pig [t] is the weight of molten iron loaded. W i scr [t] is the weight of loaded waste (species i). W j aux [t] is the cumulative weight of input auxiliary raw materials (species j). W charge [t] is the weight of the melt charged into the converter 100 . The carbon concentration (ρ i Cscr , ρ j Caux ) in the type i of the waste material and the type j of the auxiliary raw material input is stored in the database 12, and the furnace state calculation unit 15 acquires information on the type used for each target heat. C out [%], which is the amount of discharged carbon, is a concentration-converted value of the amount of carbon contained in the exhaust gas in the melt 101 . V CO OG [Nm 3 /t] and V CO2 OG [Nm 3 /t] are the cumulative flow rates up to the time of calculation of CO and CO 2 in the exhaust gas, respectively.

熔渣103中的Fe tO濃度可假設自投入氧量減去排出氧量而得的量相當於轉爐100內殘存的氧量而進行計算。例如,可將投入至轉爐100內的氧量及排出至轉爐100外的氧量分別表示為以下所示的式(4)及式(5)。 The Fe t O concentration in the molten slag 103 can be calculated assuming that the amount obtained by subtracting the amount of oxygen discharged from the amount of input oxygen corresponds to the amount of oxygen remaining in the converter 100 . For example, the amount of oxygen charged into the converter 100 and the amount of oxygen discharged to the outside of the converter 100 can be represented by the following formulas (4) and (5), respectively.

[數4]

Figure 02_image007
[number 4]
Figure 02_image007

[數5]

Figure 02_image009
[number 5]
Figure 02_image009

此處,作為投入氧量的O 2 in[Nm 3/t]為來自噴槍102的頂吹氧累計量V O2 blow[Nm 3/t]、投入輔助原料中的氧累計量及自轉爐100外捲入爐內的空氣中的氧累計量的和。ρ i Oscr[%]為裝入廢料(品種i)中的氧含量的換算值。ρ j Oaux[(Nm 3/t)/t]為投入輔助原料(品種j)中的氧含量的換算值。裝入廢料的品種i及投入輔助原料的品種j中的氧含量(ρ i Oaux、ρ j Oaux)記憶於資料庫12,爐內狀態計算部15獲取關於按對象爐次利用的品種的資訊。關於ρ i Oscr[%]及W j aux[t],可包含關於自前爐次遺留的熔渣103的成分及重量的分析值或計算值。而且,在投入氧量的計算中,例如如本實施例所示,在未獲得N 2濃度、Ar濃度作為廢氣測量的情況下,被捲入的空氣中的氧量可按式(4)的第四項的方式計算。此處,在式(4)的第四項中,假設自作為廢氣中除O 2、CO、CO 2以外的未分析廢氣量的V rem OG[Nm 3/t]減去作為底吹氣體流量的V bot[Nm 3/t]而得的量相當於捲入空氣中的N 2、Ar。 Here, O 2 in [Nm 3 /t] as the amount of oxygen input is the cumulative amount of top-blown oxygen V O2 blow [Nm 3 /t] from the spray gun 102, the cumulative amount of oxygen input into the auxiliary raw material, and the amount of oxygen from the rotary furnace 100. The sum of the cumulative amount of oxygen in the air drawn into the furnace. ρ i Oscr [%] is a conversion value of the oxygen content charged into the waste material (type i). ρ j Oaux [(Nm 3 /t)/t] is the conversion value of the oxygen content in the auxiliary raw material (type j) input. The oxygen content (ρ i Oaux , ρ j Oaux ) in the type i of the waste material and the type j of the input auxiliary raw material is stored in the database 12, and the furnace state calculation unit 15 acquires information on the type used for each target heat. Regarding ρ i Oscr [%] and W j aux [t], analytical values or calculated values regarding the composition and weight of the molten slag 103 left from the previous heat may be included. Moreover, in the calculation of the input oxygen amount, for example, as shown in this example, when the N2 concentration and Ar concentration are not obtained as exhaust gas measurement, the oxygen amount in the air involved can be calculated according to the formula (4) Calculated in the manner of the fourth term. Here, in the fourth term of Equation (4), it is assumed that V rem OG [Nm 3 /t], which is the amount of unanalyzed exhaust gas in the exhaust gas except for O 2 , CO, and CO 2 , is subtracted as the bottom blowing gas flow The amount obtained from V bot [Nm 3 /t] is equivalent to N 2 and Ar involved in the air.

作為排出氧量的O 2 out[Nm 3/t]根據廢氣中所包含的氧量而計算。V O2 OG[Nm 3/t]為直至廢氣中的O 2的計算時刻的累計流量。V CO OG[Nm 3/t]、V CO2 OG[Nm 3/t]與式(3)相同。自投入氧量減去排出氧量而得的量為轉爐100內殘存的氧量。轉爐100內殘存的氧用於熔液101中的Si、Mn、P等金屬雜質的氧化及鐵的氧化。其中,關於金屬雜質的氧化量,使用記憶於資料庫12的模型中的雜質金屬的氧化反應模型而計算。例如作為用於熔液101中的Si氧化的氧量的V O2 Si[Nm 3/t]表示為以下所示的式(6)。 O 2 out [Nm 3 /t], which is the amount of exhausted oxygen, is calculated from the amount of oxygen contained in the exhaust gas. V O2 OG [Nm 3 /t] is the cumulative flow rate up to the calculation time of O 2 in the exhaust gas. V CO OG [Nm 3 /t] and V CO2 OG [Nm 3 /t] are the same as the formula (3). The amount of oxygen remaining in the converter 100 is the amount obtained by subtracting the amount of discharged oxygen from the amount of input oxygen. Oxygen remaining in the converter 100 is used for oxidation of metal impurities such as Si, Mn, and P in the melt 101 and oxidation of iron. Here, the oxidation amount of metal impurities is calculated using the oxidation reaction model of impurity metals stored in the model in the database 12 . For example, V O2 Si [Nm 3 /t], which is the amount of oxygen used for Si oxidation in the melt 101 , is represented by the following formula (6).

[數6]

Figure 02_image011
[number 6]
Figure 02_image011

此處,ρ pig Si[%]為裝入熔鐵中的Si濃度。ρ i Siscr[%]為裝入廢料(品種i)中的Si濃度。ρ j Siaux[%]為投入輔助原料(品種j)中的Si濃度。K Si為Si的氧化反應速度常數。而且,與式(6)同樣地,可計算Mn、P等熔液101中的各種金屬雜質的氧化所使用的氧量。此處,Si、Mn、P等熔液101中的各種金屬雜質的氧化所使用的氧量合計為V O2 met[Nm 3/t]。可假設熔渣103中的Fe tO量相當於自投入氧量減去排出氧量並自所得的量再減去V O2 met而得的量而進行計算。 Here, ρ pig Si [%] is the concentration of Si charged into the molten iron. ρ i Siscr [%] is the Si concentration charged into the scrap (type i). ρ j Siaux [%] is the Si concentration in the auxiliary raw material (species j). K Si is the oxidation reaction rate constant of Si. Furthermore, similarly to the formula (6), the amount of oxygen used for oxidation of various metal impurities in the molten metal 101 such as Mn and P can be calculated. Here, the total amount of oxygen used for oxidation of various metal impurities in the melt 101 such as Si, Mn, and P is V O2 met [Nm 3 /t]. The amount of Fe t O in the slag 103 can be calculated by assuming that the amount of oxygen discharged is subtracted from the amount of input oxygen, and V O2 met is subtracted from the obtained amount.

在一次精煉處理(所述對象爐次的精煉處理)結束的時機結束步驟S3及步驟S4的處理(步驟S5的是(Yes)),爐內狀態推定處理進入步驟S6的處理。在一次精煉處理未結束的情況下(步驟S5的否(No)),爐內狀態推定處理返回步驟S3及步驟S4的處理。When one refining process (refining process of the target furnace) is completed, the processes in steps S3 and S4 are terminated (Yes in step S5 ), and the furnace state estimation process proceeds to the process in step S6 . When the primary refining process has not been completed (No (No) in step S5), the furnace state estimation process returns to the processes in steps S3 and S4.

在步驟S6的處理中,輸入部11獲取精煉處理的結果作為實績資訊。在本實施方式中,精煉處理結果包含熔液101的溫度及成分濃度、熔渣103的成分濃度以及廢氣的流量及成分濃度。輸入部11將獲取的精煉處理結果記憶於資料庫12。藉此,步驟S6的處理完成,爐內狀態推定處理進入步驟S7的處理。步驟S6對應於「輸入步驟」的一部分。步驟S6中輸入的資料用於模型參數計算部13的處理。In the process of step S6, the input part 11 acquires the result of refining process as actual performance information. In this embodiment, the refining treatment results include the temperature and component concentration of the melt 101 , the component concentration of the molten slag 103 , and the flow rate and component concentration of the exhaust gas. The input unit 11 stores the acquired refining processing result in the database 12 . Thereby, the process of step S6 is completed, and the furnace state estimation process proceeds to the process of step S7. Step S6 corresponds to a part of the "input step". The data input in step S6 are used in the processing of the model parameter calculation unit 13 .

在步驟S7的處理中,模型參數計算部13基於爐內的質量平衡及熱收支,以收支誤差最小的方式計算與吹煉反應相關的模型的模型參數,並記憶於資料庫12。步驟S7對應於「模型參數計算步驟」。如上所述,爐內狀態計算部15使用由模型決定部14決定的模型參數,推定對象爐次的精煉處理中的轉爐100內的狀態量。模型參數計算部13使用對象爐次的精煉處理的結果(實績資訊)修正爐內狀態計算部15所使用的模型參數。並且,模型參數計算部13將修正後的進一步準確的模型參數記憶於資料庫12。換言之,與對象爐次建立關聯而記憶於資料庫12的模型參數並非爐內狀態計算部15用於計算(推定)的模型的模型參數。與對象爐次建立關聯而記憶於資料庫12的模型參數是由模型參數計算部13基於對象爐次的精煉處理的實績資訊進行計算(修正)的模型參數。In the process of step S7 , the model parameter calculation unit 13 calculates model parameters of a model related to the blowing reaction to minimize the balance error based on the mass balance and heat balance in the furnace, and stores the model parameters in the database 12 . Step S7 corresponds to the "model parameter calculation step". As described above, the furnace state calculation unit 15 uses the model parameters determined by the model determination unit 14 to estimate the state quantity in the converter 100 during the refining process of the target heat. The model parameter calculation unit 13 corrects the model parameters used by the furnace state calculation unit 15 using the results of the refining process of the target furnace (actual performance information). Furthermore, the model parameter calculation unit 13 stores the corrected and more accurate model parameters in the database 12 . In other words, the model parameters associated with the target furnace and stored in the database 12 are not model parameters of the model used by the furnace state calculation unit 15 for calculation (estimation). The model parameters associated with the target heat and stored in the database 12 are model parameters calculated (corrected) by the model parameter calculation unit 13 based on the actual performance information of the refining process of the target heat.

模型參數計算部13可計算修正用的係數作為模型參數。修正用的係數例如可包含廢氣的流量的測量值的修正係數A、廢氣的成分濃度的測量值的修正係數B。修正用的係數例如亦可包含熔液101的成分濃度的測量值的修正係數ΔC、熔液101的溫度的測量值的修正係數D、與裝入廢料的爐內反應良率相關的常數E、與投入的輔助原料的爐內反應良率相關的常數F。修正用的係數亦可包含伴隨熔液101中的成分的氧化反應、熔渣103中的成分的還原反應、輔助原料的熔解等爐內的各種反應的關於升熱及吸熱量的係數H。而且,修正用的係數亦可包含氣體及熔渣103的顯熱、來自爐口及爐體的散熱量等關於熱損失的係數I。The model parameter calculation unit 13 can calculate correction coefficients as model parameters. The correction coefficients may include, for example, a correction coefficient A of the measured value of the flow rate of the exhaust gas and a correction coefficient B of the measured value of the component concentration of the exhaust gas. The coefficients for correction may include, for example, a correction coefficient ΔC of the measured value of the component concentration of the melt 101, a correction coefficient D of the measured value of the temperature of the melt 101, a constant E related to the reaction yield in the furnace charged with scrap, The constant F related to the furnace reaction yield of the input auxiliary raw materials. The coefficients for correction may include coefficients H related to heat rise and heat absorption associated with various reactions in the furnace such as oxidation reaction of components in the molten metal 101 , reduction reaction of components in the slag 103 , and melting of auxiliary raw materials. Furthermore, the coefficient for correction may include coefficient I for heat loss such as sensible heat of gas and slag 103 , heat radiation from the furnace mouth and the furnace body, and the like.

模型參數計算部13例如可添加如上所述的係數作為如式(7)那樣的評價函數的變量,求出將評價函數最小化的模型參數。此處,在本實施方式中,模型參數計算部13將評價函數最小化,但亦可使用在適當的模型參數的情況下進行最大化的評價函數。即,模型參數計算部13可求出將評價函數最小化或最大化的模型參數。The model parameter calculation unit 13 may, for example, add the above-mentioned coefficients as variables of the evaluation function such as Equation (7), and obtain model parameters that minimize the evaluation function. Here, in the present embodiment, the model parameter calculation unit 13 minimizes the evaluation function, but it is also possible to use an evaluation function that is maximized with appropriate model parameters. That is, the model parameter calculation unit 13 can obtain model parameters that minimize or maximize the evaluation function.

[數7]

Figure 02_image013
[number 7]
Figure 02_image013

C in為投入至轉爐100內的碳量的特定期間的累計量。C out為由於廢氣等而排出至轉爐100外的碳量的特定期間的累計量。O 2 in為投入至轉爐100內的氧量。O 2 out為由於廢氣及熔渣103的排出等而排出至轉爐100外的氧量。V O2 met為Si、Mn、P等熔液101中的各種金屬雜質氧化所使用的氧量。ΔT是由包含由於轉爐100內的反應而產生的反應熱、由排出至爐外的廢氣及熔渣103等引起的排熱以及來自爐體的散熱及來自爐口的輻射散熱等的轉爐100內的熱量變化所引起的熔液溫度變化量的特定期間的累計量。T ini為精煉處理中的特定期間的起點處的熔液101的溫度測量值。而且,[C]、V O2 FetO、T fin分別為精煉處理中的特定期間的終點處的熔液101中的碳量測量值、根據熔渣103中的Fe tO量測量值計算的Fe tO生成所使用的氧量、熔液101溫度測量值。σ C 2、σ O 2、σ T 2為可任意設定的常數。而且,A~I及ΔC對應於圖2的第一參數~第K參數。在本實施方式中,模型參數包含對式(7)中所使用的所述累計量及氧量中的至少一個進行修正的係數或常數項。 C in is the cumulative amount of carbon charged into the converter 100 for a specific period. C out is the cumulative amount of the amount of carbon discharged out of the converter 100 due to exhaust gas or the like for a specific period. O 2 in is the amount of oxygen charged into the converter 100 . O 2 out is the amount of oxygen discharged to the outside of the converter 100 due to discharge of exhaust gas and slag 103 . V O2 met is the amount of oxygen used for oxidation of various metal impurities in the melt 101 such as Si, Mn, and P. ΔT is the internal temperature of the converter 100 including the reaction heat generated by the reaction in the converter 100, the exhaust heat caused by the exhaust gas and slag 103 discharged to the outside of the furnace, the heat radiation from the furnace body, and the radiation heat radiation from the furnace mouth. The cumulative amount of the melt temperature change caused by the heat change in a specific period. T ini is a temperature measurement value of the melt 101 at the start of a specific period in the refining process. Also, [C], V O2 FetO , and T fin are calculated from the measured value of the amount of carbon in the molten metal 101 at the end of a specific period in the refining process and the measured value of the amount of Fe t O in the slag 103, respectively. Oxygen amount used for Fe t O formation, measured value of melt 101 temperature. σ C 2 , σ O 2 , and σ T 2 are constants that can be set arbitrarily. Also, A to I and ΔC correspond to the first to Kth parameters in FIG. 2 . In this embodiment, the model parameters include coefficients or constant terms for correcting at least one of the integrated amount and the oxygen amount used in the formula (7).

其中,ΔR m為關於熔液101中的成分的氧化反應、熔渣103中的成分的還原反應、輔助原料的熔解等爐內的各種反應m的反應量。ΔL n為關於氣體及熔渣103的顯熱、來自爐口及爐體的散熱量等熔液101中的熱損失路徑n的熱損失量。 Here, ΔR m is the reaction amount of various reactions m in the furnace, such as an oxidation reaction of components in the molten metal 101 , a reduction reaction of components in the slag 103 , and melting of auxiliary raw materials. ΔL n is the amount of heat loss related to the heat loss path n in the melt 101 , such as the sensible heat of the gas and the slag 103 , and the amount of heat radiation from the furnace mouth and the furnace body.

式(7)所示的評價函數J成為以下三個項的加權和。在評價函數J中,第一項及第二項為表示質量平衡誤差的項,第三項為表示熱收支誤差的項。第一項為自投入碳量減去排出碳量而得的轉爐100內殘留的碳量、與熔液101中的碳量測量值的差的平方值。此項成為0表示在轉爐100內保持碳收支平衡。第二項為自投入氧量減去排出氧量及雜質金屬氧化使用氧量而得的量、與根據熔渣103中的Fe tO測量值而計算的熔液101中的鐵氧化所使用的氧量的差的平方值。此項成為0表示在轉爐100內保持氧收支平衡。第三項為精煉處理中自特定期間的起點直至終點為止的熔液101溫度變化量測量值、與根據轉爐100內的反應熱及排熱等而計算的熔液101溫度變化量計算值的差的平方值。此項接近0表示在轉爐100內保持熱收支平衡。關於所述式(7)的說明中的「特定期間」可在三項各者中設定不同的期間。 The evaluation function J shown in Formula (7) becomes the weighted sum of the following three terms. In the evaluation function J, the first term and the second term are terms representing a mass balance error, and the third term is a term representing a heat budget error. The first term is the square value of the difference between the amount of carbon remaining in the converter 100 obtained by subtracting the amount of discharged carbon from the amount of input carbon and the measured value of the amount of carbon in the melt 101 . When this item becomes 0, it means that the carbon balance is maintained in the converter 100 . The second term is the amount obtained by subtracting the amount of oxygen discharged and the amount of oxygen used for oxidation of impurity metals from the amount of input oxygen, and the amount used for iron oxidation in the molten metal 101 calculated from the measured value of Fe t O in the slag 103. The square value of the difference in oxygen content. When this item becomes 0, it means that the oxygen balance is maintained in the converter 100 . The third term is the difference between the measured value of the temperature change of the molten metal 101 from the beginning to the end of the specific period in the refining process, and the calculated value of the temperature change of the molten metal 101 calculated from the reaction heat and exhaust heat in the converter 100. The squared value of the difference. A term close to zero indicates that the heat budget is maintained within the converter 100 . The "specific period" in the description of the above formula (7) can be set to a different period for each of the three items.

處於評價函數J的各項的分母的加權因子(σ C 2、σ O 2、σ T 2)例如由用戶設定。在基於限制條件將評價函數J最小化的非線性計劃問題中提出多種算法,可藉由公知的方法執行求出模型參數的計算。 The weighting factors (σ C 2 , σ O 2 , and σ T 2 ) of the denominators of each item of the evaluation function J are set, for example, by the user. Various algorithms are proposed for the nonlinear programming problem of minimizing the evaluation function J based on constraints, and calculations for obtaining model parameters can be performed by known methods.

由模型參數計算部13計算的模型參數記憶於資料庫12,用於下一次以後的精煉處理中的爐內狀態推定處理。藉此,步驟S7的處理完成,爐內狀態推定處理完成精煉處理中的處理。The model parameters calculated by the model parameter calculation unit 13 are stored in the database 12, and are used in the furnace state estimation process in the next refining process and onwards. Thereby, the process of step S7 is completed, and the furnace state estimation process completes the process in refining process.

基於由所述爐內狀態推定方法的處理推定的熔液101的溫度及成分濃度與熔渣103的成分濃度,決定操作量,實施精煉操作,而製造良好的鋼水。決定最佳的頂吹氧的流量及速度、頂吹噴槍的高度、底吹氣體的流量、石灰、鐵礦石等輔助原料的投入量及投入時機、對熔液進行採樣的時機以及結束吹煉的時機中的至少一個作為操作量。如此,基於由所述爐內狀態推定方法計算的爐內狀態,可實現良好的鋼水製造方法。Based on the temperature and component concentration of the molten metal 101 and the component concentration of the slag 103 estimated by the process of the furnace state estimation method, the operation amount is determined, and the refining operation is performed to produce good molten steel. Determine the optimum flow rate and speed of top-blown oxygen, the height of the top-blown lance, the flow rate of bottom-blown gas, the amount and timing of input of auxiliary raw materials such as lime and iron ore, the timing of sampling the melt, and the end of blowing At least one of the timings is used as the operation amount. In this way, based on the state in the furnace calculated by the method of estimating the state in the furnace, a good molten steel manufacturing method can be realized.

如以上所示,本實施方式的爐內狀態推定裝置1、爐內狀態推定方法及鋼水製造方法藉由所述結構及工序,基於包含表示爐內的質量平衡誤差及熱收支誤差的項的評價函數將模型參數最佳化後記憶於資料庫12。並且,在精煉處理中的爐內狀態推定中,可使用保存在資料庫12的過去的最佳化的模型參數,因此可提高熔液101的溫度及成分濃度與熔渣103的成分濃度等的推定精度。As described above, the furnace state estimation device 1, the furnace state estimation method, and the molten steel manufacturing method according to the present embodiment are based on the terms including the mass balance error and the heat balance error in the furnace through the above-mentioned structures and processes. The evaluation function optimizes the model parameters and memorizes them in the database 12 . In addition, in the estimation of the state in the furnace during the refining process, the past optimized model parameters stored in the database 12 can be used, so that the temperature and component concentration of the molten metal 101 and the component concentration of the slag 103 can be increased. Inferred accuracy.

在本揭示的實施方式中,基於各圖式及實施例進行了說明,但應注意業者容易基於本揭示而進行各種變形或修正。因此,應留意該些變形或修正包含於本揭示的範圍內。例如,各結構部或各步驟等中包含的功能等可按邏輯上不矛盾的方式進行再配置,可將多個結構部或步驟等組合成一個,或者進行分割。本揭示的實施方式亦可作為由裝置所包含的處理器執行的程式或記錄程式的記憶媒體實現。應理解該些亦包含在本揭示的範圍內。Although the embodiment of the present disclosure has been described based on the respective drawings and examples, it should be noted that various modifications and corrections can be easily made by a person in the industry based on the present disclosure. Therefore, it should be noted that such changes and modifications are included within the scope of the present disclosure. For example, the functions included in each structural unit or each step may be rearranged in a logically consistent manner, and a plurality of structural units or steps may be combined into one or divided. The embodiments of the present disclosure can also be realized as a program executed by a processor included in a device or as a storage medium recording the program. It should be understood that these are also included in the scope of the present disclosure.

例如,決定的模型參數的種類及模型參數的數量、最小化的評價函數的形式並不限於所述實施方式中列舉的例子,只要是能將爐內的質量平衡誤差及熱收支誤差進行最小化的形式,便發揮相同的效果。而且,模型並不限於所述實施方式中如式(2)~式(6)那樣例示的例子,亦可使用熔液溫度推定模型、廢料熔解模型、輔助原料熔解、良率模型、脫碳效率模型、脫磷模型、Fe tO的生成還原模型等。而且,在本實施方式中表示以轉爐100為對象的爐內狀態推定裝置1及爐內狀態推定方法,但在二次精煉設備或預處理設備中,對基於爐內的質量平衡及熱收支進行計算的模型參數計算亦有效。 For example, the type of model parameters to be determined, the number of model parameters, and the form of the evaluation function to be minimized are not limited to the examples listed in the above-mentioned embodiments, as long as the mass balance error and heat balance error in the furnace can be minimized The transformed form will have the same effect. Furthermore, the model is not limited to the examples illustrated in the above-mentioned embodiment such as formula (2) to formula (6), and a melt temperature estimation model, a scrap melting model, an auxiliary raw material melting, a yield rate model, and a decarburization efficiency may also be used. model, dephosphorization model, Fe t O formation reduction model, etc. Furthermore, in this embodiment, the furnace state estimating device 1 and the furnace state estimation method for the converter 100 are shown, but in the secondary refining facility or the pretreatment facility, based on the mass balance and heat balance in the furnace, Calculation of model parameters for calculation is also valid.

1:爐內狀態推定裝置 2:精煉設備 10:控制終端 11:輸入部 12:資料庫 13:模型參數計算部 14:模型決定部 15:爐內狀態計算部 16:輸出部 20:顯示裝置 100:轉爐 101:熔液 102:噴槍 103:熔渣 104:管道 105:廢氣檢測部 106:通氣孔 107:流量計 1: Furnace state estimation device 2: Refining equipment 10: Control terminal 11: Input part 12: Database 13: Model parameter calculation department 14:Model decision department 15: Furnace state calculation department 16: Output section 20: Display device 100: Converter 101: Melt 102: spray gun 103: Slag 104: pipeline 105: Exhaust gas detection department 106: ventilation hole 107: flow meter

圖1是表示作為本揭示的一實施方式的爐內狀態推定裝置的結構的示意圖。 圖2是表示資料庫的結構例的圖。 圖3是表示作為本揭示的一實施方式的爐內狀態推定方法的處理的流程圖。 FIG. 1 is a schematic diagram showing the configuration of a furnace state estimation device as one embodiment of the present disclosure. FIG. 2 is a diagram showing a structural example of a database. FIG. 3 is a flowchart showing processing of a method for estimating a state in a furnace as an embodiment of the present disclosure.

1:爐內狀態推定裝置 1: Furnace state estimation device

2:精煉設備 2: Refining equipment

10:控制終端 10: Control terminal

11:輸入部 11: Input part

12:資料庫 12: Database

13:模型參數計算部 13: Model parameter calculation department

14:模型決定部 14:Model decision department

15:爐內狀態計算部 15: Furnace state calculation department

16:輸出部 16: Output section

20:顯示裝置 20: Display device

100:轉爐 100: Converter

101:熔液 101: Melt

102:噴槍 102: spray gun

103:熔渣 103: Slag

104:管道 104: pipeline

105:廢氣檢測部 105: Exhaust gas detection department

106:通氣孔 106: ventilation hole

107:流量計 107: flow meter

Claims (9)

一種爐內狀態推定裝置,包括: 輸入部,被輸入實績資訊及精煉處理的條件,所述實績資訊包含精煉設備中的所述精煉處理開始前或處理中的熔液的溫度及成分濃度與熔渣的成分濃度的測量結果、以及包含自所述精煉設備排出的廢氣的流量及成分濃度的關於精煉設備的測量結果; 模型決定部,使用自記憶有與所述精煉設備中的吹煉反應相關的模型的模型參數、所述實績資訊及所述精煉處理的條件的資料庫獲取的過去的所述模型參數,決定對象爐次的所述精煉處理中的所述模型參數; 爐內狀態計算部,使用已決定的所述模型參數,計算包含所述熔液的溫度及成分濃度與熔渣的成分濃度的爐內的狀態量;以及 模型參數計算部,使用包含所述對象爐次的所述精煉處理的結果的所述實績資訊,基於包含表示所述精煉處理中的自特定期間的起點直至終點為止的所述爐內的質量平衡誤差及熱收支誤差的項的評價函數,計算所述對象爐次的所述精煉處理中的所述模型參數。 A furnace state estimation device, comprising: The input unit is input with actual performance information including measurement results of the temperature and component concentration of the molten metal and the component concentration of molten slag before or during the refining process in the refining facility, and refining processing conditions; measurements on the refinery including flow rates and constituent concentrations of off-gases exiting said refinery; The model determination unit determines an object by using the past model parameters obtained from a database storing model parameters related to the blowing reaction in the refining facility, the actual performance information, and the conditions of the refining process. said model parameters in said refining process of a heat; A furnace state calculation unit calculates a state quantity in the furnace including the temperature and component concentration of the molten metal and the component concentration of the molten slag by using the determined model parameters; and The model parameter calculation unit uses the actual performance information including the result of the refining process of the target heat, based on a mass balance indicating a mass balance in the furnace from a start point to an end point of a specific period in the refining process. An evaluation function of a term of an error and a heat balance error calculates the model parameters in the refining process of the target heat. 如請求項1所述的爐內狀態推定裝置,其中 所述模型決定部藉由將記憶於所述資料庫的過去的所述模型參數中的、與所述對象爐次的所述精煉處理的條件類似的過去的所述精煉處理的所述模型參數進行平均,而決定所述對象爐次的所述精煉處理中的所述模型參數。 The furnace state estimation device according to claim 1, wherein The model determination unit memorizes the model parameters of the past refining process similar to the conditions of the refining process of the target heat, among the past model parameters stored in the database. The average is performed to determine the model parameters in the refining process of the target heat. 如請求項1所述的爐內狀態推定裝置,其中 所述模型決定部將記憶於所述資料庫的過去的所述模型參數、與包含所述精煉處理中的處理次數、處理日期時間、精煉設備的使用次數中的至少一個的精煉處理的條件的關係進行模型化,並根據所述模型來決定所述對象爐次的所述精煉處理中的所述參數。 The furnace state estimation device according to claim 1, wherein The model determination unit stores the past model parameters stored in the database, and the refining process conditions including at least one of the number of times of processing in the refining process, the date and time of processing, and the number of times of use of refining facilities. The relationship is modeled, and the parameters in the refining process of the target heat are determined based on the model. 如請求項1至請求項3中任一項所述的爐內狀態推定裝置,其中 所述模型參數包含對投入至所述爐內的碳量的特定期間的累計量、排出至爐外的碳量的特定期間的累計量、投入至所述爐內的氧量、排出至所述爐外的氧量、用於所述熔液中的各種金屬雜質氧化的氧量及由所述爐內的熱量變化引起的熔液溫度變化量的特定期間的累計量中的至少一個進行修正的係數或常數項。 The furnace state estimation device according to any one of claim 1 to claim 3, wherein The model parameters include the cumulative amount of carbon charged into the furnace for a specific period, the cumulative amount of carbon discharged outside the furnace for a specific period, the amount of oxygen charged into the furnace, and the amount of carbon discharged to the furnace. At least one of the amount of oxygen outside the furnace, the amount of oxygen used to oxidize various metal impurities in the melt, and the cumulative amount of the melt temperature change caused by the heat change in the furnace for a specific period is corrected. Coefficient or constant term. 如請求項1至請求項4中任一項所述的爐內狀態推定裝置,其中 所述評價函數包含表示碳收支平衡的項、表示氧收支平衡的項與表示熱收支平衡的項的加權和。 The furnace state estimation device according to any one of claim 1 to claim 4, wherein The evaluation function includes a weighted sum of a term representing the carbon balance, a term representing the oxygen balance, and a term representing the heat balance. 一種爐內狀態推定方法,由爐內狀態推定裝置所執行,所述爐內狀態推定方法包括: 輸入步驟,輸入實績資訊及精煉處理的條件,所述實績資訊包含精煉設備中的所述精煉處理開始前或處理中的熔液的溫度及成分濃度與熔渣的成分濃度的測量結果、以及包含自所述精煉設備排出的廢氣的流量及成分濃度的關於精煉設備的測量結果; 模型決定步驟,使用自記憶有與所述精煉設備中的吹煉反應相關的模型的模型參數、所述實績資訊及所述精煉處理的條件的資料庫獲取的過去的所述模型參數,決定對象爐次的所述精煉處理中的所述模型參數; 爐內狀態計算步驟,使用已決定的所述模型參數,計算包含所述熔液的溫度及成分濃度與熔渣的成分濃度的爐內的狀態量;以及 模型參數計算步驟,使用包含所述對象爐次的所述精煉處理的結果的所述實績資訊,基於包含表示所述精煉處理中的自特定期間的起點直至終點為止的所述爐內的質量平衡誤差及熱收支誤差的項的評價函數,計算所述對象爐次的所述精煉處理中的所述模型參數。 A furnace state estimation method, executed by a furnace state estimation device, the furnace state estimation method comprising: An input step of inputting actual performance information and refining treatment conditions, the actual performance information including the temperature and component concentration of the molten metal before or during the refining treatment in the refining facility, and the measurement results of the component concentration of the molten slag, and the results of refinery-related measurements of the flow rate and component concentrations of the off-gases exiting said refinery; In the model determining step, an object is determined using the past model parameters acquired from a database storing model parameters related to the blowing reaction in the refining facility, the actual performance information, and the conditions of the refining process. said model parameters in said refining process of a heat; a step of calculating the state in the furnace, using the determined model parameters, to calculate a state quantity in the furnace including the temperature and component concentration of the molten metal and the component concentration of the molten slag; and The model parameter calculation step is based on the actual performance information including the refining process results of the target heat, based on the mass balance in the furnace representing the mass balance in the refining process from the beginning to the end of a specific period. An evaluation function of a term of an error and a heat balance error calculates the model parameters in the refining process of the target heat. 如請求項6所述的爐內狀態推定方法,其中 所述模型決定步驟藉由將記憶於所述資料庫的過去的所述模型參數中的、與所述對象爐次的所述精煉處理的條件類似的過去的所述精煉處理的所述模型參數進行平均,而決定所述對象爐次的所述精煉處理中的所述模型參數。 The furnace state estimation method as described in Claim 6, wherein In the model determining step, among the past model parameters in the database, the model parameters of the past refining process similar to the conditions of the refining process of the target heat are memorized. The average is performed to determine the model parameters in the refining process of the target heat. 如請求項6所述的爐內狀態推定方法,其中 所述模型決定步驟將記憶於所述資料庫的過去的所述模型參數、與包含所述精煉處理中的處理次數、處理日期時間、精煉設備的使用次數中的至少一個的精煉處理的條件的關係進行模型化,並根據所述模型來決定所述對象爐次的所述精煉處理中的所述參數。 The furnace state estimation method as described in Claim 6, wherein In the model determining step, a combination of the past model parameters stored in the database, and refining process conditions including at least one of the number of times of processing in the refining process, the date and time of processing, and the number of times of use of refining facilities The relationship is modeled, and the parameters in the refining process of the target heat are determined based on the model. 一種鋼水製造方法,基於藉由如請求項6至請求項8中任一項所述的爐內狀態推定方法而推定的所述熔液的溫度及成分濃度與熔渣的成分濃度,來決定頂吹氧的流量及速度、頂吹噴槍的高度、底吹氣體的流量、石灰、鐵礦石等輔助原料的投入量及投入時機、對所述熔液進行採樣的時機以及結束吹煉的時機中的至少一個而進行精煉操作,以製造鋼水。A molten steel manufacturing method, which is determined based on the temperature and component concentration of the molten metal and the component concentration of the molten slag estimated by the method for estimating the state in a furnace according to any one of claim 6 to claim 8 The flow rate and speed of top-blown oxygen, the height of top-blown lance, the flow rate of bottom-blown gas, the amount and timing of input of auxiliary raw materials such as lime and iron ore, the timing of sampling the melt, and the timing of ending blowing At least one of them is subjected to a refining operation to produce molten steel.
TW111144902A 2021-11-29 2022-11-24 Furnace state estimation device, furnace state estimation method and molten steel manufacturing method TWI841072B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021193655 2021-11-29
JP2021-193655 2021-11-29

Publications (2)

Publication Number Publication Date
TW202321468A true TW202321468A (en) 2023-06-01
TWI841072B TWI841072B (en) 2024-05-01

Family

ID=

Also Published As

Publication number Publication date
WO2023095647A1 (en) 2023-06-01
JPWO2023095647A1 (en) 2023-06-01
JP7392897B2 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
TWI681059B (en) Molten metal composition estimation device, molten metal composition estimation method, and molten metal manufacturing method
JP6573035B2 (en) Method for estimating phosphorus concentration in molten steel and converter blowing control device
JP6579136B2 (en) Refining process state estimation device, refining process state estimation method, and molten metal manufacturing method
JP2017008349A (en) Device for and method of estimating molten metal condition
JP6687080B2 (en) Molten metal temperature correction device, molten metal temperature correction method, and molten metal manufacturing method
JP6376200B2 (en) Molten state estimation device, molten state estimation method, and molten metal manufacturing method
JP6825711B2 (en) Molten component estimation device, molten metal component estimation method, and molten metal manufacturing method
JP6414045B2 (en) Molten component estimation device and molten component estimation method
TW202321468A (en) Intra-furnace state inference device, intra-furnace state inference method, and molten steel manufacturing method
TWI841072B (en) Furnace state estimation device, furnace state estimation method and molten steel manufacturing method
JP6658804B2 (en) Initial component concentration correction device, initial component concentration correction method, refining process state estimation method, and converter operation method
JPH05263120A (en) Method for controlling blowing in converter
JPWO2019039539A1 (en) Method for estimating phosphorus concentration in molten steel, converter blowing control device, program and recording medium
JPH05239524A (en) Method for controlling blowing of converter
JPH06256832A (en) Blowing method of converter
JP2007238982A (en) Method for controlling blowing end-point in converter
JP6516906B1 (en) Wind blow calculation method, blow blow calculation program
JP2000144229A (en) Method for predicting slopping in converter and device therefor
JP7156560B2 (en) Refining process control device and refining process control method
JPWO2023095647A5 (en)
JP6795133B1 (en) Blow control method and smelt control device for converter type dephosphorization smelting furnace
WO2017163902A1 (en) Molten pig iron pre-treatment method and molten pig iron pre-treatment control device
JP3823907B2 (en) Estimating the amount of decarburization in converter steel and converter operation using this method
JP7069999B2 (en) Converter parameter derivation device, converter parameter derivation method, and program
JPH0219413A (en) Converter blow-refining method